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ABSTRACT
Extensive verification of embedded SW is very important to avoid
errors and security vulnerabilities. Therefore, mainly simulation-
based methods are employed that leverage Virtual Prototypes (VPs)
for SW execution early in the design flow. VPs are essentially ab-
stract models of the entire HWplatform including peripherals. They
are predominantly created in SystemC. However, a comprehensive
simulation-based verification requires integration of sophisticated
test generation techniques.

In this paper we propose to leverage state-of-the-art Coverage-
guided Fuzzing (CGF) methods in combination with SystemC-based
VPs for verification of embedded SW binaries. Using VPs, our ap-
proach allows a fast and accurate binary-level SW analysis and
enables checking of complex HW/SW interactions. To guide the
fuzzing process we combine the coverage from the embedded SW
with the coverage of the SystemC-based peripherals. Our experi-
ments, using RISC-V embedded SW binaries as examples, demon-
strate the effectiveness of our approach.

CCS CONCEPTS
• General and reference→ Verification; • Computer systems
organization→ Embedded software.
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1 INTRODUCTION
Embedded systems are prevalent nowadays in many different ap-
plication areas. They integrate several peripherals alongside the
CPU core and extensively rely on embedded Software (SW) for con-
figuration and to implement complex functionality. Verification of
the embedded SW is very important to avoid errors and security
vulnerabilities.

Therefore, mainly simulation-based methods are employed that
leverage Virtual Prototypes (VPs) for SW execution early in the
design flow [11]. VPs are essentially abstract models of the en-
tire Hardware (HW) platform and predominantly created in Sys-
temC TLM (Transaction-Level Modeling) [1]. VPs offer much better
simulation performance compared to an RTL (Register-Transfer
Level) simulation and at the same time offer more accuracy than
high speed Instruction Set Simulators (ISSs), like QEMU, and are de-
signed from the ground up to represent the whole HW platform not
just the CPU core. Thus, SystemC-based VPs provide an industry-
proven approach for analysis of complex HW/SW interactions (and
other system-level use cases such as design space exploration or
power/timing/performance validation). However, a comprehensive
simulation-based verification requires integration of sophisticated
test generation techniques.

Recently, in the SW domain the automated SW testing tech-
nique fuzzing [24] has been shown very effective in testcase gen-
eration and became a standard in the SW development flow [5].
These modern fuzzing techniques typically employ the so called
mutation based technique. It mutates randomly created data and is
guided by code coverage. Notable representatives in this Coverage-
guided Fuzzing (CGF) category are the LLVM-based libFuzzer [4]
and AFL [3], which both have been shown very effective and re-
vealed various new bugs that can lead to errors and security vul-
nerabilities [3, 4]. However, using CGF for checking embedded SW
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binaries is challenging, because it requires to analyze architecture
specific SW binaries that extensively interact with HW peripherals.
Contribution: In this paper we propose to leverage state-of-the-
art CGF methods in combination with SystemC-based VPs for veri-
fication of embedded SW binaries. We call this combination VP-CGF.
VP-CGF brings together the benefits of both worlds: CGF is a sophis-
ticated and very effective method for testcase generation and VPs
allow for a fast and accurate binary-level SW analysis and enable
checking of complex HW/SW interactions during testcase execu-
tion. To guide the fuzzing process we combine the coverage from
the embedded SW additionally with the coverage of the SystemC-
based peripherals. Both coverage information are tracked in the
VP alongside the testcase execution. Our experiments demonstrate
the effectiveness of our approach in analyzing real-world RISC-V
embedded SW binaries.

2 RELATEDWORK
Several formal verification methods, e.g. [8, 10, 14, 17, 18], primarily
based on symbolic/concolic execution techniques, have been pro-
posed for verification of embedded SW binaries. However, formal
methods are still highly susceptible to state explosion.

Different random testing / fuzzing approaches targeting embed-
ded systems have been reported: [21, 22] use random fuzzing of au-
tomobile ECUs with CAN packets. [9, 19] use generational (model-
based) and evolutionary (based on genetic algorithms) fuzzing tech-
niques to analyze smart cards. [26, 27] analyze the GSM imple-
mentation in mobile phones by sending random SMS messages.
However, neither of these approaches leverages state-of-the-art
CGF or VPs. An overview on challenges in fuzzing embedded sys-
tems is provided in [25].

In [20, 28] methods are presented to integrate real HW peripher-
als with the SW simulation to enable accurate analysis of embedded
SW even when no peripheral models are available. We consider
these approaches to be complementary to our approach.

Recently, QEMU has been combined with AFL and even been
used for fuzzing the Linux kernel [6, 7]. This combination (QEMU-
AFL) enables CGF-based analysis of embedded binaries by emulat-
ing them in QEMU and propagating the observed SW coverage at
runtime fromQEMU back to AFL. Another similar project combines
AFLwith the Unicorn CPU emulator [2]. However, these approaches
are primarily focused on emulating the CPU core and either do not
consider peripherals at all (Unicorn-AFL) or only to a limited extent
(QEMU-AFL), without using the peripheral coverage in the fuzzing
process. In addition, QEMU does not support SystemC-based VPs,
which is an industry-proven modeling standard (IEEE-1666) and
hence deserves dedicated verification solutions.

Finally, fuzzing has also been leveraged for generation of processor-
level stimuli to verify (instruction set) simulators / CPU cores,
e.g. [12, 15, 23]. However, this is a completely different focus to
verifying embedded SW binaries.

3 OUR APPROACH: VP-CGF
In this section, we present our proposed approach VP-CGF for veri-
fication of embedded SW binaries using CGF with SystemC-based
VPs.We start with an overview (Section 3.1). Then, in Section 3.2 we
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Figure 1: Overview on VP-CGF: CGF with SystemC-based
VPs for verification of embedded SW binaries

describe how we track code coverage information for the SystemC-
based peripherals (in the VP) and the embedded SW binary (that
is tested). Finally (Section 3.3), we present an example embedded
application that is verified with VP-CGF.

3.1 Overview
Fig. 1 shows an overview of our approach VP-CGF for verification
of embedded SW binaries. Our approach leverages two components,
a CGF-based fuzzer (shown on the left side of Fig. 1) and a SystemC-
based VP (shown on the right side of Fig. 1) that interoperate in a
loop. Essentially, the fuzzer provides new inputs and the VP exe-
cutes these inputs and returns coverage information to the fuzzer.
VP and fuzzer are separate processes and communicate through
sockets and files. In the following we present more details on our
approach.

Starting point is an embedded SW binary that represents the
embedded SW application. In the first step the VP is started in server-
mode and the embedded SW binary is loaded into the VPs memory.
When started in server-mode, the VP will fully initiate (i.e. setup the
SystemC simulation engine and instantiate all components) until
the VP is ready for execution of the embedded SW binary. At this
point the VP will stop and wait for commands from the fuzzer.

Next, we start the fuzzer that connects with the VP through a
socket connection and starts the fuzz-loop (repeating Steps 2 to 7
in Fig. 1), which works as follows: The fuzzer begins by writing
a new testcase into a (binary) file (Step 2, bottom of Fig. 1) and
notifies the server-mode VP by sending a run command (Step 3).
The VP will then use the fork system call to create a new identical
VP child process in exec-mode (Step 4) to execute the embedded SW
binary with the fuzzer-provided input (Step 5, right side of Fig. 1).
Alongside the execution, the exec-mode VP collects coverage in-
formation for the embedded SW binary as well as the SystemC
peripherals, and writes them into a coverage output file (Step 6, top
of Fig. 1). The server-mode VP waits until the exec-mode VP finishes
(i.e. the forked process exits) and notifies the fuzzer that the exe-
cution has finished and whether an error was detected during this
execution (Step 7), by checking the return code of the exec-mode
VP process. The fuzzer reads and integrates the coverage output
file. In case new coverage has been obtained, the fuzzer collects
the testcase. The fuzz-loop continues (repeating Steps 2 to 7) until
an error is detected or a user-defined timeout is reached. Based
on the collected testcases a coverage report can be generated by
re-running the testcases on the VP (in exec-mode).



1 // memory mapped register/inputs

2 volatile char*

SENSOR_INPUT_ADDR =(char*)0x50000000;

3 volatile uint32_t*

SENSOR_SCALER_ADDR =( uint32_t *)0x50000080;

4 volatile uint32_t*

SENSOR_FILTER_ADDR =( uint32_t *)0x50000084;

5 volatile char*

FUZZER_INPUT_ADDR =(char*)0xC0000000;

6 // consume fuzzer -provided input

7 uint8_t fuzz_u8 () {//one byte

8 return *FUZZER_INPUT_ADDR;

9 }

10 uint32_t fuzz_u32 () {//four bytes

11 return fuzz_u8 () | fuzz_u8 () <<8 | \

12 fuzz_u8 () <<16 | fuzz_u8 () <<24;

13 }

14 // access/process sensor data

15 _Bool has_sensor_data = 0;

16 void sensor_irq_handler () {

17 has_sensor_data = 1;

18 }

19 void process_sensor_data () {

20 // wait for sensor interrupt

21 while (! has_sensor_data)

22 asm volatile ("WFI"); // Wait

For (any) Interrupt

23 has_sensor_data = 0;

24 // read and validate sensor data

25 unsigned sum = 0;

26 for (int i=0; i<8; ++i) {

27 uint8_t n=*( SENSOR_INPUT_ADDR+i);

28 sum += n;

29 }

30 // validate sensor data

31 assert (sum < 8*250);

32 }

33 void main() {

34 register_interrupt_handler(IRQ_NUMBER ,

sensor_irq_handler);

35 // config. sensor using fuzzer inp.

36 *SENSOR_SCALER_ADDR=fuzz_u32 ();

37 *SENSOR_FILTER_ADDR=fuzz_u32 ();

38 process_sensor_data ();

39 }

Figure 2: Example embedded SW accessing a sensor peripheral

Please note, using the fork system call to spawn a new VP in-
stance for each fuzzer input has been very important to obtain
good performance results. We observed speed-ups of more than
20x compared to starting a new VP instance (i.e. new process) for
each fuzzer input. The main reason for this performance impact is
the SystemC simulation engine which requires significant time for
an initial startup.

3.2 Coverage Collection in the VP
During execution the VP collects coverage from the embedded SW
binary and from the SystemC peripherals. Currently, we focus on
branch coverage information.

3.2.1 Peripheral Coverage. We obtain branch coverage informa-
tion for the SystemC peripherals by compiling them with Clang us-
ing the -fsanitize-coverage=trace-pc-guard option. With this option
Clang instruments the peripherals to emit coverage information
for branch instructions at runtime by calling special interface func-
tions. We provide these interface functions in the VP to collect the
coverage information and forward that information, through the
coverage output file, to the fuzzer accordingly. The fuzzer integrates
the coverage by forwarding it to libFuzzer, since libFuzzer also un-
derstands Clang instrumentation and hence provides the same
interface functions. Please note, we only selectively instrument the
SystemC peripherals with Clang and not the whole VP to avoid
the (potentially) significant runtime overhead of instrumenting (in
particular) the ISS of the VP and also avoid the communication over-
head in transferring this additional coverage information (which is
irrelevant for testing the embedded SW) to the fuzzer.

3.2.2 Embedded SW Coverage. We obtain (branch) coverage in-
formation for the embedded SW binary by observing the executed
instructions in the ISS of the VP. In particular, we have installed
a hook in the ISS that intercepts every instruction execution and
checks if it is a branch instruction. In case of a branch instruction we
collect the address of the branch instruction itself (pre-pc) and the
address of the instruction after the branch (post-pc, which depends
on whether the branch was taken or not). The pair (pre-pc, post-pc)
represents a control flow edge. We collect all observed edges in the
Clang instrumentation format to keep it compatible with libFuzzer.
This also allows us to store all coverage information (for the em-
bedded SW binary and SystemC peripherals) in a single unified list.
Essentially, Clang assigns each branch instruction a unique guard
index. We mimic this behavior by mapping each different edge to

an ascending index starting after the last guard index used by Clang
for instrumenting peripheral branches (Clang provides an interface
function to obtain the number of instrumented branches).

3.3 Concept: Embedded SW Fuzzing with VPs
To further illustrate the fuzzer integration concept, we present
an example embedded application that consists of an embedded
SW accessing a sensor. The sensor (SystemC TLM) model has two
32 bit configuration registers scaler and filter and a data frame
of 8 bytes that represents the current sensor measurement and is
periodically updated in a SystemC process with new data. The scaler
register setting defines the speed at which the sensor data frame
is updated. The filter register setting selects the sensor internal
post-processing that is applied on the data frame. Registers and
data frame are accessed by the SW through memory mapped I/O.

Fig. 2 shows the example embedded SW that accesses the sensor.
The SW starts by installing an interrupt handler (Line 34) and
configures the sensor filter (Line 37) and scaler setting (Line 36)
by writing to designated memory mapped registers. Then, the SW
waits for a sensor interrupt (Line 21-22), which denotes that new
sensor data is available. Finally, the SW fetches the sensor data
(Line 25-29) and validates it (Line 31).

Both sensor configuration registers are initialized with fuzzer-
provided input (via the fuzz_u32 function defined in Line 10). The
SW can access the fuzzer-provided input through a special periph-
eral (denoted FP-peripheral) that maps the fuzzer input into the
memory. Reading a byte from this memory location (Line 8) will
consume and return a byte from the fuzzer-provided input. The
sensor (and all other SystemC peripherals as well) also access and
consume bytes from the FP-peripheral. The (SystemC) simulation is
stopped by the (SystemC) FP-peripheral in case all fuzzer-provided
input has been consumed (and the next byte is requested).

The assertion in the SW in Line 31, which checks that the sen-
sor data stays within a valid maximum range, can be violated for
specific sensor inputs. Please note, it is possible to maximize the
SW code coverage but still miss the assertion violation because the
occurence of the violation depends on the filter setting of the sensor
(i.e. the value that the SW writes in Line 37 to configure the sensor
post-processing behavior). Thus, it is important to also consider
code coverage from peripherals during testing of embedded SW to
detect bugs that depend on HW/SW interactions.



Table 1: Experiment results on applying our VP-CGF ap-
proach for testing embedded applications

Metric
Application

1) data-transfer 2) fan-control

1: LoC SW C 142 116
2: LoC SW RISC-V ASM 435 371
3: LoC Peripherals SystemC 331 262
4: VP-CGF Time to Bug (sec.) 180 20
5: VP-CGF Exec Total 22189 6400
6: VP-CGF Exec/Sec Average 123 320
7: VP-CGF Exec/Sec Maximum 651 640
8: VP-CGF Number Final Tests 98 46
9: VP-CGF Coverage SW 98.18% 97.5%
10: VP-CGF Coverage Peripherals 94.79% 96.35%
11: VP-Random Time to Bug (sec.) T.O. (>3600) 3212

4 EXPERIMENTS
We have implemented our proposed VP-CGF approach for verifi-
cation of embedded binaries using LLVM libFuzzer and the open-
source RISC-V based VP [13, 16] as a case-study. We evaluate VP-
CGF in two steps: First, we present results on testing two bare-metal
embedded RISC-V applications with VP-CGF. Then, we show re-
sults on applying VP-CGF to test the Zephyr OS network IP-stack.
All experiments are evaluated on a Linux machine with an Intel
i5-7200U processor.

4.1 Testing Embedded Applications
In the following, we start with an overview of the results (Sec-
tion 4.1.1) and then present more details for each of the two em-
bedded applications (Section 4.1.2 and Section 4.1.3) and end with
a discussion of the results (Section 4.1.4).

4.1.1 Results Overview. Table 1 gives the results. It shows 11 dif-
ferent metrics (one in each row) for both embedded applications. In
particular, Table 1 shows the LoC (Lines of Code) of the embedded
SW in C (Row 1) and RISC-V ASM (Row 2) as well as the LoC of
the relevant SystemC peripherals (Row 3) in the VP. Next, Table 1
shows the time in second until VP-CGF finds the bug (Row 4), how
many testcases have been executed in total (Row 5) as well as the
average (Row 6) and maximum (Row 7) number of testcase exe-
cutions per second. Row 8 shows the final number of collected
testcases (i.e. testcases that increase the coverage, until the bug is
found) and Rows 9 and 10 show the line coverage of the SW and
SystemC peripherals that we obtain by re-running the testcases of
Row 8. Finally, Row 11 shows the time in seconds to find the bug
by generating testcases purely randomly (without any coverage
feedback) as comparison to VP-CGF.

4.1.2 Application 1: Data-Transfer. The first application that we
consider reads a data stream from an input device, processes the
data stream and writes the processed stream back to an output
device. We use an UART in this application to act as input (RX) and
output (TX) device, respectively. The data is stored in an internal
ring buffer during the copy process in the SW. The application
starts initializing the system, i.e. setting up peripherals by writing
to their configuration registers and registering interrupt handlers,

and then enters a WFI (Wait For Interrupt) loop. On each UART
interrupt (i.e. the UART has new incoming data to receive or is able
to transmit new outgoing data) the application logic is triggered.

The application logic consists of two parts: 1) First, it transfers
data in a loop from the input UART to the ring buffer. The loop
stops when the UART receive queue is empty or the ring buffer has
not sufficient free space to store new data. Two operation modes
are available: raw and escape. In raw mode the data is simply passed
on unprocessed. In escape mode the special character 0x7f is es-
caped. Whenever the 0xff byte is observed in the input stream the
operation mode is changed from raw to escape mode and vice versa.
2) In the second part of the application logic, the ring buffer content
is transferred to the output UART in a similar way. It stops when
the transmit queue of the output UART is full or the ring buffer is
empty.

Test Setup. On the SW side we initialize the UART RX and TX in-
terruptwatermark-levelwith fuzzer-provided input. Thewatermark-
level configures when interrupts are triggered by the UART depend-
ing on how many elements are currently stored in the RX and TX
queue, respectively. We added coverage points (on the VP side by
means of artificial branches, when the configuration is received in
the SystemC peripheral) to distinguish between the different possi-
ble watermark-levels (0..7 for RX and 0..7 for TX). On the VP side we
fill the RX queue of the UART with fuzzer-provided input and check
that the data arrives again in the same order in the TX queue of the
UART and is correctly escaped (after being processed by the SW).
Therefore, we use SystemC threads with periodic delays (RX-delay
and TX-delay, respectively) to 1) add new (fuzzer-provided) data to
the RX queue of the input UART (RX-thread), and 2) consume data
from the TX queue of the output UART (TX-thread). Both cases can
trigger an interrupt, depending on the interrupt watermark-level
configuration, that will in turn notify the SW application.

Please note, that the SW application is non-terminating, because
it waits for new interrupts indefinitely. Therefore, we simply stop
the SW execution in the VP when the whole fuzzer input has been
consumed. We use fuzzer-provided input to configure the RX- and
TX-delays, respectively. This allows to check for errors related to the
execution order of the RX-/TX-threads. We added coverage points
to distinguish the three cases: RX-delay < TX-delay, RX-delay =
TX-delay, RX-delay > TX-delay. They describe settings where data
can be faster/equally fast/slower received than transmitted.

4.1.3 Application 2: Fan-Control. The second application that we
consider controls the system fan speed based on temperature values
obtained from a temperature sensor. Therefore, the sensor triggers
periodic interrupts after each time interval to notify the application
that a new sensor data frame is available. Each data frame contains
the temperature values measured during the last time frame. The
sensor provides a filter register that controls the range of measured
temperature values. On each sensor interrupt, the application first
copies the sensor data frame into an internal buffer and then com-
putes the average temperature value for the last time frame (i.e. for
the elements of the buffer). Based on the current and the last ob-
served average temperature value the fan speed setting is controlled
(level=0 off to level=5 high speed). The fan speed is immediately
set to high speed in case of a high temperature value but requires
low temperature values for two time frames to reduce its speed.



Technically, the mapping from temperature value to fan speed is
implemented by normalizing the temperature value to an array
index and accessing a pre-configured buffer.

Test Setup. On the SW side we initialize the sensor filter regis-
ter value with fuzzer-provided input. On the VP side we fill the
sensor data frame with fuzzer-provided input. Similar to the first
application, this application is also non-terminating, and hence
we also stop the execution once the whole fuzzer input has been
consumed. We added assertions in the fan control peripheral to
check that a high fan speed is selected in case a high temperature
value is measured. In addition, we have added assertions to check
for buffer overflows in the SW, i.e by adding bounds checks before
every array access.

4.1.4 Results Discussion. We found a bug with VP-CGF in 180
seconds in the first application (Section 4.1.2). The bug results in
data being overwritten in the ring buffer before it is written back
to the (TX) UART. The reason for the bug is an incorrect length
calculation in the ring buffer. In particular, the free space calculation
returns one more element than available if the buffer read pointer
is before the buffer write pointer (read and write denote the next
element to be read/written, respectively. They are updated after
each access accordingly and wrap around the ring buffer when
reaching the end). The bug is triggered if read points to the first
element andwrite to the second last element of the ring buffer while
the operation is set to escape mode and at the same time the data
byte 0x7f is received from the UART. This combination will cause
the SW to overflow the ring buffer.

In the second application (Section 4.1.3) we found a buffer over-
flowwith VP-CGF in 20 seconds. The reason for this error is a bug in
the temperature normalization procedure that restricts all tempera-
ture values above a certain threshold to stay below that threshold.
However, the case where the (average) temperature value equals
the threshold is missed and hence this particular temperature value
is not below the threshold, which in turn results in a computation
of an out-of-bounds buffer index. To trigger the buffer overflow
the temperature sensor (hence the fuzzer in this setting) has to
provide a data frame such that the average temperature value of
this frame is equal to the threshold. Please note, that the data frame
also depends on the filter register value in the sensor which is also
provided by the fuzzer.

It can be observed that VP-CGF is much more efficient than pure
random test generation on both applications (factor 20x to 160x
faster in finding the bug). We also obtained very high coverage val-
ues for both the SW (97% to 98%) and the SystemC-based peripherals
(94% to 96%). Careful examination of the coverage results reveals
that the remaining peripheral coverage is indeed unreachable in
combination with this SW. It corresponds to access of additional
configuration registers and interrupt priorities, which are not used
by this SW. The remaining missing SW coverage (2% to 3%) can be
closed by re-running VP-CGF on the fixed SW.

4.2 Testing the Zephyr IP Stack
In the second experiment we apply our approach VP-CGF to test
the network IP stack of the Zephyr OS in combination with the
RISC-V port of the Zephyr kernel (Zephyr version 1.14.99). This

experiment demonstrates that VP-CGF is applicable to analyze
large real-world embedded SW.We test for generic execution errors
(e.g. SW assertion violation and access of unmapped memory) and
buffer overflows in particular. We have integrated a custommutator
into the fuzzing process to further guide it. We start by explaining
our test setup (Section 4.2.1), then present our custom mutator
(Section 4.2.2) and method for buffer overflow detection at runtime
(Section 4.2.3). Finally, we present our results (Section 4.2.4).

4.2.1 Test Setup. IP packets are processed by the platform indepen-
dent IP-thread in Zephyr (threads and synchronization mechanisms
are provided by the Zephyr kernel). Packets are delivered to the
IP-thread through a shared queue by a lower-level network driver.

We use the SLIP (Serial Line Internet Protocol) network driver
of Zephyr, which allows to send and receive IP packets (including
higher-level protocols like UDP and TCP) by (de-)serializing the
data through a UART device (which is provided by the VP).

In this experiment, we treat the whole fuzzer-provided input as a
single IP packet. We wrap the IP packet as SLIP packet and pass it to
the UART (in the VP). This in turn triggers a UART interrupt which
notifies the serial driver and finally the SLIP driver. The SLIP driver
extracts the IP packet and delivers it to the IP-thread of Zephyr.

In the SW main function we create and bind an UDP and TCP
socket using the IPv4 as well as IPv6 protocol. This ensures that the
Zephyr IP-thread does not drop IP packets prematurely because no
matching socket is bound. Please note, that the Zephyr IP-thread is
non-terminating because it waits for new IP packets indefinitely.
Therefore, we have added a switch in the IP-thread to stop execution
after one IP packet has been processed.

4.2.2 Custom IP Packet Mutation. LLVM libFuzzer provides a des-
ignated interface function to easily integrate custom mutators into
the fuzzing process. We added such a custom mutator and con-
figured it to be called with the same probability as the existing
libFuzzer mutators. Our custom mutator simply overwrites the
fuzzer-provided data with a small pre-defined UDP packet. Our
mutator starts overwriting the data from the beginning and stops
when either the whole packet has written or the end of the fuzzer-
provided data is reached, hence only injecting a prefix of the packet
in this case. The injected UDP packet is completely valid and will
fully propagate through the IP stack to the UDP socket and reach
the Zephyr application when send independently. Our mutator
essentially introduces valid IP and UDP header options into the
fuzzing process to enable a more comprehensive evaluation.

4.2.3 Heap Buffer Overflow Detection. Zephyr provides several
different functions to manage memory. These include the functions
k_malloc and k_free, which correspond to the well-known malloc
and free functions of the C library, as well as specialized functions
optimized for allocation of fixed size memory blocks. We have
instrumented the memory management functions of Zephyr, by
wrapping them, to track allocated memory blocks and their bounds.

As an example, Fig. 3 shows wrappers for k_malloc and k_free.
The k_malloc wrapper calls the real k_malloc function of Zephyr
to allocate a larger than requested block (Line 3-5), by adding extra
space (ALLOC_MARGIN ) before and after the requested block. The
extra space is registered in the VP (Line 11), alongside the allo-
cated block, and treated as protected memory. The VP monitors all



1 #define MARGIN 128 // in bytes

2 void *k_malloc(size_t size) {

3 size_t alloc_size=size +2* MARGIN;

4 // call real k_malloc of Zephyr

5 void *p=real_k_malloc(alloc_size);

6 if (p == NULL)

7 return NULL;

8 // obtain start of usable memory

9 void *block =(( uint8_t *)p)+MARGIN;

10 // notify VP about allocation

11 VP_k_malloc(block , size , MARGIN);

12 return block;

13 }

14 void k_free(void *block) {

15 // notify the VP about the free

16 VP_k_free( block );

17 // obtain the real block start

18 void *p=(( uint8_t *)block)-MARGIN;

19 // call real k_free of Zephyr

20 real_k_free( p );

21 }

Figure 3: Wrapper functions to keep track of dynamically allocated blocks and check for buffer overflows at runtime

memory access operations (read and write) during execution and
triggers an error in case the address falls in a protected memory
region. The k_free wrapper notifies the VP about the k_free call
(Line 16), to unregister the protected memory margins and check
for double free as well as non-allocated block errors, and finally
calls the real k_free function of Zephyr (Line 20).

4.2.4 Results. We have obtained 82.44% line coverage in the IPv4
and IPv6 processing stack of Zephyr by running VP-CGF for one
hour. The resulting testset contains 575 testcases. VP-CGF executed
276,395 testcases in total with an average and maximum of 76 and
165 testcases per second, respectively. The analyzed RISC-V binary
has 46,105 lines of ASM code.

To also evaluate the effectiveness of VP-CGF in detecting (buffer
overflow) related bugs, we manually added a bug into the Zephyr
IP stack. The bug corresponds to a typical overflow caused by
incomplete buffer length checks which may result in severe security
vulnerabilities. Similar bugs had been present in recent versions of
FreeRTOS. In order to trigger that bug, the fuzzer has to generate
an almost valid IPv4 header (otherwise the packet will be dropped
in the IP stack before having a chance to trigger the bug) but with
a specific malformed header length. VP-CGF detected this bug in
229 seconds and executed a total of 20,535 testcases.

5 CONCLUSION AND FUTUREWORK
In this paper we proposed VP-CGF, an approach that leverages
state-of-the-art CGF methods in combination with SystemC-based
VPs for verification of embedded SW binaries. In addition to the
coverage of the embedded SW, we also integrate the coverage of the
(SystemC-based) peripherals to further guide the fuzzing process.
Our experiments showed very promising results and demonstrate
the effectiveness of VP-CGF in analyzing real-world embedded SW
binaries. To further improve VP-CGF, for future work we plan to:
• Support stronger coverage metrics. In particular, add support
for Clangs data flow related coverage sanitizers and investi-
gate cross-coverage metrics between SW and peripherals.
• Evaluate the impact of parallelization on the fuzzing process.
In general our current architecture allows to run multiple
VP-CGF sessions (each session has a separate VP and fuzzer
instance) in parallel, since libFuzzer supports (safe multi-
instance) coverage synchronization using the OS filesystem.
• Integrate further dynamic error checking mechanisms into
the VP to detect additional error classes at runtime. Error
detection is complementary to testcase generation.
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