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Abstract—Compliance testing for RISC-V is very important.
Therefore, an official hand-written compliance test-suite is being
actively developed. However, besides requiring significant manual
effort, it focuses on positive testing (the implemented instructions
work as expected) only and neglects negative testing (consider
illegal instructions to also ensure that no additional/unexpected
behavior is accidentally added). This leaves a large gap in compli-
ance testing.

In this paper we propose a fuzzing-based test-suite generation
approach to close this gap. We found new bugs in several RISC-V
simulators including riscvOVPsim from Imperas which is the official
reference simulator for compliance testing.

I. INTRODUCTION

An Instruction Set Architecture (ISA) defines the interface be-
tween the Hardware (HW) of a processor and the Software (SW).
While, as a consequence, the format of a SW binary running on
a processor is clearly defined by the ISA, nothing is specified on
how to implement the processor'}| An ISA which has become very
popular is the RISC-V ISA [1]. Driven by the ideas from open
source SW, the RISC-V ISA is open, royalty-free, and maintained
by the non-profit RISC-V foundation [2]. The major goal of the
RISC-V ISA is to provide a path to a new era of processor innovation
via open standard collaboration. Around RISC-V an ecosystem is
rapidly emerging. Staring from the base ISA, a big plus of the
RISC-V ISA is the availability of modular standard extensions. In
addition, extensibility has been designed into the ISA allowing for
custom instructions. While this flexibility offers significant advan-
tages (free selection of what is needed from the standard extensions
and addition of dedicated custom instructions for optimization of the
target application), also a major challenge is posed: fragmentation.
The above mentioned cooperation driving the ecosystem will fail, if
different RISC-V CPU implementations do not comply with the ISA
specification. Therefore, the compliance of each RISC-V CPU to the
ISA specification has to be validated. This is the task of compliance
testing. More precisely, compliance testing checks whether registers
are missing, modes are not there, instructions are absent, as well
as the presence of only those instructions which are part of the
selected ISA [3], [4]. If the compliance test passes for a CPU,
the HW/SW contract is maintained and the SW will be portable
between implementations. Note that compliance testing is not design
verification. In contrast to compliance testing, the goal of verification
is to find errors in the CPU implementation.

The importance of compliance testing has been recognized very
early by the RISC-V foundation and therefore the compliance task
group has been formed [5]]. The compliance task group actively
develops the official hand-written compliance test-suite. The indi-
vidual test-cases are designed to compute an in-memory signature,
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'Such an implementation is referred to as micro architecture and the most
famous ones for the x86 ISA are the processors from AMD and Intel.

that represents the output of the test result and is dumped at the end
of the test execution. For compliance testing, these signatures are
compared against golden reference signatures (obtained by running
the test-suite on a reference simulator). A separate sub test-suite is
developed for the RISC-V base ISA as well as for each standard ISA
extension. Besides the significant manual effort for the maintenance,
the compliance test-suite focuses on positive testing only, i.e. to
show that the implemented instructions work as expected. However,
it neglects negative testing, i.e. to consider illegal instructions to also
ensure that no additional/unexpected behavior is accidentally added.
This leaves open a large gap in compliance testing.

Contribution: In this paper we propose a fuzzing-based test-suite
generation approach to close this gap. We leverage state-of-the-
art fuzzing techniques (based on LLVM l[libFuzzer) to iteratively
generate test-cases which are executed on a RISC-V simulator and
guide the fuzzing process through the observed code coverage of
the simulator. A filter is integrated between fuzzer and simulator
to conservatively remove test-cases with infinite loops and platform
specific details, to avoid spurious signature mismatches and to en-
able automated compliance testing. To further improve the fuzzing
effectiveness, we incorporate a custom coverage metric and fuzzing
mutator. Our approach is very effective for negative testing and thus
complements the official compliance test-suite. We found new bugs
in several RISC-V simulators including riscvOVPsim from Imperas,
which is the official reference simulator for compliance testing (i.e.
used to generate reference signatures)E]

II. RELATED WORK

For the purpose of verification, several approaches to test pro-
gram generation have been proposed. In particular model-based
approaches, which separate the test generator from the architecture
description, have a long history. Prominent examples using constraint
solving techniques are [6[], [[7]. An optimized test generation frame-
work is presented in [§]]. It propagates constraints among multiple
instructions in an effective manner. The test program generator of [9]
includes a coverage model that holds constraints describing exe-
cution paths of individual instructions. Other approaches integrate
coverage-guided test generation based on bayesian networks [|10] and
other machine learning techniques [[11]] as well as fuzzing [[12].

Recently, test generation approaches specifically targeting
RISC-V have emerged [13]-[|15]]. The Scala-based Torture Test gen-
erator [13]] generates tests by integrating pre-defined randomized test
sequences and supports several RISC-V ISA extensions. However,
it has two major drawbacks: it does not build upon the official
compliance testing format and only performs positive testing, i.e. il-
legal instructions are not considered. Another approach is RISCV-
DV [14]. It leverages SystemVerilog in combination with UVM
(Universal Verification Methodology) to generate RISC-V instruc-
tion streams based on constrained-random descriptions. However,

2Visit http://www.systemc-verification.org/risc-v for our most recent RISC-V
related approaches.
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RISCV-DV offers only very limited support for generation of illegal
instructions and thus is not suitable for comprehensive negative test-
ing. In addition, the approach does not support the compliance testing
format and requires a commercial RTL simulator providing Sys-
temVerilog (constrained-random features) as well as UVM support.
[15] proposed coverage-guided fuzzing for verification of instruction
set simulators. However, the approach is not compatible with the
compliance testing format, since it generates platform dependent
tests in ELF format instead of providing platform independent tests
written in assembler (ASM), which also significantly reduces its
applicability to different platforms. Furthermore, the approach does
not support automated testing, as it requires manual inspection to
avoid false negatives due to platform specific details.

In addition, there are also formal verification approaches for
RISC-V based on model checking. Notable are riscv-formal [[16] and
the OneSpin 360 DV RISC-V verification app [17]]. However, both
approaches clearly target the verification of an implementation.

Finally, [18]] specifically considers compliance testing of RISC-V.
It defines a test-suite specification mechanism and leverages con-
straint solving techniques to generate a comprehensive compliance
test-suite as counterpart to the hand-written official compliance test-
suite. However, it also only focuses on positive testing and does not
consider negative testing aspects, such as illegal instructions.

III. PRELIMINARIES
A. RISC-V

The RISC-V ISA consists of a mandatory base integer instruction
set, denoted RV32I, RV64I or RV128I with corresponding register
widths, and various optional extensions denoted as single letters, e.g.
M (integer multiplication and division), A (atomic instructions), C
(compressed, i.e. 2 byte instructions), F and D (single and double
precision floating point) etc. Thus, RV32IMC denotes a 32 bit core
with M and C extensions. G denotes the IMAFD instruction set,
hence RV32GC=RV32IMAFDC. Each core has 32 general purpose
registers x0 to x31 (with x0 being hardwired to zero) and the floating
point (FP) extensions add additional 32 FP registers. Instructions
access registers (source: RS1 and RS2, destination: RD) and imme-
diates to do their operation. Format and semantics (for the base ISA
and extensions) are defined in the unprivileged ISA specification [1]].

In addition, the privileged (architecture) specification [[19] cov-
ers further important functionality that is required for environment
interaction and operating system execution. It includes different
execution modes, in particular the mandatory Machine mode as well
as the Supervisor and User mode extensions with corresponding
Control and Status Registers (CSRs) descriptions. CSRs are registers
serving a special purpose, that form the backbone of the privileged
architecture description, such as MTVEC (stores the trap/interrupt
handler address), MHARTID (read-only core id) and MSTATUS
(main control and status register for the core).

B. LLVM libFuzzer

libFuzzer is an LLVM-based state-of-the-art coverage-guided
fuzzing engine that proved very effective in finding several SW
bugs [20].. It aims to create input data (binary bytestreams) in order to
maximize the code coverage of the SUT (SW Under Test). Therefore,
the SUT is instrumented by Clang compiler to report code coverage
to libFuzzer. Input data is transformed by applying a set of pre-
defined mutations (shuffle bytes, insert bit, etc.) randomly. Input size
is gradually increased (when coverage starts to saturate).

Technically, libFuzzer is linked with the SUT, hence performs so
called in-process fuzzing, and allows to pass inputs to the SUT as
well as receive coverage information back through specific interface
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Fig. 1. Overview: fuzzer-based approach for RISC-V compliance testing

functions. For example, the SUT receives inputs through the LLVM-
FuzzerTestOnelnput(const uint8_t *Data, size_t Size) function.

IV. FuzzZING-BASED RISC-V COMPLIANCE TESTING

This section presents our fuzzer-based approach for RISC-V com-
pliance testing. We start with an overview.

A. Approach Overview

Fig. [T|shows an overview on our approach. Essentially, it consists
of two subsequent phases: first a fuzzer-based test-suite is generated
(Phase A, shown on top of Fig.[I), then the test-suite is leveraged for
compliance testing (Phase B, shown on bottom of Fig. [I). Our gen-
erated test-suite follows the same format as the official compliance
test-suite and thus also generates signatures for compliance testing.
However, in contrast to the official suite, which has a dedicated sub
suite for each RISC-V ISA extension, we generate a single suite
that can be compiled and executed with any supported RISC-V
ISA (currently we support any configuration of RV32GC), since
unsupported instructions should be considered illegal and result in
an exception. Furthermore, due to the randomness of the fuzzing
process, both phases can be continuously repeated, to achieve an even
more comprehensive testing.

Test-suite generation involves three main steps: 1) fuzzer, 2) filter
and 3) simulator, that are repeated until the specified time (or mem-
ory) limit is reached. The fuzzer generates (random) bytestreams,
which are interpreted as RISC-V instruction sequences, and passes
them to the filter that decides whether the bytestream is further
processed or dropped. Essentially, the filter conservatively drops
bytestreams with infinite loops and platform specific details (test-
cases are available as source files and are compiled separately for
each target platform with custom definitions), to avoid spurious
signature mismatches. This is very important to enable a continu-
ous and automated testing process, because the potential presence
of spurious mismatches would require manual analysis to confirm
that they are indeed spurious (to avoid missing bugs). In case the
bytestream is dropped, no coverage information is returned to the
fuzzer and hence the fuzzer considers that bytestream uninteresting
and does not collect it. Otherwise, the bytestream is executed on the
simulator and coverage information is returned to the fuzzer. This
happens automatically by compiling the simulator with Clang and
using the -fuzzer sanitizer (because we use LLVM [libFuzzer, which
is compatible with Clang). For simulation, we provide a test-case
template, as RISC-V assembler (ASM) source file. As optimization,
the test-case template is pre-compiled into an ELF and pre-loaded
into the simulator memory. Before each bytestream execution the
simulator is cloned to preserve the initial state.



To improve the fuzzing process we use a custom mutator and
coverage specification. The coverage specification is automatically
transformed into a source file that is embedded into the simulator
and updated on every instruction execution.

Next, we present more details on the test-case format (Sec-
tion and filter (Section as well as the custom mutator
(Section[[V-D) and coverage encoding (Section[[V-E)).

B. Test-case Template

Our test-case template builds on the RISC-V compliance testing
format [3] to ensure that the generated test-suite is directly applicable
to all platforms that support this standard format. It performs a
generic system initialization sequence (initialize core CSRs and
register a trap handler) and then enters the actual test-case body.
Macros are used to mark the begin/end of code and data as well as
halt execution. The macros as well as compilation flags are platform
specific, thus we cannot rely on hardcoded absolute addresses to
access memory or use as jump target (because code and data may
be stored at different addresses per platform).

The test-case body starts by initializing all registers: x0 to x29
are loaded from hardcoded memory values, x30 and x31 (chosen
arbitrarily) are set to point into the middle of the data memory by
using a label. Thus, x0 to x29 have equal values among all platforms
and hence can be used for comparable computations while x30 and
x31 are platform specific but can be used as address for memory
accesses. The data memory is large enough to support any additional
immediate offset, i.e. [-2048, +2047].

The test-case body ends by first incrementing x26 (an arbitrary
register to distinguish between cases where the test code executes
with/without exceptions) and then initiates the shutdown sequence
that will write back all register values (except x30 and x31 since they
have platform specific values) to the data memory and halts execution
(causing a signature dump). In case of an illegal instruction in the
bytestream, control is transferred to the trap handler, which initiates
the shutdown sequence (but bypasses the x26 increment).

In-between start/end of the test-case body, the fuzzer generated
bytestream is injected. The template provides a list of jump instruc-
tions (to the body end) at this point that will simply be overwritten
with raw memory declarations, e.g. .word 0x12345678, for each
word in the bytestream. The number of jump instructions in the
template is large enough for the bytestream to not exceed it.

Please note, we also load and store the content of floating point
(FP) registers alongside the normal registers. However, we condi-
tionally guard it with the definition of __riscv_fdiv, which is set by
GCC when selecting a RISC-V ISA (-march flag) with FP support.

C. Filter

The filter works by performing an abstract local execution of
the bytestream that traverses the local control flow and checks
the reachable instructions alongside. The abstract execution state
consists of a program counter (PC), a mark (clean/dirty) for each
register that indicates whether the register can be used as address for
a memory access, and data structures to keep track of the control
flow to avoid loops. At the beginning PC is set to zero (i.e. pointing
to the beginning of the bytestream) and all registers are marked dirty
except for x30 and x31 (since they are initialized with a label to the
data memory by the test-case, recall Section[[V-B).

The filter then repeats a fetch, decode and execute loop. Thus, it
checks whether the next instruction (based on PC) is compressed (the
two least significant bits are not 11). Then, it decodes the instruction,
increments PC by 4 (normal) or 2 (compressed) accordingly, and (ab-
stractly) executes the decoded instruction. To avoid loops, the filter
essentially checks that the same PC is not revisited. Furthermore, PC

is not allowed to leave the local bounds of the bytestream (due to
a jump/branch). A branch instruction forks the execution path, by
cloning the abstract execution state S into Sp and Sr. The PC of
St is updated with the branch offset, which is relative to the current
PC and hence platform independent, accordingly (the PC of Sp is
already set correctly to fallthrough to the next instruction). S and
S are processed independently.

The instructions JALR, [M,S,UJRET, WFI, EBREAK and
SFENCE.VMA are forbidden (the bytestream is dropped if they are
reachable on any path). The reason is that JALR and [M,S,UJRET
perform a register/CSR based jump. WFI (Wait For Interrupt) might
halt a processor causing non-termination (since no interrupt is com-
ing). EBREAK can have a special semantic and SFENCE.VMA is a
privileged instruction that is often not implemented (which is not a
bug by itself but a deliberate decision). All (six) CSR instructions are
forbidden too, due to highly platform dependent behavior of CSRs
(we provide more details on the problem and potential solutions
in Section[VI).

Any instruction writing to a register RD, marks RD dirty. A
load/store instruction is forbidden if its address register is dirty.
In addition, we also require that the immediate (which will be
added to the register address to obtain the final access address)
is properly aligned, because the RISC-V ISA allows both aligned
and unaligned load/store instructions (which would lead to spurious
signature mismatches).

A path passes when reaching an illegal instruction (since the next
instructions will not be reached due to the exception) or the end of
the bytestream.

For illustration Fig. [2] shows an example. The left side shows
an ASM program, that represents the bytestream. Each instruction
is prepended by it’s (local) address (for simplicity we assume all
instructions are non-compressed, i.e. are 4 byte long). The right side
shows the three possible control flow paths through this program,
starting from the initial state. Each instruction execution (annotated
above a state transition) results in a new state. The current PC
and set of registers marked clear are shown below each state. The
ASM program (bytestream) is accepted by the filter because all
paths are accepted. Please note, that the program contains a WFI
instruction which is in the forbidden category. However, the WFI
has no influence, since it is never reached on any path. Similarly, the
ADD instruction at address 12 that marks x30 dirty is not reached and
hence the LW at address 28 succeeds. BLT and BEQ fork the active
path to continue at PCp=28, PCr=20 and PCp=16, PCp=28,
respectively.

Our filter currently supports the RV32GC ISA. Hence, the gener-
ated test-suite can be executed on any sub-ISA of RV32GC, such as
RV32I, RV32IMC etc. To add a new instruction extension, the filter
needs to be extended as well. Otherwise, the filter will consider them
as illegal instructions and let them pass unconditionally.

D. Custom Mutator

We integrate a custom mutator to provide the fuzzer with valid in-
struction (opcode) patterns to increase the number and length of valid
instructions. Our mutator is attached through the libFuzzer provided
interface and is called with equal probability to the existing mutators.
Basically, the mutator moves through the bytestream instruction by
instruction (we use a 4 byte format) and injects valid opcodes, while
keeping all other parameters randomized by the fuzzer. Please note,
we only inject instructions that pass our filter (since the bytestream
will be dropped otherwise). Besides avoiding instructions from the
forbidden category, we only use small offsets for branch and jump
instructions (might still be rejected by the filter but the probability
is much smaller) and only inject load/store instructions that use
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Fig. 2. Left side shows an example RISC-V ASM program (for a bytestream with 32 byte) and right side shows the corresponding control flow paths

31 2524 2019 1514 12 11 7 6 0 31 2019 15 14 12 11 7 6 0
0000000| XXXXX | XXXXX | 000 | XXXXX | 0110011 | | XXXXXXXXXXXX |x31/x30| 010 | XXXXX | 0000011 |
opcode RS2 RS1 opcode RD opcode I_imm RS1 opcode RD opcode

ADD: Regs[RD] = Regs[RS1] + Regs[RS2]

LW (Load Word): Regs[RD] = Mem[Regs[RS1] + I_imm]

Fig. 3. Format and semantic for the ADD and LW instruction. The opcodes are injected by our mutator, the other fields remain randomized (each random bit is
denoted with an x). Special constraints are used (such as setting RS1 to x30 or x31 for LW) to pass our filter.

x30 or x31 as address register. For illustration Fig. [3] shows the
instruction format and semantic for ADD and LW. When injecting
the ADD instruction, the RS1, RS2 and RD fields remain random,
but all opcode fields are overwritten by the mutator, thus making the
instruction a valid (though randomized) ADD. Similarly, for the LW
instruction, though here rs1 is always set to either x30 or x31 register
to pass the filter.

E. Custom Coverage

By default the fuzzing process is guided by code coverage emitted
by the simulator that executes the bytestreams. We consider two
additional coverage metrics.

The first is a hash-based coverage that is simple, generic and scal-
able. Basically it computes a small hash value of the instruction word
and considers every different hash value as new coverage. This adds
a significant amount of variance and randomness to the generated
test-suite. Technically, we use a C++ std::hash<uint32_t> fn hash
function. Then, every fetched instruction is passed through a (large)
switch statement: switch (fn(fetched_word) % N). N is the config-
urable number of hashes to use. Inside the switch statement we gener-
ate N cases, for ¢ € {0, ..., N}, as case i: __asm__ __volatile__(””);
break;. The __asm__ __volatile__ statement ensure that the cases are
not removed by the compiler.

The second coverage reasons about structure and values of
RISC-V instructions. It is provided through an external specification
file. It can strengthen the fuzzer in the field of positive testing
by collecting further test-cases with valid instructions. Basically,
we use a small set of rules such as: 1) RD=x0, 2) RD#x0, 3)
RD=RSI, and 4) RD#RSI. Each rule is applicable to instructions
that have the corresponding fields and defines a coverage point with
the rules condition, for example if (decoded_instruction.opcode ==
ADD & & decoded_instruction.RD == x0) __asm__ __volatile__;
for rule 1 and opcode ADD (all matching opcodes are enumeratedﬂ
The first and second rule are due to the RISC-V hardwired x0
register. The third and fourth are useful to check for effects where
the update order is not correct. Similarly, we have a rule for three
registers (all equal, all not equal, etc). Finally, we use value rules
Reg[RS1] OP Reg[RS2] with OP € {=,#,<,>} and Reg[RS*]
€ {MIN,MAX,—1,0,1}, and similar rules for immediates.

V. EXPERIMENTS

We have implemented our fuzzer-based approach for RISC-V
compliance testing and evaluated its effectiveness on a set of RISC-V
simulators. As foundation for the fuzzing process we use the 32

3We use a slightly optimized implementation by using switch case statement
for the opcode and grouping all rules below the opcode.

bit (instruction set) simulator of the open source RISC-V VP [21],
[22]. Next, we first provide more information on the fuzzer-based
test-suite generation process (Section and then present results
on the compliance testing evaluation (Section[V-B). All experiments
have been performed on a Linux system with an Intel Core i5-7200U
processor.

A. Test-suite Generation

Fig. [ shows execution information for four different fuzzing
configurations (vO to v3) that use different coverage metrics: v0
uses only code coverage of the ISS; vl adds the custom coverage
rules (structural and value metrics) to vO (additional 2281 coverage
points); v2 and v3 add hash coverage with 4096 and 16384 coverage
points to v1, respectively. Fig. @] shows how the number of test-
cases grows compared to the number of fuzzer executions (i.e. over
time). The runtime is fixed to 30 minutes for each configuration. We
use a 64 byte input length limit for the fuzzer and configured it to
increase the input length more slowly (-len_control=10000). It can
be observed that the number of test-cases grows very rapidly in the
first quarter and then gradually saturates (please note the logarithmic
scale on the X axis). The average executions per second are at 45,873
with the minimum at 12,302 and maximum at 68,873. To achieve
this high performance, it has been particularly important to pre-
compile and pre-load the test-case template and use a small simulator
memory size (32 KB). The highest measured memory consumption
on our evaluation system has been 1063 MB for configuration v3.
The coverage metric is very important since it has immediate impact
on the fuzzing process. First, on the performance, since the coverage
needs to be tracked (which costs time) and it influences how fast
the fuzzer increases the input size (every time the coverage starts to
saturate), which in turn increases the probability that our filter drops
more inputs. Second, on the number of generated test-cases, since
the fuzzer only collects test-cases that increase coverage. For the
following compliance testing evaluation we use the v3 configuration.

B. Compliance Testing
port the RISC-V compliance testing format, in this evaluatio

riscvOVPsim, Spike, VP, GRIFT and sail-riscv. riscvOVPsim [5] (see
the riscv-ovpsim folder) is the reference simulator for compliance

We consider five different RISC-V simulators, which all SL;E

4We also briefly evaluated the rocket and Ibex cores, since they are listed as
targets in the compliance testing repository. Both (RTL) cores can be compiled
into a (C++) simulator using verilator. However, the rocket simulator had
problems with the compliance testing format (it failed every basic RV32I test)
and the Ibex simulator stopped on the first exception (e.g. illegal instruction)
without dumping a signature, which makes it not applicable in combination with
negative testing. Thus, we omitted these cores from the evaluation.
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testing, i.e. it is used to generate the reference signatures by the
compliance task group. Spike [23] is the official reference simulator
for RISC-V from UC Berkeley that aims to be an executable golden
model for the RISC-V ISA specification. VP [21]] is a RISC-V based
Virtual Prototype implemented in SystemC TLM. GRIFT [24] is a
Haskell-based RISC-V formalization that aims to provide the foun-
dation for several analysis techniques for RISC-V. sail-riscv [25] is
implemented in Sail, a special language for describing ISAs with
support for generation of simulator backends as well as theorem-
prover definitions, and aims to become another (executable) formal-
ization of the RISC-V ISA.

Except for GRIFT which currently fails one test-case of the
compliance test-suite (in the A extension), all simulators pass all
applicable compliance test-suites (some test-suites are not applica-
ble, because the simulator simply does not implement the respective
RISC-V ISA extension support).

Following the compliance testing convention, we also use
riscvOVPsim to generate reference signatures. In addition, we con-
sider three different RISC-V RV32 ISA configurations, namely:
RV32I, RV32IMC and RV32GC. With our approach we observed
several errors and inconsistencies on every simulator (across all
ISA configurations) that we used in this experiment. Most errors
are related to incorrect decoding of instructions, which can be
particularly well detected with fuzzing based approaches, but we
also found logical execution errors in valid instructions and some
other issues in the (internal) simulator implementation. Tableﬁ]shows
a summary of the results for an exemplary fuzzer generated test-
suite (the v3 configuration test-suite as discussed in Section [V-A). It
shows the number of signature mismatches that we observed between
riscvOVPsim and the respective simulator (shown in Column 2
to 5) for each of the three ISA configurations (Rows 2 to 4) by
running the test-suite (/ means not supported by simulator). It takes
10 to 20 minutes, depending on the simulator, to run (and also
compare the generated signatures) the whole test-suite for a single
ISA configuration. Please note, that the results can vary slightly,
due to the randomness in the fuzzer. However, we consistently
observed several mismatches for each fuzzer run. We consider this
randomness actually a strength of our approach, since it can also be
used for continuous negative testing to obtain more comprehensive
results. Next, we present our findings in more detail, grouped by the
respective simulator:

o Spike dumps an incorrect test signature in case of an ECALL
instruction inside of the test body.

TABLE I
NUMBER OF SIGNATURE MISMATCHES AGAINST riscvOVPsim

RISC-V ISA Spike VP sail-riscv GRIFT
RV32I 7 5 crash 124
RV32IMC 9 32 crash 1047
RV32GC 9 / / 141

e VP uses a wrong mask for the ECALL instruction in the
decoder which allows an invalid instruction to be decoded and
executed as an ECALL. In addition, reserved non-hint com-
pressed instructions, e.g. “c.lwsp x0, O(sp)”, are erroneously
normally expanded and executed without causing an illegal
instruction exceptio

e GRIFT updates the RA register on an invalid jump (target
address not 32 bit aligned on RV32I) before triggering an
illegal instruction exception (which is incorrect, since ille-
gal instruction should have no side effects). Furthermore, the
RV32IMC compliance testing target has been incorrectly con-
figured to RV32GC, thus floating point and atomic instructions
are erroneously accepted as well. In addition, similar to VP,
reserved non-hint compressed instructions are also erroneously
accepted as legal instructions. Finally, we also found the bug
that SC.W instruction performs memory access even without
pending LR.W reservation (which was the only bug found by
the official compliance test-suite).

o sail-riscv has several incomplete decoder checks that cause
invalid instructions to be accepted as valid ones. Some in-
puts crashed sail-riscv, others led to non-termination (which
indicates that an invalid instructions has been interpreted as a
backward branch/jump).

e riscvOVPsim accepts opcodes reserved for custom (non-
compressed) instruction extensions which should cause an il-
legal instruction exception on the base ISA configuration (to
trigger this error on riscvOVPsim an additional special bit
pattern must be set as well in the instruction besides the
opcode). All other simulators that we tested (including Spike),
correctly performed a jump to the trap handler due to an illegal
instruction exception in this case.

Our evaluation clearly shows that a fuzzing-based approach is an
enrichment for compliance testing. In contrast to the existing com-
pliance test-suite, which focuses on positive testing (i.e. use hand-
written well-defined tests) to check that the required instructions are
correctly implemented, our fuzzing-based approach is complemen-
tary by focusing on negative testing (i.e. to check that no additional
functionality is accidentally added). It is very well suited for decoder
checking, in particular that no illegal instruction passes as a legal
one and that no additional instructions have been accidentally imple-
mented, and testing against unexpected cases. Such error cases are
very hard to detect, because the compiler does not generate illegal
instructions and the existing RISC-V testing frameworks provide
only very limited support. In addition, the inherent randomness of
fuzzing enables it to be re-run continuously. In combination with
our carefully designed and fully compliance testing compatible test-
case format and static analysis based filter, a fully automated and
comprehensive negative testing is enabled. Finally, our approach is
not fixed to a specific RISC-V ISA but applicable to different ISA
configurations (currently any combination of RV32GC) and is easily
extendable to support additional instruction set extensions.

SRISC-V distinguishes different cases of reserved compressed instructions,
some are merely hints which execute as NOP, others are reserved opcodes for
internal and custom extension and should trigger an illegal instruction exception
when attempted to be executed on an ISA without the respective extension.



VI. DISCUSSION AND FUTURE WORK:
THE CSR CHALLENGE

Our experiments demonstrated the effectiveness of our fuzzer-
based approach for finding errors and inconsistencies through neg-
ative testing. It is complementary to the positive testing approach of
the official compliance testing test-suite and in combination provides
a strong compliance testing framework for the unprivileged RISC-V
ISA specification. However, one large and important open challenge
is compliance testing of the privileged ISA, in particular the CSRs.
In contrast to the instruction set specifications, the CSR behavior is
much less clearly and unambiguously defined. Next, we exemplarily
discuss the most relevant Machine mode CSRs:

MTVAL provides exception specific information (for example,
the instruction data in case of an illegal instruction exception). How-
ever, it is also legal behavior to simply set MTVAL to zero in case the
feature is not supported (for some exception). Conditional behavior
like this cannot be handled with the current compliance testing
approach, since the reference signatures are generated in advance and
compared unconditionally to the output signatures. Bits in MIP and
MIE can be hardcoded to zero if the respective interrupt source is
not available, thus in one case a write succeeds in the other case it
may be ignored and both are legal behaviors. MSTATUS has flags
which are optional and exhibit different behavior in Machine and
Supervisor mode. MSCRATCH can be used by the implementation
at will, and hence can arbitrarily change its value in an architecture
specific way. Timing related CSRs such as MCYCLE and MTIME,
as well as the performance counter (which are also optional and can
be hardwired to zero), yield architecture specific results and thus
should not be compared. Even MINSTRET that simply counts the
number of executed instructions cannot be used as signature, because
some platforms use a built-in hardcoded initialization sequence and
the compliance testing framework uses customized initialization and
shutdown sequences (hence executes different number of instruc-
tions). MCAUSE and MEPC are only guaranteed to hold supported
exception codes and valid virtual addresses, respectively. Invalid
addresses may be freely converted by the implementation before
writing them to MEPC. MTVEC can also contain a hardwired read-
only value, which again obviously can be architecture specific and
hence need to be considered to be arbitrary. Similarly, PMP registers
(memory protection) are optional.

Furthermore, Supervisor and User modes are often hardcoded and
cannot be deactivated (which is even the case for Spike). Hence,
access to supervisor and user mode CSRs is possible as well, even
though the test is runs in Machine mode and is supposed to test
Machine mode CSRs. In addition, this has impact on Machine mode
CSRs such as MISA, which has the Supervisor and User bits set too.

In summary the privileged architecture, in particular the CSRs,
expose architecture specific information and provide a large degree
of freedom for implementations. The consequence is that basically
all simulators/cores implement a (more or less slightly) different
subset/configuration of the privileged architecture, yet all of them
can still be compliant to the RISC-V specification. This signifi-
cantly complicates compliance testing, since it is very difficult to
automatically test for correct behavior. We envision three directions
for future work: 1) It seems viable to tackle the CSR problem by
writing very fine grained testf] for each CSR and then select them
dynamically for each tested platform. This requires the RISC-V
privileged architecture specification (which admittedly still officially
is a draft) to list capabilities and interdependencies between CSRs

SIncluding specialized tests that not just compare the whole (CSR) state, e.g.
testing of a performance counter could check that the counter increments when
enabled but not care about the exact architecture specific counter value.

more accurately. 2) Step 1 is a good foundation to develop suitable
coverage metrics for CSR testing to quantify the testing effort. 3)
Extend the compliance testing signature with don’t care values to
deal with conditional behavior, i.e. store a second file alongside the
signature that describes which parts can be ignored in the comparison
on which condition (e.g. ignore the reference output of MTVAL if the
test output assigned a zero to MTVAL).

VII. CONCLUSION

In this paper we proposed a fuzzing-based approach to provide
strong negative testing capabilities for RISC-V compliance testing,
which complements the existing official test-suite that focuses on
positive testing (of the unprivileged RISC-V ISA). We found new
bugs in several RISC-V simulators including riscvOVPsim from
Imperas (the official reference simulator for compliance testing).
Finally, we reviewed the still open challenge in compliance testing
of the privileged RISC-V ISA (CSRs in particular) and sketched
possible solutions.
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