
RVX - A Tool for Concolic Testing of Embedded
Binaries Targeting RISC-V Platforms?

Vladimir Herdt1[0000−0002−4481−057X ], Daniel Große1,2[0000−0002−1490−6175], and
Rolf Drechsler1,3[0000−0002−9872−1740]

1 Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany
2 Chair of Complex Systems, Johannes Kepler University Linz, Austria

3 Institute of Computer Science, University of Bremen, 28359 Bremen, Germany
{vherdt,grosse,drechsle}@informatik.uni-bremen.de

Abstract. We present RVX, a tool for concolic testing of embedded binaries tar-
geting RISC-V platforms with peripherals. RVX integrates the Concolic Testing
Engine (CTE) with an Instruction Set Simulator (ISS) supporting the RISC-V
RV32IMC Instruction Set Architecture (ISA). Further, RVX provides a desig-
nated CTE-interface for additional extensions. It is an extensible command layer
that provides support for verification functions and enables integration of periph-
erals into the concolic simulation. The experiments demonstrate the applicability
and efficiency of RVX in analyzing real-world embedded applications. In addi-
tion, we found a new serious bug in the RISC-V port of the newlib C library.

Keywords: RISC-V · Concolic Testing · Verification · Embedded Binaries.

1 Introduction

Performing application Software (SW) verification on the binary level is very important
to achieve accurate verification results. However, at the same time it is very challenging
due to the detailed low level semantics. Concolic testing has been shown to be very ef-
fective for binary analysis [2,3,5,9]. Recently, we proposed a methodology for concolic
testing of embedded binaries targeting platforms with peripherals, using the RISC-V
Instruction Set Architecture (ISA)4 as a case-study [7]. This initial prototype imple-
mentation has been extended, resulting in the tool RVX. To the best of our knowledge,
RVX is the first available concolic testing tool targeting the RISC-V ISA5. In particular,
RVX supports the RISC-V RV32IMC ISA, i.e. a 32 bit architecture with the mandatory

? This work was supported in part by the German Federal Ministry of Education and Re-
search (BMBF) within the project Scale4Edge under contract no. 16ME0127 and within the
project VerSys under contract no. 01IW19001 and within the project SATiSFy under contract
no. 16KIS0821K, and by the German Research Foundation (DFG) as part of the Collabora-
tive Research Center (Sonderforschungsbereich) 1320 EASE – Everyday Activity Science and
Engineering, University of Bremen (http://www.ease-crc.org/) in subproject P04.

4 Find the RISC-V ISA specification documents at https://riscv.org/specifications/.
5 Visit http://systemc-verification.org/risc-v for the most recent updates on our

RISC-V related approaches.

http://www.ease-crc.org/
https://riscv.org/specifications/
http://systemc-verification.org/risc-v


2 Vladimir Herdt, Daniel Große, and Rolf Drechsler

Concolic Testing Engine 
Application 

(RISC-V) 
CTE-interface 

(syscalls) 
Peripheral 

Models 

RISC-V 
Binary (ELF) 

RISC-V 
GCC 

Memory 

CLINT 

ISS: RV32IMC 

Bus 

RVX 

Exploration Engine 

Symbolic Execution Backend 

Concolic Core VP 

SW 

load 
into 

jump to peripheral SW models code (executed on ISS) 

use 

use 

compile 
(CTE) 

Fig. 1. RVX architecture overview. The Core VP is based on our RISC-V VP from [6].

base Integer instruction set together with the Multiplication extension and support for
Compressed instructions, in combination with the RISC-V machine mode Control and
Status Registers (CSRs) and interrupt handling instruction. In addition RVX provides
a designated Concolic Testing Engine (CTE) interface to access verification functions
from the SW and integrate additional peripherals into the concolic simulation by means
of SW models. The CTE-interface peripheral integration is tailored for SystemC-based
peripherals with TLM 2.0 communication [8]. Our experiments demonstrate the effi-
ciency of RVX in analyzing real-world embedded binaries.

Compared to our initial paper [7], this tool paper focuses on additional implemen-
tation details and adds the following extensions and contributions: 1) several archi-
tectural improvements, including a search heuristic to speed-up bug hunting and an
optimized memory system for more efficiency (lazy initialization and instruction fetch
optimization); 2) extended support for the RISC-V privileged ISA which enables to use
the Zephyr Operating System (OS); and 3) new set of experiments based on the Zephyr
OS and we found a new serious bug in the RISC-V port of the newlib C library.

2 RVX Overview and Implementation

2.1 Architecture Overview

RVX is implemented in C++. Fig. 1 shows an overview of the architecture. RVX oper-
ates on the binary level. Starting point of the analysis is a RISC-V binary (ELF). The
RISC-V binary is obtained by compiling and linking the SW application together with
our CTE-interface and an optional set of peripheral SW models. We expect that calls
to the verification functions (functions provided through our CTE-interface SW stub),
to mark symbolic input variables and encode (safety) properties (i.e. make symbolic,
assume and assert with their usual semantic), have been embedded in the ELF already.

RVX performs concolic testing of the RISC-V ELF. Essentially, RVX consists of
two parts: The concolic core Virtual Prototype (VP) and the CTE, as shown on the right
side of Fig. 1. The CTE successively generates new inputs to explore new paths through
the ELF. Based on the inputs the VP, and in particular the Instruction Set Simulator
(ISS) component, performs the actual execution one after another and tracks symbolic
constraints in order to generate new inputs. Therefore, the VP is operating with concolic
data types in place of concrete values. Essentially, a concolic data type is a pair of a
concrete value and a (optional) symbolic expression.



RVX - Concolic Testing of RISC-V Binaries 3

We implemented symbolic expressions as lightweight wrapper classes that provide
a thin layer around KLEE [1] symbolic expressions. Beside, enabling to change the
symbolic backend more easily, the wrapper provides expression simplification rules,
based on term rewriting. We leverage KLEE constraint sets and use the solver API of
KLEE (combining the counterexample and caching solvers) for constraint solving.

2.2 Exploration Engine and Memory Model

The exploration engine collects inputs in a priority queue to enable easy integration
of different search algorithms. We prioritize inputs that lead to new program counter
values (i.e. essentially increase branch coverage by selecting a branch direction that has
not yet been executed). In case of multiple/none available candidates, we randomize the
decision. By using the search depth as criteria a Depth First Search (DFS) or Breadth
First Search (BFS) can be selected instead.

Memory is modeled as mapping from address to concolic byte. The mapping is
constructed on-demand in a lazy fashion. A lazy implementation enables a significantly
faster startup of the VP and reduces memory consumption, since the VP can have a
large amount of memory and construction of symbolic data is resource intensive. The
memory is initialized by loading the ELF file6. All other memory locations are unini-
tialized and will return a symbolic value on access. A memory access (read or write)
with symbolic address will be concretized to a concrete address. Symbolic constraints
are collected to enable generation of different concrete addresses. To speed-up instruc-
tion fetching we provide an option to load the text section of the ELF file into a native
array and perform instruction fetching from that array.

2.3 CTE-Interface and Peripheral Integration

Verification Interface We provide the make symbolic, assume and assert verification
functions with their usual semantic, i.e. to make variables (memory locations in gen-
eral) symbolic as well as constrain and check their values. Besides that, we provide two
functions to set/unset memory regions to be access protected. These functions enable to
e.g. implement heap buffer overflow protection by allocating a larger buffer and mark-
ing the beginning and end of the allocated buffer to be access protected. RVX reports
an error in case an access to such a memory region is detected at runtime.

Peripheral Integration Both the actual application SW as well as the SW peripheral
models are executed on the core VP. In case a memory access is routed to a SW periph-
eral the ISS performs a context switch to the peripheral handler. Therefore, the ISS sets
the program counter to the handler address. Arguments between the ISS and the SW
peripherals are passed through registers. Arguments are the access address, length, type
(read or write) and a pointer to the data that is written or to be read (therefore a desig-
nated array is reserved). At the end of the handler, the CTE return function is called. It
restores the previous execution context in the ISS.

6 Essentially, this will copy code and data from the text and data sections, respectively, as well as
zero initialize memory according to the bss section, as specified in the ELF program headers.



4 Vladimir Herdt, Daniel Große, and Rolf Drechsler

Besides the return function that transfers control back to the caller of a peripheral
function, RVX provides four additional CTE-interface functions for peripheral inte-
gration: notify, cancel, delay and trigger irq. Notify registers a callback function to be
called after a specified delay by the core VP (based on the core VP timing model, i.e. ex-
ecution cycles per instructions). Cancel removes a pending notification callback. Notify
and cancel enable to implement a simple event-based synchronization targeting sim-
ple SystemC-based process (i.e. SC THREAD and SC METHOD) functionality. The
delay function allows to annotate a processing delay that is added to the VPs internal
timing model. The trigger irq function triggers the given interrupt number. Please note,
we provide an SW model of the RISC-V PLIC (Platform Level Interrupt Controller)
that receives interrupts from other peripherals and prioritizes them. Finally, the PLIC is
using the trigger irq interface function to signal to the core VP that some interrupt is
pending and requires processing.

Virtual Instructions Load instructions are split in the ISS into smaller virtual instruc-
tions. The reason is that they need to store the result of the memory access into a des-
tination register (encoded in the instruction format). However, the result of a periph-
eral memory access is only available after context switching between the peripheral,
which involves execution of several additional instructions (code from the peripheral)
in-between. Splitting load instructions into two virtual instructions, where the first per-
forms the memory access and the second stores the result in the destination register,
enables the ISS to resume execution of the load instruction correctly.

2.4 ISS Main Loop

The ISS is the main component of the core VP. Algorithm 1 shows the instruction pro-
cessing loop of the ISS. It executes instructions until the simulation terminates (Line 19,
by issuing a special system call from the SW).

The ISS either executes application code (the default mode) or peripheral code (in-
peripheral is True). In both cases the ISS might be executing virtual instructions (in-
virtual-mode is True) to process load instruction correctly. Please note, in-virtual-mode
is set to False when entering peripheral code and restored to its previous state on leaving
(i.e. by storing in-virtual-mode on the context stack).

Pending notifications from peripherals (Lines 2-7) as well as external system calls
(not CTE-interface, e.g. Zephyr OS context switches) and interrupts (Lines 8-10) are
only processed if the ISS is currently executing normal application code. The switch-to-
trap-handler function jumps to the trap/interrupt handler in SW, following the RISC-V
trap/interrupt handling convention.

In each step either a virtual (Line 12) or normal (Lines 13-18) instruction is exe-
cuted. In case of a normal instruction the ISS timing model is updated and the delay of
the registered pending peripheral notifications is updated accordingly. The updates only
happen for application code (Line 18), since the peripheral models emulate hardware
devices and hence require a different timing model (we provide the delay system call
to annotate the execution delay). The ISS uses a simple timing model that assigns each
instruction a fixed (though configurable) execution time.



RVX - Concolic Testing of RISC-V Binaries 5

Algorithm 1: Main instruction processing loop inside the ISS
1 do
2 if ¬ in-virtual-mode ∧ ¬ in-peripheral then
3 foreach e← pending-notifications do
4 if delay(e) ≤ 0 then /* notification time elapsed */

/* context switch to peripheral code */

5 context-switch-to-event-handler(function(e))

6 pending-notifications.remove(e)

7 break

8 if ¬ in-peripheral then
9 if has-pending-system-call ∨ has-pending-enabled-interrupts then

10 switch-to-trap-handler() /* follow RISC-V convention */

11 if in-virtual-mode then
12 exec-virtual-step() /* continue with instruction part */

13 else
/* exec-normal-step() might enter virtual mode and context

switch to peripheral or set status to Terminated */

14 if in-peripheral then
15 exec-normal-step() /* peripherals have separate timing */

16 else
/* execute SW instruction and update core timing */

17 Instruction op ← exec-normal-step()

18 timing-and-pending-notifications-update(op)

19 while status != Terminated

3 Experiments and Conclusion

All experiments have been performed on an Ubuntu 16.04 Linux system with an Intel
Core i5-7200U processor. As symbolic backend we use KLEE [1] v1.4.0 with STP [4]
solver v2.3.1. Table 1 shows the results. The columns show: the application SW name,
the number of executed instruction (#instr), lines of code in C and assembly, overall
execution time (time), solver time (stime), number of concolic execution paths (#paths),
and number of solver queries (#queries).

First, we consider two applications (each with and without a bug as indicated by the
name) based on the Zephyr OS. Both applications use a consumer and producer thread
and a sensor peripheral attached to an Interrupt Service Routine (ISR). The sensor gen-
erates symbolic data that is passed through the ISR to the producer (which applies
post-processing) and finally the consumer (contains assertions) thread using message
queues. The first application (zephyr-filter-*) generates ten values, applies a filter and
asserts that the sum and maximum value stays within a valid range. The second ap-
plication (zephyr-sort-*) generates six values, sorts the data (using the BSD qsort im-
plementation) and then asserts that it is sorted. These applications demonstrate RVX’s
ability in analyzing complex embedded binaries.



6 Vladimir Herdt, Daniel Große, and Rolf Drechsler

Table 1. Experiment results (all times reported in seconds) - using RVX to analyze embedded
SW targeting the RISC-V ISA and use the i) Zephyr OS, and ii) the RISC-V port of the newlib C
library. In case of a bug (*-bug) RVX stops the analysis and reports a counterexample. Otherwise
(*-ok), RVX performs an exhaustive concolic execution based on the symbolic inputs.

Application SW #instr C ASM time (S) stime (S) #paths #queries

zephyr-filter-ok 421,206,516 265 4293 196.17 141.73 1024 2048
zephyr-filter-bug 24,628,768 265 4293 7.66 4.79 72 127
zephyr-sort-ok 180,274,083 408 4650 249.25 223.05 724 5043
zephyr-sort-bug 996,518 408 4648 1.43 1.27 4 34

memcpy-opt-bug 182,943 207 566 12.80 11.87 18 473

In addition, we found a new bug in the RISC-V port of the newlib C library. In
particular, the bug is in the (speed) optimized memcpy function7 and causes overwriting
of nearly the entire address space due to an integer overflow in a length calculation. It is
triggered by copying a small block to a destination (dst) address that is close to zero. We
found the bug (last row in Table 1) by making the source (src) and dst address as well
as the copy size symbolic. We added constraints that src and dst are not overlapping,
and placed before the code segment. To catch buffer overflows we added a protected
memory region (access is monitored by the ISS) around the buffer memory. Finally, we
placed assertions after the memcpy to ensure it copies the data correctly from src to dst.

In summary, the experiments demonstrate the applicability and efficiency of RVX
in analyzing real-world embedded binaries and finding bugs.

References

1. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: unassisted and automatic generation of high-
coverage tests for complex systems programs. In: OSDI. pp. 209–224 (2008)

2. Cha, S.K., Avgerinos, T., Rebert, A., Brumley, D.: Unleashing mayhem on binary code. In:
IEEE S & P. pp. 380–394 (2012)

3. Chipounov, V., Kuznetsov, V., Candea, G.: S2E: a platform for in-vivo multi-path analysis of
software systems. In: ASPLOS. pp. 265–278 (2011)

4. Ganesh, V., Dill, D.L.: A decision procedure for bit-vectors and arrays. In: CAV. pp. 519–531
(2007)

5. Godefroid, P., Levin, M.Y., Molnar, D.A.: Automated whitebox fuzz testing. In: NDSS (2008)
6. Herdt, V., Große, D., Le, H.M., Drechsler, R.: Extensible and configurable RISC-V based

virtual prototype. In: Forum on Specification and Design Languages. pp. 5–16 (2018)
7. Herdt, V., Große, D., Le, H.M., Drechsler, R.: Early concolic testing of embedded binaries

with virtual prototypes: A RISC-V case study. In: DAC. pp. 188:1–188:6 (2019)
8. IEEE Std. 1666: IEEE Standard SystemC Language Reference Manual (2011)
9. Shoshitaishvili, Y., Wang, R., Salls, C., Stephens, N., Polino, M., Dutcher, A., Grosen, J.,

Feng, S., Hauser, C., Krügel, C., Vigna, G.: SOK: (state of) the art of war: Offensive tech-
niques in binary analysis. In: IEEE S & P. pp. 138–157 (2016)

7 https://github.com/riscv/riscv-newlib/blob/master/newlib/libc/machine/

riscv/memcpy.c

https://github.com/riscv/riscv-newlib/blob/master/newlib/libc/machine/riscv/memcpy.c
https://github.com/riscv/riscv-newlib/blob/master/newlib/libc/machine/riscv/memcpy.c

	RVX - A Tool for Concolic Testing of Embedded Binaries Targeting RISC-V Platforms

