
Early Verification of ISA Extension Specifications using
Deep Reinforcement Learning

Niklas Bruns

Cyber-Physical Systems, DFKI GmbH

Bremen, Germany

niklas.bruns@dfki.de

Daniel Große

Chair of Complex Systems, Johannes

Kepler University Linz, Austria

Cyber-Physical Systems, DFKI GmbH

Bremen, Germany

daniel.grosse@jku.at

Rolf Drechsler

Institute of Computer Science,

University of Bremen

Cyber-Physical Systems, DFKI GmbH

Bremen, Germany

drechsler@informatik.uni-bremen.de

ABSTRACT
For IoT devices the demand in faster execution and at the same time

lower energy consumption is a pressing problem. A very promising

solution are Application-Specific Instruction-set Processors (ASIPs).
They make use of custom instructions, which are added to the

processor, forming the Instruction-Set Extension (ISE) of a given

Instruction Set Architecture (ISA). While the selection process for

the ISE is already challenging, an incorrect ISE specification leads

to severe problems: errors and security vulnerabilities go unde-

tected in the first formalization and in the worst case show up

ultimately in the final implementation. In this paper, we propose

an early verification approach for ISE specifications. Our novel

approach is based on two ingredients: (i) Virtual Prototypes (VPs)
to enable a rapid creation of an executable specification for the

ISE; and (ii) Deep Reinforcement Learning (DRL) to search for ISE

programs which violate the ISE specification intent. As case study

we consider extensions of the RISC-V base ISA. We demonstrate

the effectiveness of our approach for finding functional bugs in the

executable specification of the ISE as well as specification gaps in

the ISE leading to information leakage.

CCS CONCEPTS
•General and reference→Verification; •Theory of computa-
tion→ Reinforcement learning; • Hardware→ Application
specific instruction set processors.
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1 INTRODUCTION
The Internet-of-Things (IoT) is the leading cause of a technologi-

cal revolution which enables many innovative products. The rapid

development of new IoT products results in high demand for energy-

efficient, cheap, and customizable hardware. Here, Application-
Specific Instruction-set Processors (ASIPs) are a very promising so-

lution. ASIPs make use of custom instructions which are added to

the processor, forming the Instruction-Set Extension (ISE) of a given

Instruction Set Architecture (ISA) [18]. Typical custom instructions

are, for example, a Multiply ACcumulate (MAC) extension, a cryp-

tographic extension or an extension for control-flow protection

(e.g. [29]). There has been a lot of research on finding and selecting

the specialized instructions, in particular, to speed up the execution

of an application (for an overview see [11]). However, verification of

the ISE for the IoT becomes even more critical as functional errors

or security vulnerabilities would affect millions or even billions of

devices. An important approach for ASIP design are Architecture
Description Languages (ADLs) [20]. In essence, an ADL is a domain

specific language for the description of a processor. The ADL de-

scription is then used to generate Instruction-Set Simulators (ISSs),
HDL models and tools for the SW development. Even verification

infrastructure like OVM/UVM based tests can be generated [24].

While the generator approach has several advantages, the focus

of the ADL flow are clearly the generated models. More precisely,

the ADL description is the first formalization of (the ISA and) the

ISE specification. If functional bugs or specification gaps become

part of the ADL description, the consecutive generation results are

flawed. The same problems arise if classical development flows are

employed, which directly implement the specification instead of

using a generator.

Contribution: In this paper, we propose an early verification ap-

proach for ISE specifications. The goal of the proposed approach is

to find and fix flaws in the ISE specification to prevent the propa-

gation of errors through the whole development flow. Our novel

approach is based on two ingredients: (i) Virtual Prototypes (VPs)
to enable a rapid creation of an executable specification for the ISE.

VPs are an established industry practice and typically written in

SystemC [12, 17]. (ii) Deep Reinforcement Learning (DRL) to search

for ISE programs which violate the ISE specification intent. The

specification intent is thereby captured in behavioral rules . If during
the DRL process, a violation of a behavioral rule is detected, the

ISE developer can compare the violating program execution trace

against the specification to determine the deviation from the speci-

fication intent. As case study we consider extensions of the RISC-V

base ISA. We demonstrate the effectiveness of our approach for
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finding functional bugs in the executable specification of the ISE as

well as specification gaps in the textual ISE leading to information

leakage.

Related Work: The specific problem of verifying specifications of

instruction set extensions received only little attention so far. In [2]

an approach to verify the conformity of a configurable system-

model of a Cyber-Physical System (CPS) to its specification is pre-

sented. The authors use DRL to find a falsifying input for the CPS

system-model in Matlab. In our approach we target the verification

of the ISE specification using DRL and search for ISE programs

which violate the ISE specification intent. For SW testing with the

view on applying these concepts at the instruction level to the exe-

cutable specification/ISS, constrained random techniques or fuzzing

can be used. In this light closest to our work is FuzzerGym [8]. It

combines reinforcement learning and fuzzing. The goal of the ap-

proach is to use reinforcement learning to optimize the mutation

selection. Unlike FuzzerGym our reward calculation uses behav-

ioral rules which are derived from the specification and our input

space is much larger.

2 PRELIMINARIES
2.1 Deep Reinforcement Learning
Reinforcement Learning (RL) is a class of machine learning algo-

rithms that are intended to solve sequential decision-making prob-

lems with only a reward as feedback [25, 26]. The goal of an RL

algorithm is to maximize the cumulative reward by controlling the

system. The theoretical formalism for RL is the Markov Decision
Process (MDP). In this model, an environment consists of a set of

states 𝑆 = {𝑠1, ..., 𝑠2} and actions 𝐴 = {𝑎1, ..., 𝑎𝑛} which can be

executed to control the systems state. The transaction function

𝑇 : 𝑆 × 𝐴 × 𝑆 → [0, 1] delivers the probability that a state ac-

tion tu leads to a specific state. The algorithm/agent can choose

an action and percepts the changes in the state and gets a reward

𝑅 : 𝑆×𝐴×𝑆 → R. Through these actions the agent gains knowledge
about how to optimize its behavior. The argument 𝛾 is called dis-

count factor which models the fact that future reward is worth less

than immediate reward. An essential aspect is the decision whether

an action leads to a positive or negative reward which cannot be

done right after a single action execution. This problem is called the

temporal credit assignment problem. To tackle this problem, it is

beneficial to provide the agent with rewards for reaching interme-

diate subgoals. Deep Reinforcement Learning (DRL) is a combination

of RL and deep neuronal networks which allows to solve more

complex problems with high-dimensional state spaces [3].

2.2 RISC-V
It is very difficult to add custom instructions to traditional ISAs

because they are often very complex. In contrast, as RISC-V is an

open and free ISA, extendability was an important design factor

of the RISC-V ISA. Hence, we use it as a case study in this paper.

The RISC-V ISA emerged from UC Berkeley and recently attracted

a lot of attention in industry. The ISA standard is maintained by

the non-profit RISC-V foundation. The ISA consists of a mandatory

base integer instruction set and various optional extensions. In this

work we consider the configuration with 32 bit registers which is

denoted as RV32I. For more details we refer to [27, 28]. Furthermore,

Name Source Registers Dest. Registers Description

MACL rs1, rs2, rs3 rd calculates the lower bits of the MAC operation

MACH rs1, rs2 rd calculates the higher bits of the MAC operation

Name 31 27 26 25 24 20 19 15 14 12 11 7 6 2 1 0

MACL rs3 00 rs2 rs1 000 rd 01010 11

MACH 00000 01 rs2 rs1 000 rd 01010 11

DL← ((𝐴 · 𝐵 ∧ 0x0000FFFF) +𝐶) ∧ 0x0000FFFF)
OF ← ((𝐴 · 𝐵 ∧ 0x0000FFFF) +𝐶) ∧ 0xFFFF0000)
DH ← ((𝐴 · 𝐵 ∧ 0xFFFF0000) +𝑂𝐹

Figure 1: MAC ISE Specification for RISC-V RV32I ISA

as an executable specification of the RISC-V ISA we use the open

source VP from [14].

3 ISA EXTENSIONS
The Instruction-Set Architecture (ISA) of a processor is the interface
between the HW and the SW. As motivated in the introduction,

ASIPs add custom instructions to the ISA forming the so called

Instruction-Set Extension (ISE)
1
. In general, an ISE yields several ad-

vantages [11]: (i) more dense code which reduces the code size, (ii)

fewer executed instructions which can reduce power and (iii) faster

execution of an application heavily using the custom instructions.

Many domain-specific architectures include instances of ISEs; DSPs

for example include multiply-accumulate extensions. The typical

starting point for an ISE is application profiling. In this step, the

computationally most demanding segments which are known as

hot-spots are identified. The second step is ISE identification which

uses previously determined hot-spot information and identifies

instructions which should optimize the performance/power con-

sumption. Then, the ISE is specified in detail, i.e. the functionality

of each instruction is defined as a human readable document. To

evaluate the potential performance gains Instruction-Set Simulators
(ISSs) as part of an Virtual Prototype (VP) are used in modern design

flows [7, 21]. Therefore, the existing ISA ISS is extended. However,

this leads to substantial problems if the ISE specification contains

bugs or gaps, as in this case the following development steps require

costly long-loop iterations. Hence, we propose an early verification

approach for ISE specifications. Before we describe our approach

in detail, we use a simple ISE as running example.

Example 1. Our running ISE example for RISC-V RV32I is the
specification of a Multiply ACcumulate (MAC) custom instruction
which works on integers. The ISE specification is shown in Fig. 1. The
upper table lists the instructions including the used source/destination
registers (2nd and 3rd column) and the description of each instruction
(forth column). The lower table defines the encoding of the instructions.
In addition to the instruction name, the columns show the bit positions
and what is stored in the respective fields. 𝑟𝑠1/𝑟𝑠2/𝑟𝑠3 stands for
the different source registers and 𝑟𝑑 for the destination register. The
functionality of the instructions is defined below the tables. In this
definition DL stands for destination lower, OF for overflow and DH for
destination higher. The semantic of the considered MAC instruction is
defined as 𝑑 ← 𝑎 + (𝑏 · 𝑐). Because the output of the MAC instruction
can be much larger than the input, the MAC instruction has been split
into the two instructions MACL and MACH. The MACL instruction

1
As a side note, since Moore’s Law is slowing down, ISEs are also very common for

regular CPU ISAs, for instance Intel’s x86 [4].



calculates the lower 32 bits while the MACH calculates the higher
32 bits of the result. To handle the overflow of the addition after the
multiplication, MACL saves the overflow for later usage. Because
of the existence of the saved overflow, MACH needs to be executed
directly after the corresponding MACL.

4 EARLY VERIFICATION OF ISA EXTENSION
SPECIFICATIONS USING DEEP
REINFORCEMENT LEARNING

In this section we present our early verification approach for ISE

specifications. The main goal of the proposed DRL approach is to

search for ISE programs which violate the ISE specification intent.

Fig. 2 depicts the overview.We start with the textual specification of

the ISE for a given ISA. Besides the regular practice of extending the

ISA ISS (see action ISS Extension in Fig. 2), our approach requires to

capture the specification intent in form of behavioral rules that are

extracted from the ISE (see action ISE Behavior Extraction in Fig. 2).

For this, we use a logic-based language which we introduce in

Section 4.1. Just like DRL, our behavioral rules work on state action

tuples 𝑆×𝐴×𝑆 . Hence, they can easily be transformed into aMarkov
Decision Process (MDP) (cf. Section 2.1). To search for ISE programs

which violate the ISE specification, we transform this problem,

which consists of the behavioral rules and the extended ISS, into an

MDP and perform DRL. There are two possible results of the DRL

process: (a) violations of the ISE specification have been generated

(in form of a test vectors at the instruction level, i.e. ISE programs) or

(b) no violating programs have been found. In case (a) we store these

programs as Intent Violations (IVs). They can be used to improve the

ISE specification aswell as the ISS. In the following, we presentmore

details on the behavioral rules (Section 4.1), theMDP transformation

(Section 4.2) and the implementation (Section 4.3).

4.1 ISE Behavioral Rules
The behavioral rules are used to define the intended and non-

intended behavior of the ISE. Formally, a behavioral rule is defined

as a function 𝑏𝑟 : (𝑆 ×𝐴×𝑆) → Bwhere 𝑆 is the set of states and𝐴

the set of actions. In the context of the considered specification ver-

ification problem this means: For the given state 𝑠𝑡−1 at time point

𝑡 − 1, the to be executed instruction 𝑖𝑡−1 and the successor state 𝑠𝑡
at time point 𝑡 , the value of 𝑏𝑟 (𝑠𝑡−1, 𝑖𝑡−1, 𝑠𝑡 ) determines whether

the instruction 𝑖𝑡−1 behaves like intended. This function definition

allows direct integration into DRL since the function arguments

perfectly match reward function arguments. The primitive objects

available in the behavioral rules are sets of constants C, variables V ,
instructions I , and states S. Then, the syntax of behavioral rules is
defined as follows:

1 br (st−1, it−1, st ) ::= ¬br |br ∨ br |read ◦ read
2 ◦ ∈ {=,≠, ≤, ≥, <, >}
3 read ::= 𝑣 |𝑐 |st−1 (idx) |st (idx) |read ∼ read
4 ∼∈ {+,−, ·,÷}
As defined in Line 1, every behavioral rule can be negated or con-

nectedwith another behavioral rule by performing a logic operation.

Moreover, every read term which is connected to another read term

via a comparator (Line 2) results also in an behavioral rule (Line 1).

Every read term (see Line 3) can consist of variables, constants

or the value which results from reading from the state vector at

index 𝑖𝑑𝑥 . A read term can be the result of a arithmetic function

too (Line 4). We show a simple behavioral rule for our running ex-

ample in the following. Later in the experiments we provide more

behavioral rules examples.

Example 2. We consider again the running example, i.e. Exam-
ple 1. Besides the core functionality of the MAC instructions, a major
verification goal is that no side effects on the general purpose registers
occur. We discuss the application of our approach for this intended
behavior in the following examples. As defined in the upper table
of Fig. 1, there is only a single destination register per MAC ISE in-
struction. Hence, we capture the no side effect intent in the following
behavioral rule :

∀𝑟 ∈ Regs r ≠ 𝑑𝑒𝑠𝑡 (𝑖𝑡−1) → 𝑠𝑡 (𝑟 ) = 𝑠𝑡−1 (𝑟 )
As can be seen we formalize that: if 𝑟 is not the destination register of
an ISE instruction 𝑖𝑡−1, then the value of 𝑟 is the same as the time point
before, i.e. remains unchanged. Note, by the use of ∀, the behavior is
formulated as a single rule. During the transformation, the quantifiers
are unrolled. Because all unrolled clauses describe a single behavior,
there are no intermediate goals in this example.

4.2 Problem Transformation
In this section, we present the details about the transformation of

the verification problem to an MDP. To create an MDP, a reward

function 𝑅 : 𝑆 × 𝐴 × 𝑆 → R has to be defined. As mentioned

earlier, 𝑆 is the set of states and 𝐴 is the set of actions. The state

of the MDP is the memory and the registers that are used for the

instruction execution. The state must include the memory to make

the functionality deterministic for an observer who only sees the

actions/instructions and the state, to fulfill the Markov property.

This allows us to assume that the DRL algorithm has all relevant

information to make decisions. To ensure a small state space, other

memory should not be included in the state. For our verification

problem, set 𝐴 is the set of all instructions of the ISE. To define the

reward function, we transform the behavioral rules to reward rules.

The first step of this transformation is to negate the behavioral rules

because our verification goal is to find instruction sequences that

violate the specification intent. These behavioral rules are combined

with the reward value 1 to define the positive reward rules that

describes the goal of the MDP. The behavioral rules which define

the non-intended behavior are combined with the reward value -1

to define the reward rules that describes the negative goal of the

MDP. Note, the RDL algorithmwants to omit the negative goals and

only wants to find the positive goals. The combination of this two

sets of behavioral rules define the reward function. Furthermore,

the rewards are chosen analog to [19], a positive reward for 1 at on

winning (kill enemy), and -1 on losing (suicide).

Subgoals: To accelerate the verification process, we generate so-

called potential rules (see [22]). The goal of the potential rules is

to define intermediate subgoals like the positive reward for object
pickup in [19]. In the context of our verification problem this is sim-

ilar to the approach of virtual coverage (see [10]). In order to create

the subgoals, the reward rules are transformed into their CNF-Form.

The clauses of the CNF-form reward rules are the potential rules.

The reward of the individual potential rules is the multiplicative
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inverse of the underlying reward. Because we choose a 𝛾 parameter

smaller than 1, the DRL algorithm converges to a short solution.

This convergence is a helpful for the problem at hand as short ISE

programs can be analyzed more easily.

4.3 Implementation
We have implemented the proposed approach based on OpenAI

Gym [5]. Besides that, we use an executable specification/ISS for the

base RISC-V ISA which is the SystemC-based RISC-V VP from [14,

15]. To overcome the considerable SystemC initialization overhead,

we enhanced the RISC-V VP with a checkpointing system. The

checkpointing system has been implemented as a fork-based TCP

server. This allows a much faster simulation of ISE programs gen-

erated during the DRL process as well as multi-threaded DRL. The

pseudo-code for the DRL ISE simulator using the enhanced VP is

shown in Algorithm 1. Note that the DRL algorithm connects sev-

eral times to this simulator (depending on the available CPU cores).

The first step of the simulator algorithm is the SystemC model

initialization (see Line 1). After that, the VP parses all available

instructions (including their parameters; see Line 2). Therefore, the

input can be viewed as the set of all possible actions. Next, the TCP

server starts (see Line 4). If a DRL client connects, the simulation

is forked (see Line 5 and Line 6). After that, the VP receives the

initial state and loads it (see Line 8 - Line 9). As long no error occurs,

the VP receives an action (instruction) and executes it (see Line 11

- Line 13). After an action execution, the VP sends the resulting

successor state to the DLR algorithm. (Line 15). If an run-time error

occurs (e.g. a trap), the VP closes the TCP connection and closes its

fork subprocess. Please note that the defined behavioral rules are

checked as part of the DRL algorithm (due to space limitation we

cannot discuss the details).

Example 3. The implementation of our proposed DRL approach
generates an instruction sequence which violates the behavioral rule
(Section 4.1) of our running MAC example in 2.41s. From the resulting
trace we can easily see that a general purpose register (in the trace
it was 𝑡0) has been used to store the overflow (𝑂𝐹 ) of the instruction
MACL. This flaw resulted from the specification, since in Fig. 1 it
was not defined how the overflow should be managed. Unfortunately,
during the ISS extension it was decided to use the general purpose
register 𝑡0 for this task. Overall, this first example demonstrates that
our approach is able to find specification flaws.

In the next section, we present the experimental evaluation for a

larger case study.

Algorithm 1: DRL ISE Simulator

Input: ISA and ISE I

1 Initialization of SystemC model

2 Parse I

3 while test vector generation is running do
4 start TCP server

5 if new DRL connection accepted then
6 fork simulation

7 send list of available instructions to DRL algorithm

8 receive initial state

9 load state in VP

10 while no error do
11 receive instruction from DRL algorithm

12 if instruction is invalid then terminate connection

13 execute instruction

14 if error at execution then terminate connection

15 send successor state to DRL algorithm

5 EXPERIMENTAL EVALUATION
For the evaluation of our proposed approach we used in addition

to OpenAI Gym the PPO2 [23] DRL algorithm from the framework

Stable Baseline [16] with the default hyperparameters that are also

used for the Atari benchmark. In the following we consider a cryp-

tographic ISE to extend the RISC-V RV32I ISA. We detail the ISE in

Section 5.1. Then, in Section 5.2 we present the obtained results for

the proposed approach.

5.1 AES ISE Specification
The cryptographic ISE has the purpose of accelerating crypto-

graphic operations for the algorithm AES128. AES is a block cipher

which uses in its 128bit version 10 encryption rounds [9]. For a

detailed description of the AES standard we refer to [6]. The ex-

tension at hand aims to offer a high-performance cryptographic

accelerator which securely stores the keys. Secure means in this

context that the extraction of the keys should be impossible.

The instructions of the extension, which are inspired by the

AES-NI Extension for x86 processors [13], are listed in Table 1. The

registers of the ISE are called High Confidential Registers (HCRs).
The instruction GHMOV is defined to move data from the exten-

sion registers to the General-Purpose Registers (𝐺𝑃𝑅). 𝐺𝐻 in the

instruction name denotes that the destination of the value from

a 𝐻𝐶𝑅 is a 𝐺𝑃𝑅. Overall, the instruction takes three arguments.

Besides the destination register and source register the third ar-

gument specifies the subword of the data which should be copied.

This argument is required because the ISA uses 32bit GPRs and

the extension 128bit HCRs. The instruction HGMOV is for moving

data from the general-purpose registers to the extension register. It

has three arguments. The arguments of the instruction are almost



the same as for the GHMOV. However, HG denotes that the desti-

nation of the value from a GPR is a HCR. The position parameter

defines at which position of the word of the HCR the subword of

the GPR should be copied. Furthermore, additional security flags

are encoded in the position parameter. With these security flags

the data can be marked as data or key. The instruction XOR realizes

the exclusive-or operator for the extension registers. The instruc-

tion only operates on the extension registers. The instruction is

needed to realize the preliminary round of AES. The instructions

ENC, ENCLAST, DEC, and DECLAST are the core of the consid-

ered extension. They have three arguments. The first argument is

the destination register which holds the result of the instructions.

The second argument specifies the used round key, and the third

argument the to be processed data. The instruction ENC is needed

for the first nine encryption rounds, and the ENCLAST is for the

tenth and therefore last encryption round. Equivalent instructions

arguments apply for the instructions DEC and DECLAST. To guar-

antee confidentiality values that are marked as data or key can

not be moved to a GPR. Values will be unmarked after the last

round of the operations ENCLAST or DECLAST. The instruction

KEYGEN realizes the generation of the encryption round keys. It

has three arguments. The first argument is the destination register

which holds the generated round key. The second argument is the

previous round key. The last argument is RCON which denotes the

round constant and is needed to add resistance against invariant

attacks.

5.2 AES ISE Specification Verification
In this section, we present the verification of the AES ISE specifica-

tion.

AES1: As defined in the AES ISE specification secret data (like the

encryption key) must be stored securely. This specification intent

can be found in the ISE specification in Table 1 at the instruction

HGMOV in column Source 2 in ProtFlag and the corresponding

textual descriptions of the instructions. Hence, we captured this

intent in the following behavioral rule :

∀𝑟 ∈ HCRRegs : 𝑠𝑡 (𝑟 ) = KEY → 𝑠𝑡 (𝑟 .𝑓 𝑙𝑎𝑔𝑠) = PROT

As can be seen, we formalize that: if a register of the ISE contains

the key, then the register flag must be set to protected. Our pro-

posed approach finds an instruction sequence which violates the

behavioral rule in 0.01s seconds. This fast “unprotection” is the

result of a ISE specification gap.

AES2: The specification does not contain the requirement that 10

AES rounds must be executed before the result can be marked as

unprotected. After we fixed this flaw by inserting the requirement

in the specification and then integrating the respective fix in the

extended ISS, we check the protection of the key with the afore-

mentioned behavioral rule again. However, our proposed approach

finds again an instruction sequence which violates the behavioral

rule in 795.97s seconds. The flaw resulted from the ISE specification

as it was not specified that the preliminary round of the AES en-

cryption must be executed before starting the regular AES rounds.

The output of the preliminary round is a combination of the key and

the data. The data input (Source 2) of the first call of the instruction

ENC must be the combination of the key and the data from the

preliminary round and not only one of them. To fix this flaw, a

new instruction can be introduced, which realizes the preliminary

round and the first encryption round at once.

AES3: As defined in the row for instruction GHMOV in Table 1,

only non-secret values can be moved to a general-purpose register.

Hence, we capture this intent in the following behavioral rule :

∀𝑟1, 𝑟2, 𝑟3, 𝑟4 ∈ GPRRegs : ¬(𝑠𝑡 (𝑟1) = KEYsubword0 ∧
𝑠𝑡 (𝑟2) = KEYsubword1 ∧
𝑠𝑡 (𝑟3) = KEYsubword2 ∧
𝑠𝑡 (𝑟4) = KEYsubword3 )

As can be seen, we formalize that the full secret key (consisting

of four subwords) can not be in GPR registers at time 𝑡 . The au-

tomatic generated intermediate rewards contain the subgoal that

any can hold a subword of the secret key. Our proposed approach

finds a violating instruction sequence for this behavioral rule in

2.35s seconds. The shortest (found after 4.04s) contains 4 GHMOV
instructions which move the four subwords (32bit) of the key (key

length 128bit) to different GPRs:

GHMOV x8, h0, 3
GHMOV x13, h0, 2
GHMOV x5, h0, 1
GHMOV x9, h0, 4

The flaw results from the code of the reference ISS since the pro-

tection check in the instruction GHMOV was buggy.

AES4: After fixing the protection check in the code of the extended

reference ISS, we run the proposed DRL approach again for the

behavioral rule . As mentioned earlier, this formulation has the

meaning that all GPR registers at time 𝑡 can not contain the secret

key. Our proposed approach results in a timeout, i.e. that no intent

violation has been found within the time limit of 24 hours.

5.3 Comparison
The goal of this section is to provide a comparison to Constrained
Random Verification (CRV), which is a well known verification tech-

nique for instruction generation [1, 30]. It is constrained to generate

only valid instructions and also uses the behavioral rules for goal

detection. The results for this comparison have been obtained on

an Intel Xeon Gold 5122 CPU with 3.60GHz host using a time limit

of 24 hours. A summary of the ISE specification verification using

our proposed approach is shown in Table 2. The table also provides

a comparison of our approach to a CRV approach, which however

does not use DRL for searching violating ISE programs. The goal of

the comparison is to show the effectiveness of our DRL approach.

The first column Name presents the scenarios as described in the

previous section. The next four columns report the results of our

DRL-based approach. The last four columns list the results of the

CRV approach. The result columns are structured as follows: The

first column contains the computation time until a flaw has been

detected (marked with ✓, otherwise ✗). The next column contains

the length of the found solution (i.e. number of instructions). The

next two columns contain the time until the shortest solution was

found and the length of the shortest solution. T.O. denotes that the
time limit has been reached. As can be seen AES1 shows that our

approach can quickly find specification flaws. AES2 points out that

our DRL based approach can be used to verify complex specification

verification problems while the CRV approach fails. AES3 shows



Table 1: AES Instruction Set Extension (ISE) Specification for RISC-V RV32I ISA
Type Opcode Dest. Source Source 2 Description

I GHMOV GPR HCR Subword moves the not secret value of the HCR register to the GPR register

I HGMOV HCR GPR Position+ProtFlag moves the value of the GPR register to the HCR register

R XOR HCR HCR HCR XOR operation

R ENC HCR HCR (key) HCR (data) encrypts register data with key for one AES round

R ENCLAST HCR HCR (key) HCR (data) encrypts register data with key for the last AES round

R DEC HCR HCR (key) HCR (data) decrypts register data with key with one AES round

R DECLAST HCR HCR (key) HCR (data) decrypts register data with key for the last AES round

I KEYGEN HCR HCR (key) RCON generates the aes round keys with the round constant

R IMC HCR HCR (key) - generates corresponding decryption round key from the encryption key

I-type: 2 register operands (with dest) and imm. R-type: 3 register operands (with dest) GPR: General Purpose Reg. HCR: High Confidential Reg. RCON: Round Constant

Table 2: Comparison of proposed DRL approach vs CRV
Name Goal DRL CRV

first best first best

time len time len time len time len

AES1 UNPROT 0,01s ✓ 2 0.01s ✓ 2 2.78s ✓ 3 4.16s ✓ 2

AES2 UNPROT 795,97s ✓ 215 795,97s ✓ 215 T.O. ✗ N.A. T.O. ✗ N.A.

AES3 MOVE 2.35s ✓ 5 4.04s ✓ 4 0.25s ✓ 21 0.32s ✓ 13

AES4 MOVE T.O. ✗ N.A. T.O. ✗ N.A. T.O. ✗ N.A. T.O. ✗ N.A.

that our approach finds better/smaller solutions in slightly more

run-time compared to the CRV approach. Overall, the proposed ap-

proach was able to uncover significant flaws including non-trivial

information flow.

6 CONCLUSIONS
In this paper, we have proposed an early verification approach

for ISE specifications using deep reinforcement learning. In the

experiments we have been able to show that the integration of an

enhanced ISA simulator with OpenAI-Gym-based DRL allows to

search for non-trivial specification flaws in the initial executable

specification for an ISE. As a case study, we considered a complex

cryptographic AES ISE of the RISC-V RV32I ISA. We have found

functional bugs as well as specification gaps in the ISE leading to

information leakage.
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