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Abstract—Research on quantum computing has recently
gained significant momentum since first physical devices became
available. Many quantum algorithms make use of so-called
oracles that implement Boolean functions and are queried with
highly superposed input states in order to evaluate the imple-
mented Boolean function for many different input patterns in
parallel. To simplify or enable a realization of these oracles in
quantum logic in the first place, the Boolean reversible functions
to be realized usually need to be broken down into several
non-reversible sub-functions. However, since quantum logic is
inherently reversible, these sub-functions have to be realized in
a reversible fashion by adding further qubits in order to make
the output patterns distinguishable (a process that is also known
as embedding). This usually results in a significant increase of
the qubits required in total. In this work, we show how this
overhead can be significantly reduced by utilizing coding. More
precisely, we prove that one additional qubit is always enough to
embed any non-reversible function into a reversible one by using
a variable-length encoding of the output patterns. Moreover, we
characterize those functions that do not require an additional
qubit at all. The made observations show that coding often allows
one to undercut the usually considered minimum of additional
qubits in sub-functions of oracles by far.

I. INTRODUCTION

Quantum algorithms running on quantum computers allow
for significant (exponential in the best case) speed-ups com-
pared to their classical counterparts by exploiting quantum-
mechanical phenomena like superposition, entanglement, and
phase shifts [1]. Recently, devices that have been made pub-
licly available—together with the commitment of companies
like IBM, Google, Microsoft, and Rigetti—brought new mo-
mentum into a domain that has been considered as a “dream
of the future” for a long time [2]–[4]. Even though these
first devices are limited in qubit fidelity and their number
of qubits (i.e., they are classified as NISQ devices [5]), they
provide a first step towards building a fault-tolerant quantum
computer that is capable of conducting hard and useful tasks
in non-exponential time.

Many proposed quantum algorithms contain large Boolean
parts (also called oracles) that are queried with a highly
superposed input to gain quantum speed-up. Examples are
the modular exponentiation in Shor’s algorithm for integer
factorization [6] or a Boolean description of the database
that is queried in Grover’s Algorithm [7]. In order to use
these Boolean components on a quantum computer, they
have to be described as quantum circuits (i.e., a sequence
of quantum operations that are applied to the qubits)—an
inherently reversible description means. Since it is very com-
plex to determine a sequence of quantum operations (also
denoted quantum gates) that realize the desired functionality (a
process termed synthesis [8], [9]), the Boolean function to be

realized is usually decomposed into several (not necessarily
reversible) sub-functions [10]–[12]. Hence, even though the
overall functionality of the oracle is inherently reversible, its
sub-components may not be.

In order to realize non-reversible functions in quantum
logic, further qubits (often called ancillary, ancillae, or work-
ing qubits) have to be added in order to make the output
patterns distinguishable and, hence, obtain a reversible func-
tion (a process called embedding [13], [14]). Moreover, such
additional qubits are often used to store intermediate results
and have to be restored to their initial state (by de-computing
intermediate results) before “leaving” the oracle. All this
obviously increases the number of qubits needed to realize
the oracle. In fact, even if the embedding process guarantees
a minimum of ancillary/ancillae/working qubits, their number
is frequently quite substantial—a severe drawback since qubits
are a highly limited resource.

In order to overcome the issue outlined above, we propose
to utilize coded embeddings where each occurring output
pattern is encoded with another (smaller) unique pattern. This
way, we utilize recently proposed embedding and synthesis
schemes such as one-pass synthesis of reversible logic [15] as
well as synthesis exploiting coding techniques [16], [17] for
the realization of quantum oracles. Encoding outputs allows
us to significantly reduce the number of qubits even below
what is usually considered to be the minimum. Although this
changes the intended functionality, using encoded values is
still acceptable for the realization of oracles since subsequent
sub-components just have to be slightly adjusted to handle the
code, or need to be equipped with a small decoder beforehand
(which often is easier to realize than the original functionality).

Moreover, in this work we show for the first time that
utilizing all that potential indeed allows for the realization
of Boolean non-reversible sub-components with at most one
additional qubit only. In addition to that, we exactly identify
the cases where even this additional qubit is not necessary. By
this, we can provably show that, using coding, one additional
qubit is enough, i.e., that the proposed scheme often allows
one to undercut the usually considered minimum of additional
qubits in oracles by far. This is additionally confirmed by
experimental evaluations. Note that while we only cover the
two-valued case here—since this is the de facto standard in
quantum computation and a large set of benchmarks is avail-
able for evaluation—we expect that our (theoretical) results
can be extended to the multiple-valued case with a radix r > 2
in a straightforward fashion (e.g., using the generalization as
proposed in [18]).
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Fig. 1: Circuit Diagrams

The remainder of this work is structured as follows. In
Section II, we briefly introduce the basics of quantum circuits
as well as how non-reversible functions can be realized by
them. Section III provides a technique for encoding the
function to be realized. Here, we also formally prove that
using a variable-length code indeed allows for realizations
with at most one additional qubit. Section IV compares the
number of required qubits in coded embeddings to those
embeddings (without encoding) that have been considered to
be the minimum thus far. Section V concludes the paper.

II. BACKGROUND

In this section, we briefly recap the basics of quantum cir-
cuits, as well as how to realize Boolean components occurring
in them.

A. Quantum Circuits

Quantum computations are conducted by applying opera-
tions to qubits—entities that cannot only be in one of its
two basis states (denoted |0〉 and |1〉), but also in an (almost)
arbitrary superposition of both. Typical operations acting on
a single qubits are negating the state of a qubit (NOT opera-
tion, denoted by X or ⊕), setting a qubit into superposition
(Hadamard operation, denoted by H), or conducting a phase
shift by i (denoted by S). Moreover, these operations may
be controlled by other qubits. Then, the operation is only
conducted if all controlling qubits are in basis state |1〉. All
these computations may be represented by means of circuit
diagrams, where each qubit is represented by a horizontal
line and quantum gates (i.e., operations that are applied to the
qubits) on these lines determine (from left to right) in which
order the respective operations are applied to the qubits.

Example 1. The quantum circuit shown in Fig. 1a is composed
of two qubits and two gates. First, a Hadamard operation is
applied to qubit q0, setting q0 into a superposition. Afterwards,
a controlled NOT (CNOT) operation is conducted, where q0
serves as control qubit and q1 is the target qubit. Here, the
value of q1 is inverted if q0 is in the basis state |1〉.

Reversible circuits are a subset of quantum circuits that can
be modeled in the classical domain. Hence, these circuits are
used when designing Boolean components for quantum cir-
cuits and are usually composed of multiple-controlled Toffoli
gates. These gates are composed of a (possibly empty) set of
control qubits and a so-called target qubit. The value of the
target qubit is inverted if, and only if, all control qubits are
in basis state |1〉. Hence, the CNOT gate discussed above is a
multiple-controlled Toffoli gate with a single control.

TABLE I: Truth table of the half adder function

(a) Before embedding

x1 x2 y1 y0
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

(b) After embedding

a x1 x2 g y1 y0
0 0 0 0 0 0
0 0 1 1 0 1
0 1 0 0 0 1
0 1 1 1 1 0
1 0 0 0 1 0
1 0 1 0 1 1
1 1 0 1 0 0
1 1 1 1 1 1

Example 2. Consider the reversible circuit shown in Fig. 1b
that is composed of three qubits and four gates. The target
qubit of a Toffoli gate is again denoted by ⊕, whereas control
qubits are denoted by •. Additionally, we have labeled the
intermediate values of the qubits throughout the circuit when
applying |q0q1q2〉 = |000〉 as input. Since a reversible circuit
can be modeled in the classical domain (no quantum effects
are exploited), we use 0 and 1 to indicate the basis states
(rather than |0〉 and |1〉). The first gate has not control qubits
and, thus, inverts the value of q0 from 0 to 1. The second gate
is controlled by q0. Since the value of q0 is 1, the value of
q1 is inverted from 0 to 1. The second gate does not affect
the state of the qubits, since the control qubit q2 is set to 0.
Eventually, the last gate inverts the state of q2 from 0 to 1.

B. Boolean Components in Quantum Circuits
Typically, quantum circuits contain large Boolean compo-

nents (also called oracles) which can be realized by reversible
circuits. Decompositions of the gates occurring in reversible
circuits into elementary quantum operations (e.g., into the
well-known Clifford+T library [19]) can be determined using
approaches such as [20].

Since Boolean components occurring in quantum circuits
commonly describe very complex functionality, they are usu-
ally split into several non-reversible parts (e.g., the modular
exponentiation in Shor’s algorithms can be build up from
several adders)—either manually [10]–[12] or by automated
synthesis tools (using methods as reviewed, e.g., in [8], [9]).
But since quantum computations are inherently reversible, it
has to be ensured that these sub-components are realized in
a reversible fashion, i.e., as a function realizing a unique
mapping from the inputs to the outputs and vice versa.

Example 3. Consider the truth table of a half adder shown in
Table Ia and assume that this functionality shall be realized
as a sub-function of an oracle. Since the output pattern 01
occurs twice, the function is not reversible—the input cannot
be determined uniquely having the output only.

To ensure a unique input-output mapping, the non-reversible
function to be realized is embedded into a reversible one
that typically has a much larger number of variables.1 This
embedding process can either be conducted explicitly [13],
[14] (required when using synthesis approaches such as [21],
[22]) or implicitly (using synthesis schemes following one-
pass synthesis as employed in [15], [16]). However, conducting

1Note that each variable of the function is realized by means of a qubit in
the quantum circuit.



the embedding often yields circuits where the number of
additional variables and, hence, qubits is significant. Since
qubits are a limited resource (especially in NISQ devices [5])
their number shall be kept as small as possible. But even
following the state of the art reviewed above, still a rather
substantial number of qubits results. In fact, the minimal
number of qubits required for embedding thus far is defined
as follows:

Definition 1. Consider a Boolean function f : Bn → Bm with
output patterns p1, p2, . . . , pk ∈ Bm ordered by the number
of corresponding input patterns (in the following denoted as
µ(pi) = |{x ∈ Bn | f(x) = pi}|). Since the embedding
process has to make all output patterns distinguishable, at
least dlog2 µ(p1)e additional so-called garbage outputs are
required (where p1 is the most frequently occurring output
pattern). Moreover, since the number of inputs and outputs has
to be equal to realize a reversible function as quantum circuit,
a total of min(n,m + dlog2 µ(p1)e) qubits are required to
embed a function f : Bn → Bm. If this implies to add further
inputs, the desired output is obtained when setting all ancillary
inputs to a specific value (usually 0).

Example 3 (continued). Since the most frequently occurring
output pattern p1 = 01 occurs twice, dlog2 2e = 1 garbage
output is required to make this output pattern distinguishable.
To align the number of inputs with the number of outputs,
one ancillary input is required. Table Ib shows one possible
embedding of the half adder function. The desired function
can be obtained at the primary outputs by setting the ancillary
input a to 0 (highlighted in bold). All garbage variables as well
as the primary outputs when a 6= 0 can be chosen arbitrarily
as long as a reversible function results.

The ancillary qubits of all sub-functions of an oracle have
to be de-computed to their initial state to allow for a correct
execution within the oracle and enable a later reuse.

III. ONE ANCILLARY QUBIT IS ENOUGH

The authors of [16], [17] have shown that it is possible
to undercut the theoretical lower bound on the number of
required qubits (discussed in Section II-B) by using coding
techniques, i.e., by using a 1-to-1 mapping of the output
patterns to others. In this section, we first review the main
idea of this approach and then formally prove that, using a
variable-length encoding, at most one ancillary qubit is enough
to realize any desired non-reversible function—and, by this,
any sub-component of an oracle. Afterwards, in Section IV,
it is experimentally confirmed that this indeed allows one
to significantly reduce the number of overall required qubits
(even below the minimum considered thus far) in many cases.

A. Utilizing Coding
As shown in [16], [17], the number of additionally required

output patterns can be significantly reduced by exploiting
coding techniques. The general idea for using coding is
motivated by the fact that usually not all output patterns occur
equally many times and, thus, do not require the same number
of garbage outputs. Hence, a variable-length encoding can
be utilized, where frequently occurring output patterns are

TABLE II: Encoding a non-reversible function

(a) Orig. function

x3 x2 x1 x
′
3 x

′
2 x

′
1

0 0 0 1 1 0
0 0 1 0 0 0
0 1 0 1 1 0
0 1 1 1 0 0
1 0 0 0 0 0
1 0 1 1 1 1
1 1 0 1 1 0
1 1 1 1 1 0

(b) Encoding

i pi µ(pi) code(pi)
1 110 4 0 - -
2 000 2 1 0 -
3 100 1 1 1 0
4 111 1 1 1 1

(c) Encoded function

x3 x2 x1 x
′
3 x

′
2 x

′
1

0 0 0 0 - -
0 0 1 1 0 -
0 1 0 0 - -
0 1 1 1 1 0
1 0 0 1 0 -
1 0 1 1 1 1
1 1 0 0 - -
1 1 1 0 - -

represented by a short code word (together with a large number
of garbage outputs) and rarely occurring output patterns are
represented by a longer code word (together with a smaller
number of garbage outputs).

Example 4. Consider the Boolean function with n = 3 inputs
and m = 3 outputs shown in Table IIa. Using an embedding
scheme as discussed in Section II-B yields a reversible function
with five variables (thus, requiring five qubits). However, using
the code as shown in Table IIb allows one to reduce the
number of required qubits to three. For example, the most
frequently occurring output pattern p1 = 110 (which requires
dlog2 4e = 2 garbage outputs) is encoded as code(p1) = 0,
while the output pattern p3 = 100 is encoded by code(p3) =
110. The number of variables/qubits required for each output
pattern is then determined by the sum of the code length
and the number of required garbage outputs—resulting in the
encoded function shown in Table IIc (dashes indicate garbage
variables).

To generate a code as shown above, a Pseudo-Huffman
encoding is employed. To this end, one starts with terminal
nodes—one for each output pattern with µ(pi) > 0 (no code
has to be assigned to output patterns that do not occur)—and
attaches a weight representing the number of required garbage
outputs (i.e., dlog2 µ(pi)e). The Pseudo-Huffman tree is then
generated by repeatedly combining the two nodes a and b with
the smallest attached weights w(a) and w(b) to a new node
c with attached weight w(c) = max(w(a), w(b)) + 1 until a
single node results. The weight of such a node w(c) then gives
the number of outputs required to represent all combined out-
put patterns uniquely, i.e., one additional variable is required
(aside from max(w(a), w(b))) to distinguish between a and b.
Hence, the weight of the root node determines the number of
overall required outputs in the encoded function. Building the
Pseudo-Huffman tree inherently gives such a variable-length
encoding of the output patterns by, e.g., assigning 0 (1) to
the left (right) successor of each node. Concatenation of the
values attached to the path from the root node to a terminal
representing an output pattern pi determines code(pi).

Example 5. Figure 2 shows the Pseudo-Huffman tree for the
function shown in Table IIa. Since there exist four output
patterns with µ(pi) > 0, we start with four terminal nodes
(labeled v1, v2, v3, and v4, respectively) and attach the number
of required garbage outputs as weights (drawn as numbers
inside the nodes). First, we combine the nodes v3 and v4 to
a new node v5 with weight w(v5) = max(0, 0) + 1 = 1.
Next, we combine the nodes v2 and v5 to a new node v6
with weight w(v6) = max(1, 1) + 1 = 2. Eventually, the
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Fig. 2: Pseudo-Huffman tree for the function from Table IIa

nodes v1 and v6 are combined to a node v7 with weight
w(v7) = max(2, 2) + 1 = 3—the single root node of the
tree. The code for the individual output patterns is then
determined by the path from the root node to the respective
terminal. For example, output pattern p2 = 000 is encoded by
code(p2) = 10 since the path traverses the right edge of node
v7 and the left edge of node v6. Overall, the code shown in
Table IIb results.

B. Proving an Upper Bound of n+ 1 Qubits
In this section, we prove that encoding the output patterns of

an n-input function as shown above results in a coded function
requiring at most n+1 variables. Moreover, we show precisely
in which cases this additional qubit is required and in which
not. To this end, we first formally define the Pseudo-Huffman
tree utilized to determine the encoding.

Definition 2 (Pseudo-Huffman Tree). Let G = (V,E) be a
connected, arborescence (a directed rooted tree) composed of
a set of nodes V = {v1, v2, . . . , v|V |} and a set of edges
E ⊂ V × V , and let w : V → N0 be a labeling of the
graph nodes in terms of non-negative weights. Moreover, let
T = {t ∈ V | ∀v ∈ V : (t, v) /∈ E} ⊆ V denote the set of
all terminal nodes. Then, PH = (G,w) is called a Pseudo-
Huffman tree, if, and only if,

1) each internal node v ∈ V \ T has exactly two children
a, b ∈ V and w(v) = max(w(a), w(b)) + 1 and

2) for any two different internal nodes v1, v2 ∈ V \ T
with children a1, b1 and a2, b2, respectively, it holds that
w(a1) ≤ w(b1) implies(
w(a2), w(b2) ≤ w(a1)

)
∨
(
w(a2), w(b2) ≥ w(b1)

)
.

In other words, the tree can be formed from the terminal
nodes by successively combining nodes with the lowest avail-
able weights as described in Section III-A.

The following theorem yields a condition on the terminal
nodes of a Pseudo-Huffman tree that is sufficient to restrict
the weight of the tree’s root node.

Theorem 1. Let PH = ((V,E), w) be a Pseudo-Huffman
tree. If there exists an assignment sv for each terminal node
v ∈ T = {t ∈ V | ∀v ∈ V : (t, v) /∈ E} such that
2w(v) ≥ sv > 2w(v)−1 (where w(v) denotes the weight of
node v) and

∑
v∈T sv = 2n, then the weight w(vr) of the

root node vr of the tree is either n or n+ 1.

2k+1

2k 2k

(a) Joining nodes with equal
weights

2k+1

2k

2k−l

(b) Joining nodes with different
weights

Fig. 3: Joining nodes in the construction of the PH-tree

Proof. Replace all weights using the rule w 7→ 2w. Then the
rule for computing the weight of a new node changes from
max(w(a), w(b))+1 to 2 ·max(w(a), w(b)). Accordingly, all
weights in the tree will be a power of 2.

We perform the proof by arguing about the weights of the
nodes when constructing a Pseudo-Huffman tree. To this end,
consider the set of all nodes V ir of the tree-under-construction
that are the root nodes of the already connected components
after step i of the algorithm. Let witotal =

∑
v∈V i

r
w(v) denote

the sum of the weights over all these nodes.
At each step i of the algorithm, two nodes a, b ∈ V ir with

minimal weight are chosen and joined to a new node c such
that V i+1

r = {c} ∪ V ir \ {a, b}. There are two cases:

1) both nodes a and b have the same weight 2k. Then,
they are replaced by a node with weight 2k+1 such that
wi+1
total = witotal (see Fig. 3a), i.e., the sum of the weights

over the root nodes remains constant.
2) one node—assume without loss of generality a—has

weight w(a) = 2k and the other node (b) has weight
w(b) = 2k−l for some k ≥ l > 0. Then, they are
replaced by a node c with weight w(c) = 2k+1 (see
Fig. 3b).
Since we always take the nodes with minimal weight,
there might not be any other node d ∈ V ir with
w(d) < 2k as this node would have a higher priority
to be joined with b. Thus, all nodes in V ir aside from
b have a weight that—by construction—is a power of 2
that is greater than or equal to 2k. Consequently, after
joining a and b, witotal is increased to a number wi+1

total
that is divisible by 2k. More precisely, it is increased by

w(c)− w(a)− w(b) = 2k+1 − 2k − 2k−l

= 2k − 2k−l

< 2k,

such that wi+1
total is the smallest number that is greater

than witotal and divisible by 2k.
Clearly, this case happens at most once for each k > 0,
since afterwards there is no more node in V i+1

r with a
weight less than 2k and all nodes that will be added to
V jr (for j > i) have higher weights.



By the assumption of Theorem 1, we initially have
2n =

∑
v∈T sv ≤ w0

total and w0
total < 2n+1. Thus, we will

at some point denoted final reach the case that all nodes
in V finalr have a weight greater than or equal to 2n such
that wfinaltotal is divisible by 2n. Since 2n+1 is divisible by
all potencies 2k for k = 0, . . . , n, wfinaltotal will never exceed
2n+1, as we are always increasing witotal to the smallest larger
number divisible by 2k for a k ∈ {1, . . . , n}. Consequently,
we have at least one and at most two nodes in V finalr with a
weight of 2n. Thus, the root node of the resulting tree either is
the single node with weight 2n or the single node with weight
2n+1 constructed from the two nodes with weight 2n. Hence,
the root node of the original Pseudo-Huffman tree has weight
n or n+ 1 as desired.

Now let us interpret this result in the setting of coded
Boolean functions. Consider a Boolean function f : Bn → Bm
to be encoded. We can construct a Pseudo-Huffman tree
with |T | = |{pi ∈ Bm | µ(pi) > 0}| terminal nodes
(which is always possible), where each terminal node v ∈ T
uniquely corresponds to one output pattern pi and has assigned
sv = µ(pi) (thus, having a weight w(v) = dlog2 µ(pi)e). As
this assignment clearly satisfies the conditions of Theorem 1,
the height of this tree is either n or n+1. Hence, there exists
a coding (which is inherently given by the constructed tree)
that requires at most one additional qubit when realizing f in
quantum logic.

Moreover, we can precisely determine in which cases this
additional qubit is required. In fact, the additional qubit is
required whenever there exists an output pattern pi where
µ(pi) > 0 is not a power of two.

Corollary 1. The root node of a Pseudo-Huffman tree satis-
fying the same assumptions as in Theorem 1 has weight n if,
and only if,

∑
v∈T 2w(v) = 2n.

Proof. Given that
∑
v∈T 2w(v) = 2n we may apply Theorem 1

by using the assignment sv = 2w(v) for all v ∈ T . Following
the argumentation in the proof of Theorem 1, the root node
of the Pseudo-Huffman tree has weight n if witotal does not
exceed 2n at any time, i.e., if the second case (which increases
witotal) does not occur at all. This is clearly the case if w0

total =
2n in the beginning. Conversely, if

∑
v∈T 2w(v) 6= 2n, we have

w0
total > 2n in the beginning, such that wfinaltotal = 2n+1 in the

end.

IV. COMPARISON TO EMBEDDINGS WITHOUT CODING

In this section, we compare the idea of coded embeddings
to previous approaches and discuss their effect on the design
of quantum oracles.

A. Evaluation

We compare the idea of coded embeddings to approaches
that do not consider coding when realizing a Boolean func-
tion f : Bn → Bm in quantum logic. More precisely, we
compare to exact methods utilizing max(n,m+dlog2 µ(p1)e)
qubits [13], [14] as well as to heuristic ones that always utilize
a Bennett embedding with n+m qubits [23], [24] (e.g., gen-
erated when using an ESoP based synthesis approach [25]).

TABLE III: Number of required qubits

Benchmark Embedding
name n m Bennett [23] Min. [13], [14] Encoded
f51m 159 14 8 22 19 15
tial 214 14 8 22 19 15
cu 141 14 11 25 25 15
misex3 180 14 14 28 28 15
misex3c 181 14 14 28 28 15
table3 209 14 14 28 28 15
s1488 split 14 25 39 38 15
s1494 split 14 25 39 38 15
b12 15 9 24 22 16
in0 162 15 11 26 25 16
parity 188 16 1 17 16 16
ryy6 198 16 1 17 17 17
t481 208 16 1 17 17 17
cmb 134 16 4 20 20 17
pcler8 190 16 5 21 21 17
cm163a 133 16 13 29 25 17
pdc 191 16 40 56 55 17
spla 202 16 46 62 61 17
table5 17 15 32 32 18
s298 split 17 20 37 29 18
s208.1 split 18 9 27 19 19
cm151a 129 19 9 28 27 20
cm150a 128 21 1 22 22 22
mux 185 21 1 22 22 22
duke2 22 29 51 50 23
cordic 138 23 2 25 25 24
cps 140 24 109 133 132 25
vg2 25 8 33 32 26
misex2 25 18 43 42 26
frg1 160 28 3 31 30 29
apex2 101 39 3 42 42 40
seq 201 41 35 76 75 42
apex1 45 45 90 89 46
apex3 54 50 104 103 55
e64 149 65 65 130 129 65

To this end, we have implemented the proposed idea in C++
and utilized the QMDD package [26] as well as the BDD
package CUDD [27] to gain a compact representation of the
considered functions—allowing us to determine the number
of required qubits in negligible runtime. As benchmarks we
use the functions from RevLib [28], as well as from the
ISCAS [29] and IWLS [30] benchmark suites.2

Table III summarizes the obtained results. The first three
columns of the benchmark as well as the number of inputs
n and the number of outputs m. In the next three columns
we list the number of required qubits when using Bennett
embedding (i.e., m + n), when using a minimal encoding
without considering coding (i.e., max(n,m+ dlog2 µ(p1)e)),
and when using coded embeddings as described in this work
(i.e., n or n+ 1), respectively.

As can be seen in Table III, the number or required
qubits can significantly be reduced when considering coded
embeddings—especially in cases where m > n. Consider for
example benchmarks cps 140 and e64 149, where the number
of required qubits can be reduced by 107 and 65, respectively,
using coding techniques. Overall, a possible reduction of
36.4% can be observed on average.

2Note that we only consider non-reversible functions from these bench-
marks suits since reversible ones do not require embedding.



B. Discussion
Concerning the design of quantum oracles, coded embed-

dings as proposed above can be exploited in two different
ways:
• On the one hand, one can apply the coding technique

locally on each and every sub-component and use de-
coders (after each sub-component) to translate the en-
coded results to the original ones which are then used as
inputs of the subsequent components. This essentially re-
duces the complexity of synthesis for the individual sub-
components (since a smaller number of qubits needs to be
considered). While this offers a significant improvement
of synthesis run-time (as also observed in [16]), the total
number of additional qubits does not change (due to the
decoders).

• On the other hand, one can apply the coding technique
globally such that the encoded outputs of one sub-
component are directly used as input for subsequent com-
ponents and a single decoder at the end translates the final
results to the desired ones. This approach significantly
reduces the number of extra qubits required during the
computation of the oracle’s sub-components such that
the total number of extra qubits is likely to stay close
to the theoretical minimum given by the oracle’s overall
functionality (which is zero). On the downside, a re-
design of the sub-components might be required in order
to work with encoded values.

V. CONCLUSIONS

In this work, we have proven that one additional qubit is
enough to determine a coded embedding of any non-reversible
function for quantum circuits. By this, one can significantly
reduce the overall number of qubits required for realizing
Boolean oracles, since their functionality is usually split
into several non-reversible parts. Our experimental evaluation
shows that the number of required qubits can indeed be
reduced by 36.4% on average, when comparing to embeddings
that do not utilize encoding and that have been considered as
the minimum thus far. Possible applications on the design of
oracles for quantum circuits are discussed.
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