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Abstract—Avoiding security vulnerabilities is very important for
embedded systems. Dynamic Information Flow Tracking (DIFT)
is a powerful technique to analyze SW with respect to security
policies in order to protect the system against a broad range of
security related exploits. However, existing DIFT approaches either
do not exist for Virtual Prototypes (VPs) or fail to model complex
hardware/software interactions.

In this paper, we present a novel approach that enables early
and accurate DIFT of binaries targeting embedded systems with
custom peripherals. Leveraging the SystemC framework, our DIFT
engine tracks accurate data flow information alongside the program
execution to detect violations of security policies at run-time. We
demonstrate the effectiveness and applicability of our approach by
extensive experiments.

I. INTRODUCTION

Embedded systems are small application specific devices with
a broad range of applications, such as the Internet-of-Things
(IoT) or automotive. They integrate several peripherals alongside
the CPU core and extensively rely on embedded SW for con-
figuration as well as complex functionality and communication.
Avoiding security vulnerabilities in the embedded SW is crucial
to prevent leaking sensitive information or compromising safety.

Dynamic Information Flow Tracking (DIFT) [1], [2] is a pow-
erful technique to analyze and protect software against a broad
range of security related exploits by tracking and checking the
information flow between inputs and outputs alongside the SW
execution. Therefore, the DIFT engine is configured according
to a security policy that essentially specifies the classification
of input data, the rules of propagation (Information Flow Policy
– IFP) and what kind of information is allowed to leave the
system at which output interfaces (clearance) [3]. A security
policy enables the specification of several fine grained Access
Control Models (ACMs) including confidentiality (secret data
must not leak to untrusted places) as well as integrity (untrusted
data must not influence sensitive registers/data).

While several SW- and HW-based approaches for DIFT have
been proposed, they suffer from deficiencies if SW targeting
embedded systems is considered: i) SW-based approaches do not
consider the HW in sufficient details and thus are susceptible
to miss complex HW/SW interactions, e.g. due to interrupts,
memory mapped peripheral access as well as Direct Memory
Access (DMA) controllers, and ii) HW-based approaches can
only be used once the HW is available, hence the development
and validation of security policies has to wait until then. At the
same time, the security policy has influence on the SW develop-
ment and HW design, hence it is important to consider security
policies early in the design flow to avoid costly iterations.
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Contribution: In this paper we present a novel approach that
enables early and accurate DIFT of SW binaries targeting
embedded systems. Our approach works by integrating the DIFT
engine in combination with the security policy into a Virtual
Prototype (VP) of the embedded system. VPs are essentially
executable SW models of the entire HW platform, and they
are pre-dominantely implemented in IEEE-1666 SystemC [4]
employing Transaction Level Modeling (TLM) [5] for abstract
communication, and hence very fast simulation. Therefore, VPs
are heavily used for early SW development and design space
exploration [6], [7]. Our approach extends the VP use-cases
to early development and validation of security policies.
Leveraging the VP, the proposed DIFT engine can track informa-
tion flow on the embedded binary taking fine-grained HW/SW
interactions into account. As SystemC is a C++ class library,
we can benefit from the C++ features of templates and operator
overloading to enable a transparent and virtually non-intrusive
integration into the VP. We demonstrate the effectiveness and
applicability of our approach in several RISC-V experiments.
This includes the development of a security policy for a car
engine immobilizer, the detection of code injections as well as
the evaluation of the performance overhead.1

Summarizing, the major contributions of this paper are:
• VP-based DIFT on embedded binary taking fine-grained

HW/SW interactions into account
• Early development and validation of security policies, be-

fore the HW is available
• Transparent and virtually non-intrusive integration in VP
• Moderate performance overhead using VP-based DIFT

Paper Structure: Section II discusses related work. Afterwards,
the basics of SystemC are reviewed in Section III. The definition
of a security policy and the threat model is given in Section IV.
Then, in Section V we present our proposed VP-based DIFT
approach. Finally, Section VI describes our experimental results
and Section VII concludes the paper.

II. RELATED WORK

Several HW-based DIFT approaches have been proposed. For
example [8]–[11] focus on integration of DIFT into processor
cores. There are also some approaches for extending DIFT
support to the whole SoC [12]–[14]. Finally, several approaches
consider DIFT at RTL and gate-level in general [15], [16]. HW-
based DIFT is complementary to our VP-based DIFT, since our
approach enables early development and validation of security
policies before the HW is available. In addition, requirements

1Visit http://www.systemc-verification.org/risc-v to find the open source im-
plementation of our VP-based DIFT engine for RISC-V and also our most recent
RISC-V related approaches.
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for the HW mechanisms can be derived. There also exist various
SW-based DIFT approaches, e.g. [17]–[19], and methods based
on static analysis and symbolic execution focusing on security
validation, e.g. [20]–[22]. However, due to the source-level
abstraction it is very challenging to provide accurate models for
peripherals and to consider complex HW/SW interactions such
as interrupts and DMA accurately. [1] integrated a DIFT engine
into the Bochs x86 emulator to enable DIFT of SW binaries
with full platform support. [23] is conceptually similar but uses
QEMU. However, these approaches only target very specific
security aspects (integrity-based validation [1] and malware
detection [23]) instead of generic security policies, and only
offer limited support for data flows outside of the CPU which are
necessary to track fine grained HW/SW interactions. In addition,
they do not support SystemC-based VPs, which is an industry-
proven modeling standard (IEEE-1666).

Finally, an approach for SoC security validation using VPs
has been proposed in [24]. However, the approach targets to find
security vulnerabilities in the VP model, i.e. the HW. In [25] a
dynamic VP-based IFT method for security validation has been
introduced. However, the approach only supports a much simpler
security policy and threat model compared to this work. Overall,
a VP-based generic binary-level DIFT approach specifically
tailored for embedded SW binaries is not yet available to the
best of our knowledge.

III. SYSTEMC AND TLM
SystemC TLM is an industry-proven modeling standard to

create VPs [6]. SystemC is not a new language, rather a
C++ class library which includes an event-driven simulation
kernel [4], [26]. The structure of a SystemC design is described
with ports and modules, whereas the behavior is modeled
in processes which are triggered by events. Communication
between SystemC modules is abstracted using TLM transactions
at the cost of timing accuracy, but significant improvements in
simulation speed, i.e. up to a factor of 1,000 in comparison
to RTL simulation. A transaction object essentially consists
of a command (e.g. read/write) and the data (payload) to be
transmitted. Transactions are routed based on their address from
an initiator to a target socket which is all defined in the SystemC
TLM-2.0 standard.

IV. SECURITY POLICY AND THREAT MODEL

A. Security Policy
A security policy consists of three parts: (i) the classification

which assigns security classes to data that enters the system,
(ii) the Information Flow Policy (IFP) which is a lattice of
security classes that describes the allowed information flow in
the system and how the combination of differently labeled data is
computed when the data propagates through the system, and (iii)
the clearance which assigns allowed security classes to system
outputs and execution units. Recall that output/execution to/of
data labeled with a certain security class is allowed iff the flow
of the given security class X to the output/execution security
class Y is allowed according to the IFP, i.e. there is a (transitive)
connection from X to Y (denoted as allowedFlow(X,Y)).

Security policies enable the specification of several Access
Control Models (ACMs) including confidentiality (secret data
must not leak to untrusted places) as well as integrity (untrusted
data must not influence sensitive registers/data).
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HC=High-Confidentiality, LC=Low-Confidentiality, HI=High-Integrity, LI=Low-Integrity 

Fig. 1. Three example IFPs. IFP-1 and IFP-2 show a simple policy that models
confidentiality and integrity, respectively. IFP-3 is a natural combination of IFP-1
and IFP-2, thus modeling confidentiality and integrity together.

In the following we provide an example to demonstrate the
principles of IFPs.

Example 1. Fig. 1 shows three IFPs. IFP-1 (see left side of
Fig. 1) has two security classes: High-Confidentiality (HC)
and Low-Confidentiality (LC). Data flow is allowed from LC
to HC but not the opposite way, i.e. confidential information
is not allowed to leave the system through an output interface
without appropriate clearance. IFP-2 (see middle of Fig. 1) only
allows data flow from a High-Integrity (HI) to a Low-Integrity
(LI) security class, i.e. untrusted data (LI security class) is not
allowed to influence sensitive data (HI security class).

It is possible to consider confidentiality and integrity together
as shown in IFP-3 (right side of Fig. 1). IFP-3 is a natural
combination of IFP-1 and IFP-2 by combining the individual
security classes (hence, IFP-3 has 4 security classes) and allow
a flow iff the individual flows are allowed in IFP-1 and IFP-2.

An important operation on an IFP (lattice) is the Least Upper
Bound (LUB). Essentially, the LUB of two security classes
A and B denotes the next security class C that has equal or
more restrictive clearance than both A and B. LUB is used to
compute the resulting security class when applying operations
(like addition, shift, etc) on data with different security classes.
For example, in IFP-3 the LUB of A=(LC,LI) and B=(HC,HI)
is C=(HC,LI) which essentially means that the resulting data
becomes untrusted (as specified in A ) but stays confidential (as
specified in B ).

Declassification: Another important concept is declassifica-
tion [3], [27]. It allows introducing fine-grained exceptions to the
IFP by selectively changing the security class of specific data
at run-time (cf. red dashed arrows in Fig. 1). Typically, only
trusted HW peripherals are allowed to declassify data to reduce
the risk that an attacker exploits the declassification mechanism.

The main use case for declassification is to ensure that a
system operating with confidential information can interact with
the environment. A concrete example is changing the data
classification to non-confidential after it has been encrypted
(otherwise no encrypted information could be send out on a
public output interface because it depends on a secret key, even
though in practice the secret key is sufficiently protected with
getting only access to the encrypted data). Another example is
a login prompt that leaks internal (secret) information about the
password with every attempted login and thus would be blocked
by a strict security policy without declassification.



B. Threat Model
We assume a threat model where an attacker can write

arbitrary (malicious) data at every input port of the embedded
system. The goal of the attacker is for example to obtain
confidential information or destroy the integrity of the system.
The primary attack vector is to exploit functional SW bugs as
well as accidentally included information flows, for example
indirect/implicit information flow or an unsecured debug port.

In our approach we assume that the HW is trusted and only
the HW can perform declassification. We further assume that
the initial SW binary, to be executed on the system, cannot be
changed by an attacker.

The security policy of the system is specified by the (security)
engineer. How our VP-based DIFT approach works and can
be used to validate the security policy is presented in the next
section.

V. DIFT FOR EMBEDDED BINARIES USING VPS

Our VP-based DIFT approach tracks information flow on
the binaries for embedded systems with peripherals. This is
performed taking fine-grained HW/SW interactions into account,
i.e. the flow is also tracked within the peripherals and the
way back to the SW. Our DIFT engine benefits from the
SystemC/C++ features of templates and operator overloading
to enable a transparent and virtually non-intrusive integration
into the VP.

In the following, we start with an overview of our approach
(Section V-A) and then present more details on our DIFT engine
and VP integration (Section V-B).

A. Approach Overview
Our approach is centered around a VP that represents the

target SoC. An overview of our approach is shown in Fig. 2.
We integrate a DIFT engine into the VP that enables DIFT at the
VP level (see center of Fig. 2) and we specify security policies
that are encoded into the VP and checked alongside the SW
execution. Please recall from Section IV-A that a security policy
consists of three components that reason about security classes:
i) classification, ii) IFP, and iii) clearance.

We represent security classes in the DIFT engine as (integer)
tags by simply mapping each security class of the IFP to a
unique tag (see first red box on the right side of Fig. 2 below IFP
implementation). Tags are assigned to input data (for example
a secret key stored in memory or the data generated by a
sensor peripheral) and output interfaces (e.g. the output port of a
UART) according to the classification and clearance mappings,
respectively (see left side below Virtual Prototype in Fig. 2).
In addition, we specify the execution clearance by assigning
tags to specific execution units in the CPU. We discuss the
concept of execution clearance later in Section V-B2 in more
detail. To implement the specified IFP, we provide the LUB and
allowedFlow functions that operate on tags according to the IFP
semantics (bottom red boxes on the right side of Fig. 2). Based
on these two functions, the DIFT engine propagates and checks
the tags, triggering a runtime error upon violation.

B. DIFT Engine
1) Implementation Sketch:
The main ingredient of our DIFT approach is a custom Taint

data type with a template parameter T for the to be tainted data.
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Fig. 2. Overview of our VP-based approach

1 typedef uint8_t Tag;
2 template <typename T>
3 class Taint {
4 T value; // data
5 Tag tag; // security class
6
7 Taint(const T value, const Tag tag) {
8 this->value = value;
9 this->tag = tag;

10 }
11 // convert instance to and from a Taint byte array
12 void to_bytes(Taint<uint8_t> ar[sizeof(T)]) const {
13 for (uint8_t i=0; i<sizeof(T); i++) {
14 ar[i].value = ((uint8_t*)(&value))[i]; // copy each byte
15 ar[i].tag = tag; // use the same tag for each byte
16 }
17 }
18 void from_bytes(Taint<uint8_t> ar[sizeof(T)]) {
19 tag = ar[0].tag;
20 for (uint8_t i=0; i<sizeof(T); i++) {
21 tag = LUB(tag, ar[i].tag); // combine all tags
22 ((uint8_t*)(&value))[i] = ar[i].value; // copy each byte
23 }
24 }
25
26 void check_clearance(uint8_t required_tag) const {
27 if (!allowedFlow(tag, required_tag))
28 throw ClearanceException();
29 }
30
31 // Operator overloading to perform regular operation according

to data of type T _and_ tainting
32 Taint<T> operator+(const Taint<T>& other) {
33 // apply operation and merge tags according to IFP
34 Taint<T> ans(value + other.value);
35 ans.setTag(LUB(tag, other.tag));
36 return ans;
37 }
38 //...other operators implemented similarly...
39 }

Fig. 3. Code excerpts of custom Taint data type

Fig. 3 shows the main code excerpts of the Taint struct: value
stores the data (Line 4) and tag captures the assigned security
class (Line 5).

We now use this data type to represent CPU and peripheral
registers as well as memory bytes. More precisely, we selected
the open-source RISC-V VP from [28], [29] as a representative
example and performed the following three modifications in the
SystemC VP model:

1) Replace the register types to use our Taint<int32 t>
data type instead of the native int32 t. With the Taint
operator overloading (see Line 32 and following), the
RISC-V instruction execution, e.g. an addition regs[RD]
= regs[RS1] + regs[RS2], works without any further
modification, but now also performs the tainting wrt. the
given security policy (Line 34 shows the addition and
Line 35 shows the taint update based on the least upper
bound of both arguments, respectively).

2) Integrate execution clearance checks at appropriate loca-
tions (primarily to handle implicit information flows, more
details follow in the next section).

3) Adapt the memory interface, which is responsible to
translate load/store instructions into TLM transactions, to
support tainted values. To ensure compatibility with TLM
transactions, our Taint data type provides the to bytes
(Line 12) and from bytes (Line 18) functions that convert
any Taint (e.g. Taint<uint32 t>) to and from an array of



1 struct SimpleSensor : public sc_core::sc_module {
2 tlm_utils::simple_target_socket<SimpleSensor> tsock;
3 // memory mapped data frame
4 std::array<Taint<uint8_t>, 64> data_frame;
5
6 // security tag for the generated data
7 uint8_t data_tag = Taint::LowConf;
8
9 // register SystemC thread and TLM transport function

10 SC_HAS_PROCESS(SimpleSensor);
11 SimpleSensor(sc_core::sc_module_name) {
12 tsock.register_b_transport(this, &SimpleSensor::transport);
13 SC_THREAD(run);
14 }
15 void run() {
16 while (true) {
17 sc_core::wait(25, sc_core::SC_MS); // 40 times per second
18 // fill with random printable data
19 for (auto &n : data_frame) {
20 // generate data of the specified security class
21 n = Taint<uint8_t>(rand() % 96 + 128, data_tag);
22 }
23 // notify interrupt controller (IC) about new sensor data
24 IC->trigger_interrupt(2 /*IRQ NUMBER*/);
25 }
26 }
27
28 // the VP bus routes transactions to this function
29 void transport(tlm::tlm_generic_payload &trans,

sc_core::sc_time &delay) {
30 auto addr = trans.get_address();
31 auto cmd = trans.get_command();
32 auto len = trans.get_data_length();
33 auto ptr =
34 reinterpret_cast<Taint<uint8_t>*>(trans.get_data_ptr());
35 if (addr <= 63) {
36 // access data frame
37 assert(cmd == tlm::TLM_READ_COMMAND);
38 assert((addr + len) <= data_frame.size());
39 // return last generated random data at requested address
40 memcpy((void *)ptr, &data_frame[addr],
41 sizeof(Taint<uint8_t>) * len);
42 } else {
43 if (cmd == tlm::TLM_READ_COMMAND) {
44 // the configured security class is not confidential
45 *ptr = Taint<uint8_t>(data_tag, Taint::LowConf);
46 } else if (cmd == tlm::TLM_WRITE_COMMAND) {
47 data_tag = *ptr;
48 } else {
49 assert(false && "invalid access);
50 }
51 }
52 };

Fig. 4. Implementation of a sensor peripheral using SystemC TLM

tainted bytes (i.e. Taint<uint8 t>), respectively. Casting
the Taint<uint8 t> array into a char pointer allows to
transparently embed the Taint data array into a TLM trans-
action and route it as usual through the bus. The receiving
HW peripheral obtains the Taint<uint8 t> (array) pointer
by casting the char data pointer of the TLM transaction
back.

Besides the CPU of the VP, also some adaptations in the
HW peripherals were done. Fig. 4 shows a sensor peripheral
implementation (other peripherals are implemented similarly).
The sensor contains a memory mapped 64 byte data frame
(Line 4) using our custom Taint data type to store a tag alongside
the value. To allow the sensor to send confidential or unconfi-
dential data we add 8 bit data tag register (Line 7). The sensor
periodically generates new data in the SystemC run thread using
the configuration as given by the data tag (Line 19-22). By
this, depending on the concrete application differently classified
sensor sources can me modeled. SW read/write accesses are
routed by the VP’s bus via TLM transactions to the transport
function. The TLM generic payload provides the transactions
data and size. Based on the transaction type, either a read or a
write access is handled in the sensor peripheral.

To extend the original version of the sensor, we only had to
change 6 lines of code (see highlighted lines in Fig. 4). In Lines
4 and 41 the modifications were straight forward from uint8_t
to Taint<uint8_t>. Line 34 casts the transport data pointer
to an array of tainted bytes instead of the original char buffer.
This convention needs to be adapted in every peripheral that

uses TLM transactions. In Line 21, tagged random data (the
sensor’s source) is generated using the Taint constructor with
the tag as the second argument. Note, that Line 47 does not
have to be changed; this is due to the overloaded conversion
routine of the Taint class. This implicit cast to its underlying
type (here uint8 t) requires by default a low confidentiality (LC )
tag, throwing an error otherwise.

In summary, the integration of the DIFT engine into the VP
(including peripherals) only affected 6.81% of lines of code of
the original VP, of which 58.7% are type-conversions (as seen
e.g. in Line 4).

2) Execution Clearance: Beside direct information flow
from computational instructions and clearance checks at output
interfaces, the DIFT engine has also to consider implicit infor-
mation flow (confidentiality specific aspect) and protection of
internal resources (integrity specific aspect). We have identified
three operations in the CPU core that are relevant in this context:
a) branch execution, b) instruction fetching, and c) memory
access. These operations are handled by assigning each of them
an execution clearance (i.e. a security class represented as tag).
For example, the instruction fetch unit performs a clearance
check based on its own security class A and the security class
B of the fetched instruction, i.e. it requires allowedFlow(B,
A). For branch instructions the clearance check is performed
on the branch condition and for memory access operations on
the address. The execution clearance is configurable to let the
engineer select the most suitable configuration (it is specified
in the security policy). Furthermore, fine grained exceptions to
the execution clearance are possible by using declassification
(recall Section IV-A) to selectively change the security class
of specific data (e.g. one specific branch condition) at runtime.
Only trusted HW peripherals are allowed to do declassification
to reduce the risk that an attacker exploits the declassification
mechanism. We discuss the rational behind the execution clear-
ance in the following for the three operations in the CPU core
in more detail:

a) Branch Execution: Observing the control flow can im-
plicitly reveal confidential information. Consider for example a
branch if(secret == 1) then public = 1 with a confidential condi-
tion. The control flow dependence of public with secret allows to
infer information about the value of secret by outputting public.
Therefore, control flow dependencies need to be considered
alongside data flow dependencies by the DIFT engine. However,
in the presence of an attacker that may be able to inject code
(by exploiting SW bugs), their computation is challenging.
Requiring an LC clearance on the branch condition is a safe
approximation to avoid leaking sensitive information. Please
note, the same clearance is used to check the interrupt/trap
handler address.

b) Instruction Fetch: Similar to branches, instruction fetch-
ing/decoding can also leak sensitive information. For example
consider a confidential memory word fetched by the CPU. In
case the word is an illegal instruction, a jump to the (SW error)
trap handler is performed. The trap handler may write to public
variables, hence posing a risk of leakage. Also, the behavior
of the system changes based on the fetched instruction which
may provide an additional attack surface. Again, requiring an
LC clearance on the fetched instruction is a safe approximation
to avoid leaking sensitive information.



In addition, to reduce the risk of code injection by exploiting
SW bugs, it makes sense to also use a HI clearance for in-
struction fetching. This prevents execution of data from external
untrusted sources. However, it still cannot fully prevent code
injection, since an attacker might be able to exploit bugs in the
embedded SW to inject malicious code by re-using trusted code
from memory.

c) Memory Access: A memory access with confiden-
tial address can also leak information. For example consider
Mem[secret] = public. Then, the value of secret may be inferred
by querying the memory, e.g. public2 = Mem[i] and check
public == public2 for i = 0, i = 1, etc. Even if the value
of Mem[secret] is confidential too, an inference of the secret
address is still possible by writing Mem[0], Mem[1], etc., to a
public output interface and observe if an error is raised (due to
insufficient clearance in case Mem[i] is confidential). Using an
LC clearance on the memory address, prevents these attacks.

VI. EXPERIMENTAL EVALUATION

We have implemented our proposed VP-based DIFT approach
for early development and validation of security policies by
integrating our DIFT engine into the open-source SystemC TLM
RISC-V VP [29]. We evaluate our approach in three steps.
First, in Section VI-A we present a case-study on developing
and validating the security policy for an Electronic Control
Unit (ECU) of a car engine immobilizer. Then, we show
the effectiveness of our approach in detecting code injection
(Section VI-B). Finally, we evaluate the performance overhead
of our DIFT engine (Section VI-C).

A. Security Policy Evaluation: Car Engine Immobilizer
In the first experiment, we consider as case-study an ECU

of a car engine immobilizer. The immobilizer holds a secret
key (PIN) in memory which is used for a challenge-response
protocol together with the engine’s ECU for authentication.
Therefore, the engine sends a challenge (random number) and
the immobilizer returns a response (challenge encrypted by
PIN using an AES peripheral). The engine holds the same
PIN as the immobilizer and checks the response by performing
the same encryption. The communication channel between the
ECUs is established by reading and writing to a CAN peripheral.
Please note, that in this authentication process the PIN is never
exchanged on the CAN bus in plain-text.

Our goal is that the PIN is neither leaked (to prevent unau-
thorized access to the car) nor modified (to keep the car opera-
tional). Thus, our security policy uses IFP-3 (see Section IV-A)
and classifies the key as (HC,HI) and use (LC,LI) clearance on
all input and output devices (including the CAN peripheral).
In addition, the AES peripheral has (HC,HI) clearance and
performs declassification, i.e. all encrypted data has (LC,LI)
classification so it can be sent out on the CAN bus.

By running a manually written test-suite we observed that
the security policy is violated because the immobilizer can be
instructed to perform a complete memory dump (including the
secret key) on the UART (which exists for debugging purposes).
We fixed this security vulnerability by correcting the debug
function to exclude the memory region of the key.

For further evaluation purposes we modified the immobilizer
SW to include common attack scenarios: 1) directly or indirectly
(through an intermediate buffer or buffer overflow) write the

TABLE I
BUFFER-OVERFLOW TEST-SUITE RESULTS

Atk # Location Target Technique Result
1 Stack Function Pointer (param) Direct N/A
2 Stack Longjmp Buffer (param) Direct N/A
3 Stack Return Address Direct Detected
4 Stack Base Pointer Direct N/A
5 Stack Function Pointer (local) Direct Detected
6 Stack Longjmp Buffer Direct Detected
7 Heap/BSS/Data Function Pointer Direct Detected
8 Heap/BSS/Data Longjmp Buffer Direct N/A
9 Stack Function Pointer (param) Indirect Detected
10 Stack Longjump Buffer (param) Indirect Detected
11 Stack Return Address Indirect Detected
12 Stack Base Pointer Indirect N/A
13 Stack Function Pointer (local) Indirect Detected
14 Stack Longjmp Buffer Indirect Detected
15 Heap/BSS/Data Return Address Indirect N/A
16 Heap/BSS/Data Base Pointer Indirect N/A
17 Heap/BSS/Data Function Pointer (local) Indirect Detected
18 Heap/BSS/Data Longjmp Buffer Indirect N/A

PIN to an output interface, 2) use control flow instructions
that depend on the PIN, and 3) override the PIN in memory
with external data. All attack scenarios have been detected
successfully.

However, further testing revealed another attack scenario that
is still not covered by the security policy yet. While the current
security policy prevents overwriting the PIN with external data
(i.e. LI ), it does not protect against overwriting with trusted
data (i.e. HI ). Thus, according to the security policy it is still
possible to e.g. overwrite byte 2, byte 3, etc. of the PIN with byte
1. This significantly reduces the encryption entropy (all bytes in
the PIN are equal) and hence enables a brute-force attack (by
trying 256 possibilities) to obtain the PIN byte by byte from
the encrypted response on the CAN bus. We fixed this issue by
modifying the security policy to use a separate security class
for each byte of the PIN, hence further reducing the risk of a
security vulnerability.
B. Code Injection Protection

In the second experiment we evaluate the effectiveness of
our approach in detecting code injection. Therefore, we use
the Wilander-Kamkar buffer overflow attack suite [30] which
has been ported for RISC-V by [9], though some attacks are
not applicable (N/A) in the RISC-V environment, primarily due
to differences in the calling convention [9]. Table I shows an
overview of the attacks. The suite features several attack patterns
that exploit buffer overflows on the stack or the Heap/BSS/Data
segment (column: Location) to target e.g. the return address,
base pointer, function pointer or longjmp buffer (column: Tar-
get). The buffer is either accessed directly or indirectly through a
pointer (column: Technique). All attacks try to inject and execute
a pre-defined malicious code payload which is a serious security
breach and may gain the attacker complete access to the system.

To protect against code injection, we use a security policy
based on IFP-2. The memory holding the program is classified
as HI during program loading, and the instruction fetch unit
in the CPU is also set to HI clearance, i.e. it will raise an
error when fetching instructions with LI classification. All other
information in the system (including data coming from the serial
console) is classified as LI. Because the test-suite features a
well-defined function as a representation for malicious code,
we specifically classify this function as LI before conducting
the tests. In a real world scenario, this code would be inserted



TABLE II
RESULTS ON THE PERFORMANCE OVERHEAD OF OUR APPROACH

Benchmark #instr. exec. LoC Sim. Time MIPS Ov.
ASM VP VP+ VP VP+

qsort 430,719,182 17,052 11.6 18.3 37.1 23.5 1.6x
dhrystone 1,370,010,911 17,158 39.1 60.1 35.1 21.1 1.6x
primes 7,114,988,890 16,793 186.3 390.0 38.1 18.2 2.1x
sha512 7,578,047,617 17,862 251.6 441.5 30.1 17.1 1.8x
simple-sensor 1,393,000,060 2,970 67.6 83.0 20.6 16.7 1.2x
freertos-tasks 5,937,843,750 11,146 141.6 411.5 41.9 14.4 2.9x
immo-fixed 931,083,025 17,188 26.1 46.9 35.6 19.8 1.8x
– average – 3,536,527,633 14,309 103.4 207.3 33.2 17.0 2.0x

by external components (e.g. the terminal) and thus also have
an LI security class. With this security policy all applicable
attacks were detected which demonstrates the effectiveness of
our approach in detecting code injection attacks.

C. Performance Overhead Evaluation

To evaluate the performance overhead of the DIFT engine we
compare the execution times of our approach (denoted VP+)
against the original RISC-V VP (denoted VP). All benchmarks
are executed on a Linux machine with Fedora 29 and an IntelTM

i5-8250U processor.
Table II shows the results. The first three columns report the

benchmark name, the number of executed instructions (column:
#instr. exec.) and number of assembler opcodes (column: LoC
ASM) in the final binary (which includes linked libraries). The
remaining columns compare the simulation time (in seconds)
and MIPS (Million Instructions Per Second) for VP and VP+,
and the resulting performance overhead of VP+ (column: Ov.).
The last row summarizes the results by providing average values
for all benchmarks. As benchmarks, we use qsort from the
newlib C library, a standard dhrystone implementation, a prime
number generator, the hash sum function sha512, a simple-
sensor application that copies randomly generated data from
a sensor to a UART peripheral, a FreeRTOS application SW
scheduling two interleaved tasks, and the fixed car immobilizer
SW (the example from the previous section).

It can be observed that VP+ is in average a factor of 2x
slower (worst and best case at 2.9x and 1.2x, respectively) than
the original VP on the benchmark set, which is a very reasonable
performance overhead.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have introduced a VP-based DIFT approach
for embedded binaries taking fine-grained HW/SW interactions
into account. Our approach supports a wide range of security
policies which can be fully configured by the user. Moreover,
since our approach leverages SystemC-based VPs security poli-
cies can be developed and validated early, i.e. before the HW is
available. In addition, we utilized the benefits offered by Sys-
temC/C++, in particular templates and operator overloading, to
design a taint data type that enables a straightforward integration
of our DIFT engine into the VP platform. Extensive RISC-V
experiments demonstrated the effectiveness of our approach.

For future work we plan to investigate automatic test-case
generation methods that consider the SW as well as the VP
level (e.g. [31], [32]) and are tailored for stress-testing security
policies.
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