Verifying Safety Properties of Robotic Plans
operating in Real-World Environments via
Logic-based Environment Modeling*

Tim Meywerk! [0000-0002-5960-5456] \[arce]l Walter! [0000-0001-5660-9518]
Vladimir Herdt2[0000—0002—4481-057X]
b
: 2o 1,2[0000—0001—6357—0914 : 2,3[0000—0002—1490—6175
Jan Kleinekathofer!:2! I, Daniel Grofe?3! I
and Rolf Drechsler!2[0000—0002—9872—1740]

! Research Group of Computer Architecture, University of Bremen, Germany
2 Cyber Physical Systems, DFKI GmbH, Bremen, Germany
3 Chair of Complex Systems, Johannes Kepler University Linz, Austria
{tmeywerk,m_walter,vherdt, ja_kl,drechsler}Quni-bremen.de
daniel.grosse@jku.at

Abstract. These days, robotic agents are finding their way into the
personal environment of many people. With robotic vacuum cleaners
commercially available already, comprehensive cognition-enabled agents
assisting around the house autonomously are a highly relevant research
topic. To execute these kinds of tasks in constantly changing environ-
ments, complex goal-driven control programs, so-called plans, are re-
quired. They incorporate perception, manipulation, and navigation capa-
bilities among others. As with all technological innovation, consequently,
safety and correctness concerns arise.

In this paper, we present a methodology for the verification of safety
properties of robotic plans in household environments by a combina-
tion of environment reasoning using Discrete Event Calculus (DEC) and
Symbolic Ezecution for effectively handling symbolic input variables (e. g.
object positions). We demonstrate the applicability of our approach in
an experimental evaluation by verifying safety properties of robotic plans
controlling a two-armed, human-sized household robot packing and un-
packing a shelf. Our experiments demonstrate our approach’s capability
to verify several robotic plans in a realistic, logically formalized environ-
ment.

Keywords: Cognition-enabled Robotics - Household Robots - Formal
Verification - Symbolic Execution - Discrete Event Calculus.
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1 Introduction

These days, robotic agents are finding their way into the personal environment
of many people; for example in the form of autonomous vacuum cleaner robots.
Ambitious research is conducted in the direction of fully autonomous household
robots solving complex tasks like tea serving [20] or cooking [I]. In contrast
to their ancestors—industrial robots that were only utilized for repetitive and
physically strenuous work—these household robots operate in highly complex,
constantly changing environments. To achieve their goals, more than a simple
pre-programmed action sequence is required to control them. There is a need for
cognitive mechanisms that allow robotic agents to interact with their environ-
ments based on the execution of general tasks. These include, but are not lim-
ited to, reasoning about spatial relations of objects and, based on that, deciding
which action leads to the intended environment manipulation. Approaches based
on cognitive mechanisms have proven their usefulness and, as a consequence,
learning, knowledge processing, and action planning found entry into robot con-
trol programs, which are usually called (robotic) plans. For programming plans,
many high-level planning languages have been developed. Some examples are
RPL [5], RMPL [30], and CPL [2]. These languages combine a rich, Turing-
complete semantic with the ability to natively call low-level subroutines like
perception, navigation, and manipulation. The CRAM Plan Language (CPL) in
particular is an extension of the Common Lisp programming language and part
of the Cognitive Robot Abstract Machine (CRAM) toolbox [2]. CRAM provides
a multitude of environment interaction and reasoning modules.

With such complex software systems and challenging tasks in real-world
household environments, reliability is more important than ever. Since simu-
lation and testing quickly reach their limits in guaranteeing this reliability, for-
mal safety verification methods become indispensable. Recently, in [16], we have
proposed a procedure based on Symbolic Execution [10J3] for the verification of
CPL code that we called SEECER. As shown in that paper, reasoning about
the robotic plan by itself offers only limited benefits. Instead, the plan must be
related to its intended environment. In particular, interaction between the robot
and the environment needs to be taken into account to produce comprehensive
verification results. In [16], the relatively abstract Wumpus World [24] has been
used as an environment model. To allow easier integration with the CPL, the
environment was modeled directly in the Common Lisp programming language.
However, environment models in Common Lisp have to be specifically adjusted
to the plan under verification. Therefore, each plan requires its own environment
model, which can be used for no other purpose than the plan verification. Yet,
there are several logical formalisms specialized in the modeling of environments
and actions, for example, Situation Calculus and its predecessors [I4] and (Dis-
crete) Event Calculus [TT26/T7IT9]. They are regularly used to model household
environments and robotic actions [25/T8|. These formalisms have several advan-
tages over a model in Common Lisp, such as their well-defined semantics and a
plethora of environment descriptions and reasoning procedures proposed in the
literature.
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In this paper, we propose a safety verification methodology of robotic plans
written in a high-level planning language—we use CPL as a running example—
with respect to a logically formalized environment description. Our formalism
of choice is the Discrete Event Calculus (DEC) due to its high expressiveness
and simultaneous decidability that we combine with symbolic execution. Our
contribution in this paper is threefold. We first present a decision procedure for
the verification of simple branching-free action sequences with respect to a DEC
environment model. This is achieved via a reduction to a pure DEC reasoning
problem. To the best of our knowledge, such a reduction has not been proposed
before. Additionally, our procedure serves as an important building block for our
second and major contribution, namely the verification of more complex robotic
plans in combination with a DEC environment model and symbolic execution.
Our third contribution is the verification of several plans (that are taken from
the CRAM repository) in a detailed household environment and the modeling
of this very environment in DEC. Our experiments demonstrate our approach’s
capability to verify several robotic plans in a realistic, logically formalized envi-
ronment.

The remainder of this paper is structured as follows: Section [2] reviews pre-
liminaries necessary to keep this work self-contained. Section [3] introduces our
safety verification methodology. In Section[d] we evaluate the applicability of our
approach by verifying safety properties of CPL plans controlling a two-armed,
human-sized robot packing and unpacking a shelf. Section [5] concludes the paper.

2 Preliminaries

In this section, we discuss all the necessary preliminaries to keep this paper self-
contained. We give an overview of the CPL in Section [2.1] first, and discuss our
recent approach for symbolic execution of the CPL in Section 2:2] Afterwards,
we introduce DEC in Section 2.3

2.1 CRAM Plan Language

Many AI and robotics systems utilize the Lisp programming language to this
day because libraries and frameworks written in or at least mainly support-
ing Lisp are available. The Cognitive Robot Abstract Machine (CRAM) [2] is a
prominent example as it is written in Common Lisp, a dialect of the Lisp pro-
gramming language. CRAM provides an interface for perception modules, belief
states, knowledge bases, and navigation and manipulation actuators to be used
in robotic systems. Additionally, it exposes the CRAM Plan Language (CPL)
which allows writing high-level plan descriptions in Common Lisp. An abstract
overview of the architecture of the CRAM stack can be seen in Figure [T} The
execution is controlled by the CPL plan, which interacts with the environment
through perception, manipulation, and navigation subroutines. To reason about
the next action to be taken, a belief state and knowledgebase can be consulted
through a query-answer interface.
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Fig. 1: Overview of the CRAM stack architecture

In CPL, plans describe desired behavior in terms of hierarchies of goals,
rather than fixed sequences of actions that need to be performed. All exchange
of information with parts of the CRAM stack, e.g., the perception modules or
knowledge bases, as well as interaction with actuators to manipulate the environ-
ment, works via designators which are a common concept among reasoning and
planning systems. Designators thereby often encapsulate high-level descriptions
that are familiar to humans but abstract to robots like a location or a motion.
Classes of designators available in CPL are for instance

— location designators: physical locations under constraints like reachability,
visibility, etc.,

— object designators: real-world objects on a semantic level like what they are
and what they could be used for,

— human designators: description of a human entity in an environment, and

— motion and action designators: actions that can be performed by a robot.

In CPL, an action designator contains the action type to perform (like de-
tecting or grasping) and several parameters. It can be passed to the perform
function, which breaks it down to sub-tasks and takes care of their execution.
Both, action designators and the perform function, are particularly important
for this work and will be utilized in Section [3] The following example illustrates
a typical use of different designators.

Ezxample 1. Figure [2| shows a typical snippet taken from a CPL plan that uses
multiple different designators to indicate action, motion, and location. In CPL,
the designators are generated using the a and an macros. The plan snippet
performs a motion to turn the robot’s head to look at a specified target position
and places the robot’s arm to the same location in parallel (indicated by the
par function). As shown here, designators may be nested, i.e., contain other
designators such as the location designators contained within an action and a
motion designator respectively.
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1 (defun place—object (?target—pose 7arm)

2 (par

3 (perform (a motion (type looking)

4 (target (a location (pose ?target—pose)))))

5 (perform (an action (type placing)

6 (arm ?arm) (target (a location (pose ?target—pose)))))))

Fig. 2: Designator usage in CPL code

In the following section, we review our recent approach to verify properties
of CPL plans.

2.2 Symbolic Execution for the CRAM Plan Language

In [16], we utilized a technique known as Symbolic Ezecution [10/3] to verify
annotated assertions on plans written in CPL. Due to the high abstraction level,
the CPL plans were first translated to an Assembly-like intermediate language
that we called Intermediate Plan Verification Language (IPVL). The CPL-to-
IPVL compiler that we implemented also integrated an environment model that
had to be written in Common Lisp as well. This model was then also com-
piled to IPVL code. Safety properties were also modeled in Common Lisp in the
form of assert instructions. All designators included in the plan were mocked
by the environment model to abstract from underlying sensor and actuator op-
erations. To handle this IPVL code, we implemented the symbolic interpreter
SEECER (Symbolic Execution Engine for Cognition-Enabled Robotics).

SEECER analyzes the plan path-wise while managing a set of symbolic ex-
ecution states. A symbolic execution state is a 3-tuple (pc,ip,a). Here, pc is
the path condition, which encapsulates all restrictions that are imposed on the
execution state; ip is the instruction pointer, which points to the next instruc-
tion to be executed; and « is the wvariable map, which maps plan variables to
their symbolic value. Non-control flow instructions (e. g. arithmetic instructions)
update a by changing the target variable to its new value and increment ip by
1. Branching instructions of the form if ¢ goto < with a conditional C' and
instruction i are evaluated as follows: the feasibility of both branches is checked
using an SMT solver, i. e. the formulas pc A C' and pc A =C' are checked for satis-
fiability. If only one of the formulas is satisfiable, the respective branch is taken
and ip is updated accordingly. If both formulas are satisfiable however, the exe-
cution state is duplicated. One copy follows the jump, i.e. the path condition pc
is updated to pc A C' and ip is set to i. The other copy appends —~C' to the path
condition and resumes with the next instruction. Whenever SEECER encounters
an assert(a) instruction, the satisfiability of pc A —a is evaluated. A satisfy-
ing assignment corresponds to an error in the plan. If the symbolic execution
terminates without finding such an error, the plan is proven to be safe.

Finally, we conducted a case study on the rather simplistic Wumpus World [24]
environment that we modeled in Common Lisp to demonstrate the general fea-
sibility of our approach.
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While this paper uses some concepts from our previous work [16], we focus on
more real-world scenarios in this paper. Furthermore, as an environment model,
we rely on a logic formalism called Discrete Event Calculus (DEC) due to its high
expressiveness and simultaneous decidability. Since we use DEC in this paper
for modeling environments as well as verifying action sequences and plans, we
give an overview on DEC in the following section.

2.3 Discrete Event Calculus

The event calculus [ITI26/17] is an established formalism to model and reason
about events and their consequences. It allows for the modeling of non-determi-
nism, conditional effects of events, state constraints, and gradual change, among
others. A domain description modeled in the event calculus follows the com-
monsense law of inertia. Intuitively, this means that the properties of the world
do not change over time unless there is an explicit reason for the change. The
modeler may however choose to release certain properties from this law. Fur-
thermore, the event calculus allows us to state that a predicate must be false
unless explicitly required to be true. This is known as default reasoning and can
be used e. g. to limit the occurrences of events. Default reasoning is usually re-
alized through circumscription and denoted as CIRC[¢; P|. Here, all occurrences
of predicate P in ¢ are false unless specifically required by ¢ to be true.

The event calculus has been used to model robotic sensors [27], traffic acci-
dents [4], diabetic patients [§] and smart contracts [12].

In [19] a discrete version of the original event calculus has been introduced.
This section recaps this Discrete Event Calculus (DEC). For simplicity, a version
without gradual change axioms is presentedﬁ

Overview The DEC is based on many-sorted first-order logic with equality,
supporting the sorts of events, fluents, integers, timepoints and arbitrary user-
defined sorts (e.g. for domain objects). Events are occurrences in the modeling
domain and can be divided into actions, which are deliberately executed by an
agent, or triggered events, which happen as a result of a change in the world.
In this paper, we will focus mostly on actions and will, therefore, use event and
action synonymously. There exists no notion of preconditions of an action, i.e.,
any action may happen in any state. The effects of an action can, however, vary
depending on the state of the world. Consequently, the same action could lead
to the desired effect, an erroneous effect, or no effect at all depending on the sur-
rounding environment. Fluents describe the state of some property of the world
through time. At any given point in time, a fluent may be either true or false.
Timepoints in the DEC as opposed to classical event calculus are bounded to the
integer domain. Sorts may be reified, i.e. taking other sorts as arguments. Ex-
amples of this are the action going(location) or the fluent isAt(object, location).

4 Cradual change allows to model properties that change over time after an initial
action, e.g., an object falling and eventually hitting the ground after it has been
dropped.
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Fig. 3: Visualization of the vacuum world (n = 2)

DEC descriptions are built using a set of predicates to formalize the state of
the world at different timepoints as well as the occurrences and effects of actions.
These predicates include:

— Happens(a,t): Action a happens at timepoint ¢.

— HoldsAt(f,t): Fluent f is true at timepoint ¢.

— ReleasedAt(f,t): Fluent f is released from the commonsense law of inertia
at timepoint t.

— Initiates(a, f,t): When action a happens at timepoint ¢, then fluent f will
be true at timepoint ¢t + 1.

— Terminates(a, f,t): When action a happens at timepoint ¢, then fluent f
will be false at timepoint ¢ + 1.

— Releases(a, f,t): When action a happens at timepoint ¢, then fluent f will
be released from the commonsense law of inertia at timepoint ¢ + 1.

— Arbitrary user-defined predicates.

Additionally, the predicates #, <, <, >, > and the functions 4, —, -, =~ are de-
fined over integers with their usual extensions. To illustrate how these predicates
may be used to model robotic environments, consider the following example:

Ezample 2. Consider the modeling of a simple robotic environment inspired by
the vacuum world [23]. The environment is composed of a finite number of rooms
r1,...,Tn, which are each either dirty or clean. The rooms are arranged in a row,
i.e. room r; is left of room r;;; and right of room 7;_;. In the initial state, a
vacuum cleaner robot is positioned in one of the rooms. The robot can move
through the rooms and clean the room it is currently in. A possible state of the
vacuum world with n = 2 is visualized in Figure [3] In this case the robot is
located in room r; and both rooms are dirty.

Our DEC description for the vacuum world includes the sort room, which
is a sub-sort of the integers, the actions Left, Right and Clean and the fluents
RobotInRoom(room) and Dirty(room).
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At first, we require that the RobotInRoom fluent is functional, i.e. the robot
is in exactly one room at any given time:

vVt : 3r: (HoldsAt(RobotInRoom(r),t))
Vt, 7, r; + (HoldsAt(RobotInRoom(r;), t) A HoldsAt(RobotInRoom(r;),t) =

Ty = ’I“j)

After that we describe the effects of the robot’s actions. The Left and Right
action will move the robot in the respective adjacent room and remove it from
its current room, unless it is already in the leftmost (1) or rightmost (r,,) room:

Vt,r : (HoldsAt(RobotInRoom(r), t) AT # 13 =>
Initiates(Left, RobotInRoom(r — 1),t) A
Terminates(Left, RobotInRoom(r), t))

Vt,r : (HoldsAt(RobotInRoom(r),t) Ar # r, =>
Initiates(Right, RobotInRoom(r + 1),t) A
Terminates(Right, RobotInRoom(r), t))

The Clean action will result in the robot’s current room being clean (i.e. not
dirty):

Vt,r : (HoldsAt(RobotInRoom(r),t) = Terminates(Clean, Dirty(r),t))

To ensure that these predicates have the intended logical consequences, a set
of axioms is necessary. These axioms are given below.

Axioms Following the notation from [I9], all free variables are assumed to be
universally quantified.

Axioms DEc1 through DEc4 deal with gradual change and are therefore
omitted here. The axioms DEC5 through DECS8 enforce the commonsense law
of inertia, i.e. if a fluent is not released and no action happens to change its
value, then the fluent will retain its value from the last timepoint. Additionally,
if no action happens to release the fluent, it will remain unreleased. If a fluent
is released and no action happens to set it to either truth value, it will remain
released.

AxioMm DEcC5

(HoldsAt(f,t) A —~ReleasedAt(f,t+ 1) A

—Jda : (Ha,ppens(a,t) A Terminates(a, f, t))) =
HoldsAt(f,t + 1)

AxioMm DEc6

(—HoldsAt(f,t) A = ReleasedAt(f,t+ 1) A
—Ja : (Happens(a,t) A Initiates(a, f, t))) —
—HoldsAt(f,t + 1)
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Axiom DEc7

(ReleasedAt(f,t) N

—Jda : (Happens(a,t) A (Im'tiates(a, f,t) V Terminates(a, f, t)))) =
ReleasedAt(f,t + 1)

AxioMm DECS8

(—ReleasedAt(f,t) A

—Ja : (Happens(a,t) A Releases(a, f,t))) =
—ReleasedAt(f,t + 1)

The axioms DEC9 through DEC12 ensure the correct consequences of actions.
That is, if some action happens that initiates (terminates) a fluent, that fluent
will be set to true (false) at the next timepoint. The fluent will also no longer
be released from the commonsense law of inertia. If some action happens that
releases a fluent, that fluent will be released at the next timepoint.

AxioMm DEcC9
(Happens(a, t) A Initiates(a, f, t)) = HoldsAt(f,t+1)

AxioMm DEc10
(Happens(a,t) A Terminates(a, f,t)) = —HoldsAt(f,t+1)

Axiom DEcl1
(Happens(a,t) A Releases(a, f,t)) = ReleasedAt(f,t+1)

AxioMm DEc12
(Happens(a, t) A(Initiates(a, f,t)V Terminates(a, f,t))) = —Released(f,t+1)

Let the conjunction of axioms DEC5 to DEC12 be Axpgc.

Reasoning The following example showcases a possible reasoning problem in
the DEC.

Ezxample 3. Consider again the DEC description from Example [2l We will now
use this description to reason about the vacuum world with two rooms (n = 2).
We require that the robot starts in the left room:

HoldsAt(RobotInRoom(r;), 0)
We additionally specify an action that is executed by the robot:
Happens(Right, 0)

When combining this extended description with the Axpgc axioms, we can infer
HoldsAt(RobotInRoom(rs), 1) as a logical consequence. Please note that this
consequence is true and can be deduced even though we did not specify some
aspects of the initial state, namely the dirtiness of the rooms.
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The former is an example of the deduction reasoning task. Deduction asks
whether a certain goal state follows from a (partial) initial state and a set of ac-
tions. Other notable reasoning problems are abduction which asks for a sequence
of actions that lead from a given initial state to a given goal state, and model
finding which asks for complete models of partially specified DEC descriptions.

Since most interesting reasoning tasks in first-order logic are generally un-
decidable, reasoning in the classical event calculus has to be done either manu-
ally [I8129] or automatically in highly restricted settings [28]. The DEC on the
other hand allows for fully automated reasoning by restricting all domains, in-
cluding the timepoints, to a finite set. We call these descriptions bounded DEC
descriptions. One way to reason about such bounded DEC descriptions is a
translation into Boolean satisfiability (SAT). For this purpose, universal (exis-
tential) quantifiers are replaced by a conjunction (disjunction) over all objects
of the respective sort and the resulting quantifier-free formula is converted into
Congunctive Normal Form (CNF). This together with efficient computation of
circumscription and simplification techniques was implemented in the Discrete
Event Calculus Reasoner (DEC reasoner) [19]. The resulting Boolean formula
can then be solved by state-of-the-art SAT solvers, yielding a set of models,
which can be translated back into models for the original DEC description.

Comparison to Other Formalisms Over the years, several formalisms for the
description of actions and their effects have been proposed. Prominent examples
are the action languages A [6], ADL [21I] and PDDL [15] and their extensions.
In contrast to DEC, these formalisms have a restricted expressive power which
allows for for efficient reasoning. In many cases, properties can be proven even for
an unrestricted time period. On the other hand, this limited expressive power also
limits the environments that can be modeled. For instance, non-determinism,
ramification constraints, gradual change, or multiple agents can all be expressed
in the DEC, but are often problematic for the aforementioned action languages.
In the context of this paper, reasoning about an environment is combined with
symbolic execution on a Turing-complete planning language. In this scenario,
reasoning is only possible over a finite number of timepoints anyway, making the
use of a restricted action language unnecessary.

A closer relative of the (discrete) event calculus is the situation calculus [I3122].
The two formalisms are very similar in that they both reason about actions and
change. Their differences are rather subtle. The major reason why we choose the
DEC over the situation calculus for this work is the ability to easier model the
exact time at which an action occurs, including concurrent actions. Even though
this ability is not extensively used in this publication, we expect it to prove its
usefulness in future works.

3 DEC-based Verification of Robotic Plans

In this section, we propose a novel methodology for verification of robotic plans
with respect to environment descriptions formalized in DEC. We give an overview



Verifying Safety Properties of Robotic Plans 11

Robotic Plan

Input

Outpu "Safe" /

Action Return Verification Engine
Counterexample

DEC Environment

+ Axioms Properties

Fig. 4: Abstract view on the considered verification problem

of the considered topics and the structure of this part in the following Section 3.1}
In Section we first cover the verification of simple action sequences and in
Section we present our verification approach, which is based on symbolic
execution, for complex plans written in CPL.

3.1 Overview

Robotic agents operating in complex and changing household environments can
impose a safety risk on both the environment and themselves. To verify the safety
of plans operating in these environments, we present an approach that combines
symbolic execution and DEC reasoning. The problem that we are tackling is
depicted in Figure [4 and intuitively reads as follows: given a robotic plan and a
DEC description consisting of an environment description formulated in DEC,
the DEC axioms and a set of safety properties; is it possible to pick values for the
free (input) variables (e.g. the position of certain objects) such that any of the
safety properties do not hold? The approach that we are proposing implements
the verification engine shown in Figure[d] via a combination of symbolic execution
and DEC reasoning and either returns “Safe”, stating the plan’s safety under
all possible free variable assignments, or an execution trace and a sequence of
environment states as a counterexample leading to the violation of at least one
property. An important building block of our approach is a procedure for the
verification of action sequences, i.e. a finite, branching-free sequence of atomic
actions that are executed in order by a robotic agent. This building block is
implemented by the means of a reduction to a pure DEC reasoning problem.
Since action sequences are still widely used e. g. in manufacturing tasks, it is also
useful as a stand-alone technique. In the overall approach for the verification of
CPL plans, this procedure is used repeatedly during symbolic execution. We first
introduce the verification approach for action sequences in the following section
and, afterward, present our combined approach for complex plans.

3.2 Verification of Action Sequences

Verification of action sequences can be reduced to a pure DEC deduction prob-
lem, as we will show in the following. Given the DEC axiomatization AXpgc,
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an environment description Fnv, a sequence of actions ai,...,a; and a set of
properties Py, ..., P;, we want to prove that the conjuction of DEC axioms, en-
vironment description and action occurrences entails the safety properties, i.e.

k 1
Axpgc A Env A CIRC[/\ Happens(a;, i — 1); Happens| |= /\ P;.
i=1 j=1

Here, CIRC is the circumscription operator introduced in Section[2:3] In this case,
it ensures that only the actions ay,...,a; are occurring.

Since most reasoners for DEC, including the DEC reasoner introduced in Sec-
tion [2.3] do not directly support deduction, we formulate the deduction problem
given above as a model finding problem instead. To this end, we perform model
finding on the following conjunction

k
Axpgc A Env A CIRC[/\ Happens(a;,i — 1); Happens] A
i=1

l
CIRC[ /\ (~P; = U);UIAT,
j=1

where U (short for unsafe) is a new 0-ary predicate symbol. Since the final action
occurs at timepoint k — 1, it is sufficient to consider the timepoints 0 to k. This
allows to encode the verification problem in a bounded DEC description and to
solve it using the SAT-based DEC reasoner from [I9]. If a model is found, it
contains concrete states for all timepoints together with the failed properties.
This can be helpful when debugging the action sequence. If no model is found,
the action sequence is proven to be safe.

Ezxample 4. Consider again the vacuum world with n = 2 from the previous ex-
amples. Consider further the following action sequence: Left, Clean, Right, Clean.
Assume that we want to verify that this action sequence results in all rooms be-
ing cleaned. We express this by the property P, = Vr : (=HoldsAt(Dirty(r), 4)).
The verification is now conducted by model finding on the following conjunction:

Axpge A Vacy A CIRC[Happens(Left, 0) A Happens(Clean, 1) A
Happens(Right, 2) A Happens(Clean, 3); Happens] A
CIRC[Ir : (HoldsAt(Dirty(r),4)) = U;U]AU,
where Vacs is the DEC description of the vacuum world described in Example [2]
with n = 2. When giving this conjunction to the DEC reasoner, no model will

be returned, therefore proving the safety of the action sequence with respect to
Py.

3.3 Verification of Complex Robotic Plans

In the previous section, we discussed how simple action sequences can be verified
with respect to a set of properties using DEC reasoning. This approach is however
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no longer sufficient to solve the verification task for arbitrary plans written in
Turing-complete planning languages. In this section, we therefore combine this
procedure with symbolic execution. We present our approach utilizing CPL as a
running example. We would like to point out, however, that our approach works
for any robotic planning language, as long as a suitable symbolic execution engine
is available.

Figure [p]shows an overview of our architecture. The inputs to the verification
problem are a CPL plan and the DEC environment description, that interacts
with the plan through actions and their respective return values. The environ-
ment description is further extended with the DEC axioms and the safety prop-
erties, forming a single joint DEC description. The core of our approach is the
symbolic execution engine DEC-SEECER, which is an extension of the CRAM
symbolic execution engine SEECER, which we have previously presented in [16].
We extended SEECER by the capability to handle DEC descriptions and to rea-
son about them in combination with the SMT constraints for the path condition
that arise during symbolic execution. An important part of this extension is the
interface to the DEC reasoner, which receives DEC descriptions and translates
them into Boolean CNF formulas. These formulas can be combined with other
SMT constraints and solved by the SMT solver Z3. Like in [16], a perform mock
is used to abstract from low-level effects like motor control. In contrast to our
previous work, however, this mock is not hand-written for each environment, but
can instead handle arbitrary DEC descriptions, thus supporting a multitude of
different environments. To facilitate this more general perform mock, we decided
to replace the intermediate representation IPVL from [16] with a more general
and mature intermediate representation, namely the CLISP bytecode generated
by the Common Lisp implementation CLISP [7].

In the remainder of this section, we describe DEC-SEECER and especially
the integration between symbolic execution and DEC reasoning in more detail.
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Integration between DEC and Symbolic Execution The CLISP byte-
code is executed symbolically by DEC-SEECER. The general symbolic execu-
tion operates similar to the version described in Section 2.2 by managing several
execution states. These execution states are however represented by a 4-tuple
(pc,ip, a, E), where pe, ip and « are the path condition, instruction pointer and
variable map known from Section [2.2] respectively. The DEC description E is
added to allow combined reasoning about the plan and its environment. This
description is built in a very similar way to the one in Section [3.:2l The DEC
description of the initial state is given as

!
Ey = Axprc A Env A CIRC[/\ (-P; = U);U]
j=1

and combines the Axpge axioms, environment description and safety properties.

During the symbolic execution of the plan, we differentiate between three
types of instructions: the first type are non-control flow Common Lisp instruc-
tions, e. g., arithmetic instructions, or string manipulations. These update the ex-
ecution state in the usual way and do not affect E. The second type are perform
instructions, which add an action occurrence to E via a respective Happens()
conjunct. Like in Section these Happens() conjuncts are subject to circum-
scription. perform instructions also increase the instruction pointer ip by 1, but
do not affect pc and «. The third type, branching instructions, lead to a feasibil-
ity check of both branches. To account for effects from the environment, the DEC
description is incorporated in this feasibility check as follows. F is translated into
CNF by the DEC reasoner. We denote this translation by DECR(E). Since the
SAT variables in this CNF are disjunct from the plan variables, they need to
be related via a mapping. This mapping is implemented by the conjunction of
equivalence constraints m(E). DEC-SEECER now evaluates the satisfiability of
both C A pc A DECR(E) Am(E) and —=C A pc AN DECR(E) A m(E). Here, C' and
pc are the branching condition and path condition, as before.

To ensure the plan’s safety concerning the properties, a similar satisfiability
check is used. After executing any action, the following conjunction is checked
for satisfiability:

pe A DECR(E) A DECR(U) A m(E)

Any assignment satisfying this formula corresponds to a counterexample, i.e.
an instance of a safety property being violated by the plan. Consequently, if all
such checks return UNSAT during the symbolic execution, the plan’s safety is
proven. The following example illustrates our approach.

Ezample 5. Consider once again the vacuum world from the previous examples.
We extend this world by an additional action Detect that is supposed to detect
dirt in the robot’s current room. Since this action returns information to the plan,
we need an additional fluent ReturnVal(). We also add constraints expressing
that Detect will set ReturnVal() to true if the robot’s current room is dirty, and
to false otherwise. We denote this extended environment description by Vac'.
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(perform (an action (type left)))
(let ((dirty (perform (an action (type detect)))))
(if dirty
(perform (an action (type clean)))))
(perform (an action (type right)))
(let ((dirty (perform (an action (type detect)))))
(if dirty
(perform (an action (type clean)))))

0 3 O Ot W N

Fig. 6: CPL plan for the vacuum world

Assume we want to verify the safety of the CPL plan shown in Figure [6]
This plan is more complex than the action sequence presented in Example []
because it considers the state of the environment in Line[3|and 3] before executing
certain actions. Namely, the robot only cleans a room if it detects dirt in that
room. Again, we would like to verify the plan’s safety using the property P; from
Example[d] Additionally, we would like to prove that the robot will never attempt
to clean an already cleaned room. This is expressed by the safety property

Py =Vt,r : (=HoldsAt(Dirty(r), t) A
HoldsAt(RobotInRoom(r),t) = - Happens(Clean,t)).
The initial symbolic execution state can now be written as the 4-tuple
(true, 0,0, Ey) with
Eo = Axpgc A Vac's A CIRC[Ir : (HoldsAt(Dirty(r), tmaw)) = U A
3t,r : (=HoldsAt(Dirty(r), t) A HoldsAt(RobotInRoom(r),t) A
Happens(Clean, t)) = U;UJ.

Figure[7]shows parts of the execution tree imposed by the symbolic execution.
Each node in the tree represents an execution state composed of the path condi-
tion, the instruction pointer (denoted by the respective line number in Figure@,
variable mapping, and DEC description. Since each instruction except for the
conditional branch performs an action, the DEC descriptions and assignments
are updated as follows:

E, = Ey A CIRC[Happens(Left, 0); Happens]
E5 = Ey A CIRC[Happens(Left, 0) A Happens(Detect, 1); Happens)
ag = {dirty — DECR(HoldsAt(ReturnVal(), 2)}
After every action being performed, the plans’ safety is checked via an SMT
solver call. For example, after the Clean action (which is performed in the node
on the bottom left), the following conjunction is checked for satisfiability:
ao(dirty) A DECR(E2) N DECR(U) =
DECR(HoldsAt(ReturnVal(), 2) N DECR(E3) AN DECR(U)
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(true, 0, @, Eo)

(true, 1, @, E1)

y

(true, 2, az, E2)

N

(dirty, 3, az, E2) (—dirty, 4, az, E2)
EEn EEn

Fig. 7: Execution tree of the symbolic execution

This formula is unsatisfiable. In fact, every such formula during the symbolic
execution of this plan is unsatisfiable, thus proving safety of said plan.

Since verification of Turing-complete programs is undecidable in general,
there are cases in which our approach will not terminate or terminate with an
inconclusive result. In particular, this is caused by non-terminating CRAM plans
or complex arithmetic conditions in the plan. These results are exclusively due
to the symbolic execution part of our approach, since DEC-based environment
descriptions can always be grounded to pure Boolean SAT problems. Because of
the undecidability of program verification, termination could only be guaranteed
by severely restricting the robotic plans under verification.

In the following section, we show that our approach can nonetheless handle
many practically relevant robotic plans. Here, we evaluate our approach on a
real-world scenario.

4 Experimental Evaluation

We implemented DEC-SEECER, using the DEC reasoner version 1.0, the SMT
solver Z3 version 4.8.4, and CLISP version 2.49.93+ as back-end. To evaluate
our approach, we used several variations of the Shopping Demo plan taken from
the official CRAM repository [2]. The Shopping Demo plan involves a two-armed
human-sized robot operating in a supermarket environment consisting of a shelf
and a table. The robot is supposed to move several objects between the two
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1 (when (>= (y ?object—position) 0.8)

2 (setf ?grasping—arm :left)

3 (perform (an action

4 (type going)

5 (target (a location

6 (pose ?grasp—pose—left))))))
7 (when (< (y ?object—position) —0.8)

8 (setf 7grasping—arm :right)

9 (perform (an action

10 (type going)

11 (target (a location

12 (pose ?grasp—pose—right))))))
13 (perform (an action

14 (type picking—up)

15 (arm ?grasping—arm)

16 (object ?newobject)))

Fig. 8: Excerpt of the Shopping Demo plan

locations. The shelf is wider than the robot’s reach, making it necessary for
the robot to determine a suitable position in front of the shelf for grasping
certain objects. However, positions directly in front of the shelf cannot be used
for detection, because parts of the shelf may obstruct the robot’s view. It is,
therefore, necessary that the robot first obtains an overview from a suitable
position. We modeled these restrictions in an environment description in DEC.

To evaluate our approach, we used several variations of the existing Shop-
ping Demo plan in combination with the DEC description. In the following
Section we discuss all plans in detail. In Section we present our DEC
environment and the safety properties. Finally, in Section [£.3] we show our ex-
perimental results and discuss them.

4.1 Robotic Plans

For the experimental evaluation, a total of six plans have been evaluated. They
are listed below.

Shopping Demo The original Shopping Demo plan attempts to move a set of
predefined objects from the shelf to the table. The robot moves to a predefined
position from where it has an overview of the whole shelf and tries to detect all
objects. Afterward, it repeats the following operations for each object. First, the
robot moves to a central position in front of the shelf. If the object is already
in reach, it is then grasped with the closest gripper. Otherwise, the robot needs
to move to a different position to its left or right. Once the object is grasped, it
is transported to the table and placed onto the tabletop. Over the course of the
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execution, certain positions on the table are filling up. To avoid collisions, the
robot computes a new free position after setting an object and uses that position
for the next object.

Figure [8] shows an excerpt of the Shopping Demo. The plan compares an
object’s position with predefined boundaries (Line [I| and Line . Depending on
that position, the robot either moves to the left (Lines , to the right (Lines |§|-
, or stays in its current position. Afterwards, the robot attempts to grasp the

object (Lines [13[{16]).

Modified Shopping Demo 1 This plan is a modified version of the Shopping
Demo. A small error was deliberately inserted to test our approach’s bug-finding
capabilities. By replacing the >= in Line[T|of Figure[§with a <=, the robot chooses
the wrong grasping position for some objects. We expect this change to result
in an error for some initial environment states.

Modified Shopping Demo 2 This plan is another erroneous modification of
the original Shopping Demo, too. Here, the plan does not move the robot to
the designated detection pose at the start of the plan but instead attempts to
detect all objects from the robot’s initial position. We expect this to result in
some objects not being detected, which would mean that some objects remain
on the shelf not fulfilling the plan’s goal.

Shelf Filling The Shelf Filling plan has the reverse goal of the Shopping Demo.
A set of objects is located anywhere in the environment and the robot’s goal
is to pick up these objects and put them onto the shelf. This plan simulates
the automatic refilling of supermarket shelves by a robotic agent. Here, each
object has an associated row, onto which it has to be placed on the shelf. The
plan achieves this by grabbing the objects one by one and placing them in an
unoccupied spot in their respective shelf. To this end, it needs to maintain a belief
state of objects that have already been placed onto the shelf. This procedure
is repeated until there are no more objects left. In some cases, however, it is
necessary to omit certain objects, because some positions on the shelf are initially
occupied. Placing these objects is tried again at the end of the plan. This plan
is deliberately more complex with a higher amount of branching logic compared
to the Shopping Demo plan.

Modified Shelf Filling 1 We again constructed erroneous versions of the
original plan. In this version, whenever an object is omitted, it is simply removed
from the list of objects and not moved to the end. We expect this error to result
in objects being left in the environment and, therefore, in the wrong position
after the plan’s termination.

Modified Shelf Filling 2 This modified version of the Shelf Filling plan does
not take certain occupied positions on the shelf into account, resulting in possible
collisions of objects.
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All plans presented in this section are evaluated in the DEC environment
description, which we explain next.

4.2 Environment Description and Safety Properties

All plans presented in the previous section operate in the same environment
consisting of a shelf and a table. We modeled this environment in the DEC. The
shelf consists of three rows (top, middle, bottom) and four sections in each row
(far left, left, right, far right). Objects may be located in any of the sections in any
row, resulting in a total of twelve positions on the shelf per object. There are three
positions for the robot in front of the shelf and a fourth one a little further away.
These positions are suitable for reaching parts of the shelf or detecting objects
on the shelf, respectively. The table is also partitioned into several sections. This
allows us to model the limited space available. The table can again be reached
from a dedicated position in front of it. Our model uses sorts for the movable
objects in the world, the positions, and other aspects like the robot’s arms or
different heights. We use several fluents modeling the position of objects and
the robot, grasps, detection status, and others. The whole environment model
consists of 56 logical sentences.

To ensure the plan’s safety, a set of safety properties was also formalized
in DEC. These safety properties ensure that (1) the robot never reaches an
internal error state, (2) all actions produce their desired eﬂectﬂ and (3) no
two objects are ever placed in the same position. This last property detects
possible collisions that, in the real world, would result in the robot damaging
its environment. Additionally, we added properties that require (1) that at the
end of the Shopping Demo, all objects are placed on the table, and (2) that at
the end of the Shelf Filling plan all objects are placed onto their associated shelf
rows.

4.3 Experimental Results

We ran our proposed verification approach on all plans presented in Section [41]
All Shopping Demo plans had two objects in their initial state. The objects’ posi-
tions were not restricted which means that the plan was verified for any possible
initial placement of objects. The initial state for the Shelf Filling plans includes
three objects. Their positions, both on the table and on the shelf, were again
left fully symbolic. In all scenarios, the robot’s initial position, arm positioning
and torso height was left symbolic to account for all possible starting states. All
experiments have been conducted on a Linux machine with an Intel Xeon CPU
with 3.5 GHz clock rate.

Table [I] summarizes our experimental results. Here, each row represents a
run of one plan. We report (from left to right) the plan’s name, the number

® Note that this does not necessarily hold by design of the environment model. E.g. a
grasping action will not result in the desired result if the robot is too far away from
the object or the gripper is already occupied.
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Table 1: Verification results

Plan’s name #LOC Verdict #Paths Time (s) Time gen. (s)
Shopping Demo 338  Safe 16 2144 1967
Modified Shopping Demo 1 338 Unsafe 2 343 300
Modified Shopping Demo 2 327 Unsafe 1 176 152
Shelf Filling 914  Safe 123 31370 30708
Modified Shelf Filling 1 823 Unsafe 10 2823 2767
Modified Shelf Filling 2 911 Unsafe 11 3326 3262

of lines of the respective CLISP bytecode (#LOC), the verification verdict, the
number of paths in the symbolic execution tree (#Paths), the total runtime, and
the time spent on generating SAT instances by the DEC reasoner. All times are
reported in seconds.

As can be seen, our approach always returned the expected verification re-
sult. All errors in the modified plans were found and both unmodified plans were
proven to be safe with respect to the specified safety properties. Moreover, the
three versions of the Shopping Demo were verified with only a few paths and
in less than 40 minutes. This is due to the fact that only the branching logic in
the plan itself affected the number of symbolic execution paths. Any conditional
construct in the environment itself was instead translated into a conditional CNF
representation and solved by the SMT solver. The Shelf Filling plans, which were
designed to involve a lot more branching, led to more symbolic execution paths
and thus to a significantly higher runtime. Even the unmodified Shelf Filling
plan was however verified in under 9 hours. Verifying the modified versions of
both plans took a fraction of the runtime of their unmodified counterparts. This
is because DEC-SEECER terminates after the first property violation has been
found. The right-most column reports the runtime that was spent on the genera-
tion of the SAT instance by the DEC reasoner. As one can see, this procedure was
respousible for the majority of the overall runtime (86-98%). The solving process
was a lot faster in comparison. This indicates that the generation procedure of
the DEC reasoner is inefficient compared to the solving capabilities of modern
state-of-the-art engines. In fact, a number of more efficient grounding procedures
have been developed since then (c.f. [9] for an overview). Furthermore, the DEC
reasoner does not generate CNF instances iteratively.

In summary, our experiments show DEC-SEECER’s capability to verify the
safety of robotic plans such as the Shopping Demo. Even a more complex plan,
namely the Shelf Filling plan, was verified correctly and within an adequate
time. To further improve our approach’s runtime, a dedicated reasoner for DEC
could be developed with state-of-the-art grounding techniques and support for
the incremental unrolling of environments.
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5 Conclusion

The verification of safety properties of robotic plans is an indispensable pre-
requisite for using autonomous robotic agents in everyday scenarios. Although
this task is of paramount importance, it is also extremely difficult, since one is
dealing with Turing-complete high-level plans operating in constantly changing
environments.

In this paper, we presented a methodology that addresses this problem. We
were able to verify plans operating in household environments by combining
Discrete Event Calculus and symbolic execution. This integration allows for the
formal verification of general robotic plans in arbitrary environments modeled
in DEC. We exemplary showed, by means of experimental evaluation, that we
can verify safety properties of several plans controlling a two-armed human-sized
household robot packing and unpacking a shelf.

While we could demonstrate the general applicability of our proposed ap-
proach by the means of an experimental evaluation, it also indicated that there
is room for performance improvements. In future work, we, therefore, want to
rebuild the current DEC reasoner from scratch incorporating state-of-the-art
grounding techniques and an incremental approach.
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