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Abstract—Field-coupled Nanocomputing (FCN) devices
emerged as a post-CMOS alternative that promises highest
computation capabilities with lowest power dissipation. To
meet the strict FCN design rules, most existing physical design
techniques still rely on conventional methods for almost two
decades now – rendering the realization of large scale functions
infeasible. In this work, we propose an alternative approach to
the physical design of FCN circuits which bails on ineffective
methods like balancing. By this, we are able to generate FCN
circuit layout descriptions of functions for which state-of-the-art
methods timeout.

I. INTRODUCTION

Despite the continuous advances of today’s standard tech-
nology (CMOS) and its derivatives, one can clearly state that
the approaching of physical barriers demands the research
for alternatives. This challenge motivated the proposal of
numerous technologies – even if, until today, no dominat-
ing candidate emerged. Several predictions even indicate a
more diverse future reality with several technologies exist-
ing in parallel and serving different markets [1]. If aiming
at future ultra-low power applications, the nanotechnology
Field-coupled Nanocomputing (FCN) appears as a promising
candidate [2]. In contrast to conventional technologies, infor-
mation transfer and processing is implemented without any
electric currents but via field forces. Hereby, FCN is not bound
to a specific material and has been experimentally realized,
amongst others, with dangling bonds [3], molecules [4], or
nanomagnets [5].

Interestingly, despite its promising character, there is still
a lack of automatic design methodologies for FCN circuits.
One can determine two principal reason for this shortcoming –
first, conventional design methods can only be partially applied
and, second, most solutions presented thus far suffer from a
complexity that increases drastically with design size, e.g. [6],
[7], [8]. Both reasons are intensely discussed in this paper in
order to pinpoint to the weaknesses of existing solutions. We
clearly show that automatic design solutions for FCN circuits
require a completely new approach that differs from classic
strategies. That means, the conventional FCN design flow of
– starting from a given logic network – balancing, crossing
reduction, and crossing substitution leads to logic duplication
and requires mapping to pre-clocked grids – eventually causing
tremendously high design complexity. The consequences of
this increase are manifold and include larger circuit areas,
longer circuit delays, and extended design time.

Our contributions are (1) an extensive discussion about the
aforementioned shortcomings in conventional FCN physical
design which is more or less done the same way as a decade
ago; and (2) the proposal of a new physical design algorithm
which bails on classic strategies such as balancing to keep
input sizes moderate. This enables us to realize larger functions
than with those classical methods. Experimental evaluations
confirm the benefits.
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Fig. 1: Elementary QCA cell devices

To keep this work self-contained, we introduce FCN circuits
by means of the QCA implementation as a running example in
Section II. There, we also discuss the physical design problem
in this domain. In Section III, we discuss shortcomings of
current solutions to this problem and develop a general idea
of an alternative one which we then propose and discuss in
detail in Section IV. We evaluate the resulting approach in
Section V and conclude the paper in Section VI.

II. FCN CIRCUITS AND
THEIR PHYSICAL DESIGN PROBLEM

Field-Coupled Nanotechnologies (FCN) is an umbrella term
for a class of several post-CMOS technologies such as atomic
Quantum-dot Cellular Automata (aQCA, [9], [3]), molecular
Quantum-dot Cellular Automata (mQCA, [4]), or Nanomagnet
Logic (NML, [10]). While their physical implementations dif-
fer, their computational concepts are almost identical. Because
of this, many of the existing design approaches apply to the
entire class of field-coupled circuits. In order to focus on the
main contributions of this work and without loss of generality,
we will consider QCA-like technologies as a representative in
the following. However, all mentioned aspects can easily be
adopted for the other physical implementations of the FCN
concept.

In general, FCN circuits are implemented using elements
that interact via local fields (usually called cells). In QCA,
a cell is composed of four quantum dots which are able to
confine an electric charge and are arranged at the corners of a
square [11]. Each cell contains two free and mobile electrons
that are able to tunnel between adjacent dots and interact via
Coulomb forces (note that tunneling to the outside of the
cell is prevented by a potential barrier). Then, because of the
mutual repulsion, the two electrons tend to locate themselves
at opposite corners of the cell – eventually leading to two
possible cell polarizations, namely P = −1 and P = +1
which can be defined as binary 0 and binary 1.

Example 1. Fig. 1 shows the schematic representations of
elementary QCA devices called cells. The four circles denote
the quantum dots where the two filled ones represent quantum
dots containing electrons. The square shape illustrates the
potential barrier shielding the cell from the outside world and,
by this, preventing tunneling to nearby quantum dots. With an
external electric field applied, these are the only two stable
states a cell can assume.
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Fig. 2: Tiles in QCA implementation [12]

(a) 2DDWave [14] (b) USE [15] (c) RES [16]

Fig. 3: Clocking schemes for QCA circuit layouts

When composing several FCN cells next to each other, field
interactions cause the polarization of one cell to influence the
polarization of the others. This allows to implement structures
that transmit and process information by arranging cells in
patterned arrays – causing mutual repulsion in electrons in
adjacent cells. Those structures are usually grouped together
in tiles of uniform size – creating a gate library.

Example 2. In Fig. 2, example implementations of some
entities in tiles of 5×5 QCA cells are depicted. Fig. 2a realizes
a Majority structure with the inputs being in the north, west,
and south as well as with the output being in the western
direction. Polarizations of the three inputs compete for the
center cell where the strongest combined forces win. The result
is then propagated to the output cell. However, the black cell
in the north misses two quantum dots and, therefore, is in
a constant zero state changing the gate function to an AND
because 〈ab0〉 ≡ a ∧ b. Analogously, an OR gate can be
constructed by changing one input to a constant one state.

Fig. 2b realizes an Inverter with the input in the western
and the output in the eastern direction. During signal propa-
gation, the cells eventually interact over the corners causing
a negation.

Fig. 2c implements a simple wire where information is
propagated straight-forward. Lastly, Fig. 2d splits the signal
in the center cell, realizing a fan-out structure.

However, in the preceding example, the input and output
cells were arbitrarily assigned. Due to the meta-stability rea-
sons and, in order to control the data flow within a design,
FCN cells and, hence, also FCN tiles cannot be connected ar-
bitrarily [13]. In fact, all cells and, thus, also the tiles, must be
associated to an external clock that controls the initialization,
holding, and resetting of the states of the cells. In case of QCA,
an external electric clock controls the tunneling within the
cells. Depending on the technology, each cell changes during
a complete clock cycle between up to four different phases,
i. e., a switch, a hold, a reset, and a neutral phase. In case of
four phases, usually four external clocks numbered from 1 to
4 are applied, whereby each clock controls a selected adjacent
set of cells (i. e. a tile). Furthermore, information flows from
cells controlled by clock 1 to cells controlled by clock 2, from
cells controlled by clock 2 to cells controlled by clock 3, and
so on.

Various clocking schemes laid-out as floor plans have been
proposed over the years [14], [15], [16]. Fig. 3 exemplifies the
concept by providing a selection: Here, tiles are represented
in different gray-scales which represent the respective clocks
controlling them. We additionally highlight the different clocks
with a small number in the bottom-right corners as well as by

Fig. 4: Synchronization issues in FCN technologies

drawing the cells within the tiles in different colors (as it is
the case, e.g., in Fig. 2).

Example 3. Consider the 2DDWave clocking scheme as
sketched in Fig. 3a [17]. It forms one of the simplest floor
plans where each counter diagonal is assigned the same clock
number. This way, the incoming information flow to a tile is
solely possible from the northern and western directions while
the outgoing information flow from a tile always has to utilize
the eastern or southern directions. That inherently restricts
the scheme in multiple ways, since e. g. (1) sequential circuits
cannot be realized due to the lack of feedback loops and
(2) neither Majority gates nor 3-output fan-outs are possible
due to the maximum input and output degree of 2 for each
tile.

This last issue is a problem with the USE clocking scheme
sketched in Fig. 3b as well [15]. While USE indeed allows
feedback, its tiles’ maximum input and output degree is also 2.
The RES scheme sketched in Fig. 3c overcomes this restriction
and allows for feedback, Majority gates, and 3-output fan-outs
in certain tiles. However, due to the increased degree in some
tiles, the degree in other tiles must naturally be lower as we are
still facing a 2-dimensional grid structure. Therefore, circuit
layouts tend to become more widespread in the RES scheme
and consequently have higher area costs and longer critical
paths [16].

With those clocking schemes/floor plans defining possible
data flow connections for logic elements, arbitrary functional-
ity can be realized in FCN circuits – assuming the respectively
given functionality to be realized can properly be layouted onto
a grid. At a first glance, a corresponding physical design task,
i. e., generating FCN layouts from logic networks, seems to
boil down to the placement of gates to be realized so that the
data flow always obeys those clocking restrictions. However,
there are in fact two further issues a designer additionally
needs to address:

1) Local Synchronization: Data is only propagated in a
way where tiles controlled by a clock i are followed
by tiles controlled by a clock (i + 1) mod C (with C
being the number of different clocks used in the tech-
nology; i. e., C = 4 for QCA), and

2) Global Synchronization: The number of passed tiles
for any two signals traveling from primary inputs to the
same gate have to be equal. Otherwise, data will arrive
desynchronized – leading to different or even undefined
behavior.

Example 4. Consider Fig. 4 which depicts a QCA circuit
realized with 4× 3 tiles, where the upper left and lower right
tiles have the coordinates (0, 0) and (3, 2), respectively. At a
first glance, one could assume that the circuit implements the
Majority function f1 = (x1 ∧ x2) ∨ (x1 ∧ x3) ∨ (x2 ∧ x3),
because the tile at position (3, 1) contains a Majority gate,
while all the other tiles have wire segments assigned.

However, one can identify two problems. First, the tile at
position (0, 3) is controlled by clock 4 while the tile at position
(3, 1) is controlled by clock 3 (see letter A). This violates the



(a) Initial logic network (b) Balancing (c) Crossing substitution (d) Another balancing

Fig. 5: Balancing and crossing substitution

local synchronization, and thus, no data flow from the former
to the latter tile is possible.

Consider now the wires connecting the primary inputs x2
and x3 with the Majority gate at position (3, 1) (see also
letter B). Here, the local synchronization is satisfied. However,
information from the primary input x2 at position (0, 2) needs
to pass 4 tiles to arrive at the joint tile (3, 1), while the signal
from x3 at tile position (3, 2) only needs to pass 1 tile. This
way, x2’s signal information arrives with a delay of one full
clock cycle – violating the global synchronization.

Overall, this leads to the physical design problem for FCN
circuits which is considered in detail in this work.

III. DRAWBACKS OF CURRENT SOLUTIONS
AND GENERAL IDEA FOR AN ALTERNATIVE APPROACH

Since the discovery of the FCN concept as a circuit tech-
nology, design automation engineers came up with numerous
techniques to map logic representations to FCN circuit layouts,
e. g. [18], [8], [6], [19]. However, the core ideas did not
fundamentally change over the years. One of the main obsta-
cles is to achieve global synchronization within the layout as
discussed in the previous section. To this end, those approaches
employed a preprocessing step on the originally given function
to be realized first.

More precisely, at the beginning of the layout process,
the logic function to be realized is provided in terms of a
logic network, i. e., a graph where nodes are assigned Boolean
operations and edges represent signals connecting them. Ex-
amples for commonly used logic networks are And-inverter
graphs (AIGs) and Majority-inverter graphs (MIGs) as their
nodes represent AND and Majority functions, respectively,
which can directly be translated into corresponding uniform
QCA tile representations using a gate library like the one
introduced in the previous section. However, having such a
graph description, performing a direct mapping to a clocking
scheme is rarely possible without inserting additional wire
elements to respect local and global synchronization (which,
in contrast to the conventional design, may cause substantial
costs [20], [21]). Furthermore, crossings in the realization are
to be avoided because they lead to additional physical crossing
elements which require one extra tile each. Overall, these
restrictions formulate an NP-complete problem [22].

Example 5. Consider the Boolean function represented in
terms of an AIG (with explicit fan-out and inverter nodes)
with inputs x1, x2 and outputs f1, f2 as shown in Fig. 5a.
Here, the AND node labeled n5 gets one input from node n3,
which gets its input from node n1 making for a total path
length of 3. On the other hand, node n5’s second input is
fed by node n2 only, making it a total path length of just
2 (analogously for node n6). A direct mapping to a layout
would therefore violate global synchronization. Furthermore,

the network also contains a crossing of two connections in its
current representation, which needs to be taken into account
as well.

Almost all solutions for the design of FCN circuits tackled
this problem by performing preprocessing steps which alter
the structure of the logic network in order to avoid these
problems.1 More precisely, the following steps are usually
performed:

1) Path balancing: First, a levelizing is computed which
assigns a depth d to each node in the graph. By this,
each primary input gets d = 0 and each other node with
predecessors p1, . . . , pn gets d = max(p1, . . . , pn) + 1,
respectively. Then, for all adjacently connected nodes
n1, n2 and which differ in their depth by more than 1,
auxiliary balance nodes are introduced by subdividing
the respective connection until the depth difference is
evened out.

2) Crossing reduction: All nodes with the same depth
value are being grouped together in a rank rd. An
ordering is computed for each rank so that the con-
nections intersecting with each other in a drawing of
these ranks is minimized. Due to the NP-completeness
of this problem [26], such an ordering can only be
approximated in reasonable time.
Further reduction is sometimes accomplished by logic
duplication that, however, increases the logic network’s
size exponentially in the worst case.

3) Crossing substitution: Each remaining intersection of
connections is being substituted by a designated crossing
node so that it can be handled properly during physical
design. This however may cause the need to redo the
balancing and thus insert even more auxiliary nodes.

Example 6. Consider again the logic network shown in
Fig. 5a. Applying the balancing step as reviewed above yields
a network as shown Fig. 5b which resolves the problem
concerning global synchronization illustrated in Example 5
on the logic level by inserting two auxiliary wire nodes drawn
in black with a white W label. Since the network contains a
crossing of two connections, a substitution step is performed
resulting in the network shown in Fig. 5c which now contains
a designated crossing node drawn in black with a white X
label. However, thereby, another balancing becomes necessary
to equalize paths lengths which finally yields the balanced
and substituted logic network shown in Fig. 5d which could
finally be processed by a conventional FCN physical design
algorithm.

1There are alternative approaches that introduce additional clock signals to
circumvent this preprocessing, e. g., [23], [24]. However, to the best of our
knowledge, of all non-alternative approaches not relying on formal methods,
only [25] does not make use of any of the following techniques.



(a) Unbalanced (478 nodes) (b) Balanced (3275 nodes)

Fig. 6: Logic network of c432 [27]

Obviously, applying those preprocessing steps significantly
increases the number of nodes and, by this, the input size to
the subsequent physical design process that realizes the FCN
layout. While this might be negligible for the small logic net-
works discussed in the examples above, this quickly sums up
for larger functions. As a consequence, the runtime increases
disproportionately much (as we are facing an NP-complete
problem), rendering most existing approaches unusable.

Example 7. Fig. 6a sketches an original graph representation
for the function c432 [27] composed of 478 nodes.2 After
employing just the balancing step, this graph gets extended to
the version sketched in Fig. 6b composed of 3275 nodes where
the wires again are represented by smaller black nodes. In
other words, satisfying the global synchronization constraints
following the currently conducted state-of-the-art frequently
leads to a drastic blow-up in the number of nodes and,
hence, leads to intractability in the worst case, when certain
methods for crossings reduction are incorporated like the
ones explained above. As a consequence, many conventional
algorithms for FCN physical design do not even terminate (cf.
Section V).

Furthermore, in the bottom center of Fig. 6b, long connec-
tions that span from one side of the network to other can be
spotted. Even though, their source and target nodes are just
one level apart, during a mapping to an FCN layout, these
gates could not be directly connected as they will most likely
not be adjacent in the layout. Consequently, even more wire
nodes have to be introduced to realize these wire connections.

Obviously, this analysis showed the main drawbacks of
current solutions for FCN design: The preprocessing step
employed by almost all existing solutions thus far frequently
“blows-up” the size of the instance to be layouted – a critical
development for an NP-complete problem. Motivated by this,
we are proposing an alternative approach for the physical
design of FCN circuits. The main idea is to bail on the
troublesome preprocessing steps reviewed above and, instead,
work on the originally given input network. This obviously
requires an alternative method to deal with the synchronization
problems which is described in the next section.

IV. RESULTING ALTERNATIVE APPROACH

Bailing on balancing and crossing reductions allows us
to work on the originally given input network. While this
avoids “blowing up” the instance size as sketched by the
examples in the previous section, it also puts us back to
square one in dealing with how to satisfy the synchronization
constraints reviewed in Section II. However, we observed that,
by additionally using knowledge from graph theory, those

2Note that the details of this graph are not relevant; the figure should only
illustrate the size of a non-trivial function.

(a) Straight-line drawing (b) Orthogonal drawing

Fig. 7: Graph drawing examples

constraints can be dealt with “on-the-fly” during the layouting
process.

More precisely, instead of determining an absolute posi-
tioning of nodes as it is done by the preprocessing steps
of almost all existing approaches thus far, we propose to
compute relative positions of them first (for which we do
not need to “blow up” the input network). To this end, we
utilize methods addressing the Graph Drawing problem [28]
– a common problem in graph theory which tries to find
a visually pleasing representation of a graph by assigning
proper positions to vertices and edges and which finds appli-
cations e. g., in visualizing information systems such as UML
diagrams, VLSI circuits, etc. For our case, we particularly
utilize the Orthogonal Graph Drawing (OGD) [29] problem,
in which vertices get integer positions assigned and edges must
exclusively be drawn as segments arranged in a 90°-fashion.

Example 8. Fig. 7 depicts two examples of graph drawings for
the same given input graph. In Fig. 7a, a straigh-line drawing
has been computed whose only restriction is that all edges
must be drawn as straight lines. Fig. 7b instead shows an
orthogonal drawing.

The task to find an orthogonal drawing already resembles
a physical design problem remarkably close. In both cases,
non-overlapping integer positions for the nodes are to be
determined, and also in both cases, the connections are to
be realized in a 90°-fashion as wire segments. Therefore, one
could assume that an orthogonal drawing of a logic network
can be directly translated into an FCN circuit layout.

Unfortunately, this is not the case because the clocking and
synchronization restrictions are not considered in OGD. It is
not even guaranteed that for any OGD of any directed graph,
i. e., logic network, a clocking can be computed that satisfies
the local synchronization constraint. In fact, most existing
algorithms for OGD work on undirected graphs and thereby
disregarding information flow directions, making it unlikely to
find a valid clocking for a given orthogonal drawing.

In the following, we present a technique which enables us to
generate orthogonal drawings of logic networks which always
can be clocked to satisfy FCN design constraints. Thereby,
such drawings are directly isomorphic to FCN circuits and
can be seamlessly translated. By this, our approach can draw
logic networks as FCN circuits without an intermediate step.

To this end, we incorporated a clocking strategy into the
drawing process. We achieve this by relying on a direction
assignment to the network edges similar to edge coloring
used in OGD algorithms [30]. More precisely, we restrict
incoming or outgoing directions of each node mapped to the
FCN layout prior to placement. We explain the procedure
with two different outgoing directions in the following. The
directions we pick are the eastern and southern directions
for outgoing connections (likewise, the northern and western
directions for incoming connections). It must be ensured that
for an assignment d : E → {east, south} to the edges of the
input logic network,

1) each outgoing edge of any node must have a different
direction assigned, and



(a) Direction assignment
(dashed = east)

(b) Resulting layout (for the first
four nodes)

Fig. 8: Physical design using direction assignment

2) each incoming edge to any node must have the same
direction assigned.

The assignment d can be computed in linear time and needs
only one additional bit of memory overhead per edge. Utilizing
this assignment is the basis for generating the aforementioned
drawing, i. e., the FCN layout because the assigned directions
express the spatial relation between each two nodes.

Example 9. Consider the running example network in Fig. 5a
one last time. A direction assignment using only the two
directions south and east yields a representation as shown
in Fig. 8a, where solid lines represent south and dashed lines
represent east. Since the edge (n1, n3) is annotated with the
southern direction, we can infer that in the final layout, node
n3 will be located south of node n1.

Thereby, a relative positioning is achieved which allows
incorporating auxiliary balance wires, crossings, and the clock-
ing on-the-fly during physical design, i. e., layout drawing/-
generation as we demonstrate in the following. The relative
positions generate dependencies of the placement order. As
shown in the previous example, node n3 cannot be placed
before node n1. To resolve these dependencies, we process
the nodes in topological order, i. e., starting with the primary
inputs and never processing any node which has unprocessed
predecessors.

Starting with an empty layout, the first logic node n1 can
be placed at position (0, 0) with clock zone 1. For each
following node ni it is guaranteed that it does not have
unplaced predecessors. Hence, ni can be placed in either a
new column (incoming edges are assigned east) or a new row
(incoming edges are assigned south) so that a wire connection
with at most one bend is possible [30]. By this, the 2DDWave
clocking naturally emerges (cf. Fig. 3a).

Example 10. Processing the nodes of Fig. 8a in topological
order, i. e. n1, n3, n2, n5, n4, n6, provides a proper placement
sequence. The benefits of this order can be seen by considering
e. g. node n5: this node has incoming connections from nodes
n3 and n2, where node n3 on its part has an incoming edge
from node n1. Placing node n5 therefore requires to first place
all nodes it depends on, which we ensure using the topological
sorting.

Based on that, the actual placement is conducted as follows
(illustrated in Fig. 8b): We start with an empty grid and place
fan-out node n1 on position (0, 0). Next to process is the NOT
gate n3, which has an incoming connection labeled south,
meaning we place it south of its predecessor, i. e., at position
(0, 1). Node n2 however does not have any labeled incoming
edges and is therefore placed in a new column and new row
to not interfere with other connections, i. e., at position (1, 2).
There, we can add a wire to the layout’s border to make the

primary input accessible. Now, that all of its predecessors have
been placed, we can find a position for node n5 as well. It has
two incoming connections labeled south, meaning that it needs
to be located in the south of its predecessors too. The position
that fulfills this requirement with the least wire overhead is
(1, 3), because n2 and n5 can be connected directly, and from
n3 to n5 there are only 2 wire segments that need to be realized
(including 1 crossing).

One can notice how a clocking scheme naturally emerges
during placement. Nodes n4 and n6 can then be placed in the
same fashion and are left to the reader as an exercise due to
page limitations.

Overall, this scheme allows obtaining FCN layouts from
given logic networks without the need for conventional pre-
processing steps. By this, the mapping can be conducted on the
originally given graph and does not require balancing as most
previously proposed methods. Also, global synchronization be-
comes controllable because all primary input pins are located
on the layout’s western border and all primary output pins on
the layout’s eastern border. Therefore, the path discrepancy
can easily be measured and adjusted by the pins’ distance
on the layout. Eventually, this allows to conduct the physical
design substantially more efficient than related work. This is
also confirmed by experiments whose results are summarized
next.

V. EXPERIMENTAL EVALUATION

In order to demonstrate the applicability of the proposed
solution, we implemented the approach described in the pre-
vious section in C++ on top of the publicly available FCN
design framework fiction [31] as command ortho -b.3 In
this section, we discuss the experimental setup and summarize
the results.

We took standard benchmarks in the form of synthesized
Verilog netlist files from [27], [32] and converted them to
AIGs. In all AIGs, we replaced complemented edges with
inverter nodes and also substituted high-degree outputs by
designated fan-out nodes; applying a breadth-first strategy in
case of cascading fan-outs. We then compared our proposed
approach against the conventional FCN design process, i. e.,
applying preprocessing for which we used fiction’s balance
command. All benchmark runs were conducted on a Fedora 30
machine with an Intel Xeon E5-2630 v3 CPU @ 2.40GHz
(up to 3.20GHz boost) with 20 MB of L3 cache and 64 GB of
main memory. The results have been verified using the method
from [33].

The obtained results are summarized in Table I. The column
Benchmark lists information about the networks’ name, its
number of nodes (including inverters and fan-outs), and its
number of primary inputs and primary outputs. The columns
Conventional approach and Proposed approach list the result-
ing QCA layout’s area usage in µm2, its energy dissipation for
slow (25GHz) and fast (100GHz) clocking in meV, as well
as the runtime in CPU seconds it took the algorithm to obtain
the result. The amount of additionally needed balancing nodes
for the conventional preprocessing method is given in column
+W. For area calculations, we took standard cell dimension
values from QCADesigner [34], i. e., 18 nm × 18 nm for a
single cell with vertical and horizontal cell spacing of 2 nm.
Calculations for energy dissipation are obtained from [35].

As it can be seen, the proposed approach has a signifi-
cant advantage compared to the conventional technique. As
our approach does not “blow up” the logic network with –
apparently unneeded – wire nodes, it achieves better results
in area consumption, energy dissipation, and runtime. It even
is capable of obtaining results for benchmarks for which the
conventional approach timeouted after 30min.

3The source code is available at https://github.com/marcelwa/fiction.



TABLE I: Comparison to conventional approach

Benchmark Conventional approach (including preprocessing) Proposed approach
Name #Nodes I / O +W Area E (25 GHz) E (100 GHz) Time Area E (25 GHz) E (100 GHz) Time
c432 478 36 / 7 2 797 6 704.66 16 850.68 152 994.88 9.98 673.57 2 903.88 25 921.11 0.09
c499 1 021 41 / 32 3 521 18 226.40 36 599.97 332 446.41 29.96 2 969.23 9 008.83 81 061.34 0.42
c880 670 60 / 26 3 402 12 811.37 30 922.86 280 916.43 19.98 1 480.56 5 678.16 50 904.80 0.23
c1355 1 229 41 / 32 4 785 27 082.75 47 957.47 435 633.71 46.60 3 823.24 10 868.45 97 710.04 3.63
c1908 1 024 33 / 25 5 327 26 045.93 56 440.93 513 297.67 42.49 2 817.90 10 404.72 93 826.96 3.47
c2670 1 684 233 / 63 5 204 55 128.61 127 089.76 1 156 392.81 98.47 11 261.18 34 459.66 312 396.18 15.21
c3540 2 408 50 / 22 8 379 103 028.81 202 801.57 1 845 927.47 205.12 14 755.96 48 407.64 439 050.86 21.04
c5315 4 336 178 / 123 26 008 — — — TO 52 990.26 1 65 679.22 1 506 855.03 93.86
c6288 6 066 32 / 32 18 178 — — — TO 78 303.12 1 01 417.73 918 122.90 107.38
c7552 5 042 207 / 107 54 084 — — — TO 70 587.60 1 63 835.11 1 489 006.48 117.46

ctrl 461 7 / 25 1 277 3 090.52 12 460.83 113 166.57 3.10 565.95 4 111.17 37 061.62 0.11
router 556 60 / 3 5 582 15 460.42 30 163.55 274 099.89 27.05 1 026.74 2 742.06 24 259.51 1.12
int2float 609 11 / 7 988 3 409.62 10 596.54 95 949.28 3.80 938.32 4 812.47 43 229.05 0.15
dec 907 8 / 256 51 3 482.90 25 595.19 232 967.48 5.96 3 223.50 24 929.33 226 894.55 4.89
cavlc 1 711 10 / 11 3 072 28 295.12 106 961.25 973 666.87 51.87 6 956.60 41 728.29 379 170.14 13.33
adder 2 170 256 / 129 161 170 — — — TO 15 688.10 62 584.89 568 113.76 26.36
priority 2 186 128 / 8 86 028 — — — TO 13 319.89 63 593.25 577 339.47 23.06
max 6 772 512 / 130 159 581 — — — TO 136 817.83 407 646.74 3 712 404.33 227.93
bar 7 437 135 / 128 14 852 — — — TO 139 227.53 343 744.64 3 131 973.20 235.15
sin 12 608 24 / 25 205 045 — — — TO 364 025.97 657 525.96 5 985 854.67 416.84

#Nodes Logic nodes plus fan-outs Area Layout area in µm2 Time CPU time in seconds
+W Auxiliary wire nodes due to balancing E Energy dissipation in meV TO Timeout of 30min reached

VI. CONCLUSION

In this work, we investigated the design of Field-coupled
Nanocomputing which is an emerging post-CMOS concept
that promises astonishing energy dissipation characteristics.
In particular, we discussed the shortcomings of conventional
physical design approaches in the domain. These often unnec-
essarily “blow-up” their input logic networks with auxiliary
balance wire nodes leading to worse performance and obtained
layout quality. We proposed a novel approach to tackle this
problem in an alternative fashion. We propose to bail on
network balancing and only insert wire elements on the layout-
level where needed utilizing findings from graph theory. By
this, we were able to obtain significantly improved results in
less runtime than the current state of the art.
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