
A Codeword-based Compactor for On-Chip
Generated Debug Data Using Two-Stage Artificial

Neural Networks

Marcel Merten∗ Sebastian Huhn∗† Rolf Drechsler∗†

∗University of Bremen, Germany
{mar_mer,huhn,drechsle}

@informatik.uni-bremen.de

†Cyber-Physical Systems, DFKI GmbH
28359 Bremen, Germany

Abstract—The steadily increasing complexity of state-of-the-
art designs requires enhanced capabilities for post-silicon test
and debug. By this, the demands concerning the quality as
well as the diagnostic capability are met. Several sophisticated
techniques have been proposed in the past to address these new
challenges. However, these techniques heavily enlarge the on-
chip generated data that has to be stored in rarely available
and highly expensive memory and, especially, to be transferred
via a low-speed interface. Thus, applying data compression
is a highly beneficial objective to reduce the dedicated on-
chip memory and the required transfer time. This work pro-
poses a novel compression technique, which significantly reduces
the volume of on-chip generated debug data by orchestrating
a deliberately parameterized two-stage neural network. More
precisely, a codeword-based compression procedure is realized,
which can be directly implemented in hardware and, hence, be
seamlessly integrated into an existing test/debug infrastructure.
So far, it has not been possible to realize such compression
by classical (algorithmic) approaches allocating only reasonable
hardware resources. The experimental evaluation validates that
the proposed scheme achieves similar results as the off-chip
codeword-based approach being applied for incoming test data.

I. INTRODUCTION

Different breakthroughs in the field of electronic design
automation have enabled an enormous increase of the com-
plexity of Integrated Circuits (ICs). Modern ICs often realize
a System-on-a-Chip (SoC), which typically contains several
nested components. Due to the limited external controllability
and observability of internal signals of these components, a
new challenge concerning post-silicon validation arises. This
challenging circumstance is typically addressed by introducing
a dedicated Test Access Mechanism (TAM) into the SoC. The
IEEE Std. 1149.1 (JTAG) [1] specifies such a TAM, which is
widely disseminated in modern designs to provide access to
the boundary pins of the embedded components. In addition
to JTAG, a further IEEE Std. 1687 (IJTAG) [2] has been
proposed for creating even large and complex on-chip test
networks that, among others, take advantage of reconfigurable
scan paths. By this, a new dimension of possibilities is opened
up to, for instance, introduce several debug and diagnosis
instruments on-chip.

Various debugging scenarios require more comprehensive
mechanisms to succeed. Several enhancements [3]–[5] have
been proposed in the past, which further enhance the stan-
dardized base function of JTAG/IJTAG following the intent
of Design-for-Debug (DfD). These enhanced measures allow

accomplishing a certain level of quality and diagnostic capabil-
ities. However, these mechanisms strongly increase the result-
ing volume of on-chip-generated data, e.g., by tracing specific
internal signals or capturing certain functional registers. Due
to the typical low-speed transfer via TAMs, transferring large
data sets is a time-consuming and, hence, expensive task.
Furthermore, the available size of the dedicated debugging
memory is strictly limited on-chip.

Compression techniques are applied for post-silicon debug
to tackle the challenge of increasing data volume. Typically, a
trade-off exists between the desired compression ratio, the in-
troduced hardware overhead, and the information loss (induced
by lossy data compression algorithms). In this field, codeword-
based approaches have proven themselves to be well-working
for compressing incoming data [6], [7]. However, these data
have to be priorly processed off-chip, which is typically done
by a retargeting procedure running on a workstation. Due to the
strictly limited on-chip resources, codeword-based techniques
have not been applicable for outgoing data as generated by the
enhanced debug functions [3]–[5].

This work proposes a novel codeword-based compactor that
enables the compression of on-chip generated debug data
while being seamlessly integrated into any existing TAM.
The technique orchestrates a fast two-stage Artificial Neural
Network (ANN), which significantly reduces the volume of
generated debug data in place and, thus, improves the diag-
nostic capabilities even more.

Various experiments are conducted on a large trace data set,
which has been determined by (a) observing randomly selected
signals of a state-of-the-art open-source microprocessor imple-
mentation [8] and by (b) randomly generated data of functional
registers. The results clearly prove that the proposed ANN
scheme allows reducing the resulting data volume significantly
by up to 30%.

The remainder of this work is structured as follows: Sec-
tion II briefly introduces the preliminaries of this work. Fur-
thermore, Section III describes the two-stage ANN scheme in
detail, and the experimental evaluation is presented in Sec-
tion IV. Finally, some conclusions are drawn and an outlook
to future work is given in Section V.

II. PRELIMINARIES

This section introduces different on-chip data compression
techniques and gives a brief overview of ANNs as approx-
imation functions, which is important for comprehending
this work.978-1-6654-1609-2/21/$31.00 c©2021 IEEE

i

j

...

hidden layers output layerinput layer

wij

neuron layer

evaluation directionbackpropagation direction

Figure 1: Scheme of an ANN

A. Compression

Within the last decades, the JTAG interface has been con-
tinuously improved and been adopted to address the upcoming
challenges of highly complex SoC designs. For instance,
the authors of [3] realize well-known software debugging
mechanisms like breakpoints. In work [4], a scheme is pro-
posed to transfer debug data via the embedded TAM and an
enhanced built-in self-test and physical layer test capabilities
are presented in [9]. Besides this, commercially representative
state-of-the-art micro-controllers are also equipped with certain
debug mechanisms like ARM CoreSightTM [10] to provide
a powerful debug architecture. However, these improvements
substantially increase in the on-chip generated debug data
requiring both strictly limited dedicated memory and time-
consuming data transfer. To address these shortcomings, com-
pression techniques have to be taken into consideration for
these applications.

When designing on-chip compression techniques, specific
requirements have to be taken into account, meaning hardware
constraints, as explained in [6]. Further works, like [11],
clearly demonstrate that a codeword-based technique works
well for the intended application of this work. Generally, a
codeword-based compression technique utilizes an embedded
dictionary holding N codewords c1, ..., cN such that code-
word ci can be individually configured in D with specific
(uncompressed) dataword ui. Thus, the dictionary D realizes
a mapping function Ψ with Ψ(c1) → ui, i.e., every single
codeword ci is projected to a data word ui. The compactor
condenses a data stream consisting of m datawords u1, ..., um
to a suitable sequence of n codewords c1, ..., cn for the given
D. In contrast to this, the decompressor restores the original
data stream u1, ..., um equivalently by expanding every code-
word c1, ..., cn.

B. Artificial Neural Networks

A common strategy to solve a computationally intensive
task in environments with limited resources is about invoking
an approximation function. Such an approximation function
requires substantially fewer resources compared to an algo-
rithm that solves the task exactly. A prominent candidate
for an approximation function is an ANN. Such an ANN is
modeled as a set of layers, whereby each consists of neurons,
as exemplary given in Figure 1. The layers are ordered in
the direction of the evaluation, beginning with the input layer,
followed by an arbitrary number of hidden layers, and ending

with the output layer. Typically, the number of input nodes
corresponds to the input data size, while the number of output
nodes corresponds to the number of classes to be predicted.
Every neuron i can have a connection with a connection-weight
wij to any other neuron j. During the evaluation, the layers
will be evaluated in the predefined order, whereby the input
of each neuron j is

∑
i(wij ∗ oi) where oi is the output of

the predecessor neuron i. A neuron’s input is passed to an
activation function φ to calculate the output of the neuron. In
order to learn non-linear relationships, a non-linear activation
function can be applied to each of the neurons.

For the ANN training, the calculated outputs are used to de-
termine the error using a loss function and the expected output.
An essential loss function is the cross-entropy orchestrating the
Mean Squared Error (MSE). The multiclass cross-entropy is
defined in Equation (1), whereby n is the number of inputs,
oi is the output of the ANN of output-neuron i, and oi is the
expected output of output-neuron i. The loss is used to evaluate
the ANN’s ability to solve the classification problem.

n∑
(

c∑
i=1

(
1

n
∗ oi ∗ −ln(oi))) (1)

A commonly used method to determine error-minimizing
adjustments of the connecting weights is the gradient descent.
Thereby, an error gradient is computed for the output layer
as specified in Equation (2). Afterward, the error gradient is
backpropagated through the ANN.

gradienti = (oi − oi) (2)

In comparison to other approximation functions like (clas-
sical) regression methods, ANNs hold two major advantages
as follows: At first, an ANN can cope with non-linear rela-
tionships, which prevail in the application and, secondly, the
ANN can be implemented by a small a-priori known data set.
Such an ANN consists of multiple neurons (nodes) clustered in
different hierarchical layers: the input layer, the output layer,
and a variable number of hidden layers. All links (edges)
between neurons hold a certain weight, which is individually
adjusted during the training. Here, the training is assumed to
be a supervised learning procedure, i.e., every training sample
is labeled with the expected value. In fact, different types of
ANNs have been frequently used in various applications and,
hence, form an established machine learning concept to solve
even highly complex classification problems.

III. SCHEME OF TWO-STAGE ARCHITECTURE

This work proposes a two-stage ANN scheme realizing the
compactor of a codeword-based compression technique. In the
end, this compactor significantly reduces on-chip generated
debug data significantly enhancing the debug capabilities of
state-of-the-art SoCs. Generally, the proposed scheme im-
plements an approximation function, which works well for
data with even non-linear relationships, as clearly given by
the application.

The ANNs of the proposed scheme are meant to be trained
off-chip in a classical software-based fashion while orchestrat-
ing a newly developed and application-specific loss function.

TABLE I: Necessary codewords

Codeword-type uncompressed
codeword

compressed
codeword

SBI 1 1
SBI 0 0
ER / /

After the training’s completion, the learned ANN parameters
are extracted from the software model and the corresponding
ANN structure is meant to be implemented in hardware on-
chip. Since the training is not performed on-chip, the training
capabilities are not implemented later on-chip, which saves
hardware resources.

Figure 2a presents the integration of the compactor into
the usual debug data evaluation flow driven by a workstation.
The preparation of the compactor is realized in software by
training the ANN. The fully trained compactor then performs
the codeword-based compression purely on-chip. Figure 2b
shows the overall scheme of a two-staged ANN. At first,
Stage-I evaluates the uncompressed data to determine the
set of parameters for Stage-II. Finally, Stage-II performs the
compression of the uncompressed data using the specific
parameters. It has to be noted that the uncompressed data are
divided into compressed sequences (comp-seqs) to meet the in-
put layer size constraints, particularly when compressing large
uncompressed data streams. Thus, the proposed compression
scheme processes a comp-seq at a time.

Due to the nature of a codeword-based compression tech-
nique, the choice of codewords stored in the dictionary affects
the resulting compression efficacy. Consequently, it is of
utmost importance to select the codewords deliberately. In
order to ensure the completeness of codeword-based com-
pression techniques, so-called Single-Bit-Injections (SBIs) are
orchestrated covering the single bit replacements ‘0’ and ‘1’,
respectively [6]. Even though no compression is achieved by an
SBI locally, this principle ensures that arbitrary bit sequences,
meaning uncompressed data, can be compressed. For that
reason, each dictionary D holds two special codewords for
representing the SBIs. A third special codeword is required
when an ANN is used to realize the codeword-based compres-
sion technique called Empty Replacement (ER). The special
codewords are summarized in Table I.

A. Stage-I

The Stage-I ANN calculates the lower bound of the ap-
proximated number of codewords n≈. More precisely, n≈
describes how many codewords have to be at least used while
compressing the given data sequence. This metric reflects
certain characteristics of the data sequence in combination with
the considered dictionary. For each value n≈, as predicted by
Stage-I, an individual set of parameters (with different weights)
is used during the off-chip training of Stage-II. By this, the
Stage-II is well aligned for different kinds of data.

The input layer size of Stage-I equals the comp-seq’s size.
The size of the output layer determining n≈ equals the
maximum number of codewords. Consequently, the output
layer’s size equals the input layer size when only SBIs are
considered. Internally, a multi-class loss layer is applied to
compute the single gradient value for Stage-I.

For the remainder of this work, three different classes are
being distinguished:

a) exact matches n≈ = n

b) non-critical overestimations n≈ > n
c) critical underestimations n≈ < n

In fact, c) has to be avoided since, otherwise, the Stage-II can
be impacted adversely. Thus, an optionally adapted gradient’s
calculation is implemented. For each class i in Stage-I, the
gradient is adapted as follows, whereby in case c) a constant
punishment-value (cpv) is added:

gradienti =

(oi − 1) if a)

(oi) if b)

(oi + cpv) if c)

(3)

B. Stage-II

The Stage-II ANN determines the actual sequence of code-
words with respect to the implicitly encoded dictionary D. The
weights of the Stage-II ANN are selected considering n≈. The
evaluation of n≈ beneficially affects the compression efficacy
since the optimal parameters can be selected for the adoption
of this ANN. To the end, the codewords c1, .., cn – representing
the compressed data – are emitted at the output layer’s nodes.

In order to further improve the resulting compression ef-
ficacy, five enhancements have been developed, which are
discussed in the remainder of this section.

a) Application-specific Loss Function: The first improve-
ment concerns an application-specific loss function that is
being used during the off-chip training phase of the ANN.
This function computes the loss only by using the specified
D instead of learning by computing the loss with respect to
expected results, as shown in Figure 3. The codewords are
rated by the compression ratio (cratio), defining the expected
result of a neuron with respect to the proportion of the
compression for all fitting codewords. Given N the set of
appropriate codewords, ei the i-th dictionary entry with ei ∈ N
and β(ei) the compression of ei, the computation of the c-ratio
is shown in Equation (4). Here, β(ei) is set to a fixed value
βSBI (for each SBI), yielding a higher reward for SBIs than
inappropriate codewords.

cratio =
β(ei)∑

ex∈N (β(ex) + βSBI)
(4)

b) Reward Boosting: Multi-objective optimization is used
that initially differentiates in two cases and if a codeword does
not fit, any non-zero output forms an error as follows:

gradienti =

{
(oi) if codeword does not fit

(oi − cratio) if codeword does fit
(5)

This equation considers the achieved compression of a code-
word for minimizing the size of the compressed data.

If a dictionary D provides multiple possible replacements for
one uncompressed data sequence, a reward boosting increases
the compression. The idea is about adapting the gradient
to prefer codewords that compress the input data instead of
introducing SBIs. If the Stage-II choose an SBI for a certain
bit position, possible non-SBI replacements are rewarded, as
shown in Equation (6),

uncompressed
data

compression

compressed
data

on-chip

training data

training

retargeting

off-chip

preparation

workstation

(a) Training and evaluation procedure

uncompressed
data

compressed
data

Stage-I Stage-II

(b) Two-stage topology

Figure 2: Proposed scheme of the two-stage ANN

hidden
layer

e00

e01

...

first codeword

e10

e11

...

second
codeword

...

first chosen codeword

second chosen codeword

Information for gradient computation

output
layer

...

Figure 3: Stage-II - gradient’s calculation structure

gradienti = (gradienti − cratio) (6)

c) Punishment Boosting: A specialized punishment
boosting technique has been developed to minimize the output
of inappropriate codewords. Codewords that are not suitable,
but hold higher prediction values than the matching codewords,
are treated with an additional punishment depending on the
compression β, as shown in Equation (7).

gradienti =

{
(gradienti + 1

β(ex)
) if β(ex) > 0

(gradienti + βSBI) else
(7)

d) Pivot-Split: An (optional) pivot split technique is im-
plemented, which splits one input in two equally sized input
chunks. This allows to halve the input neurons and, by this,
decreases the resulting classification problem’s complexity.
Furthermore, an optional split was implemented that divides
one input into two equally sized inputs. Otherwise, the maxi-
mal compression is decreased if the input is too small.

e) Switching Activity: The last improvement concerns
the Switching Activity (SWA) of the uncompressed data. The
SWA provides further information about the characteristics of
the data sequence, which can affect the codewords’ usability.
Consequently, the SWA is incorporated as a parametrization
of Stage-II in addition to Stage-I.

IV. EXPERIMENTAL EVALUATION

This section describes the experimental evaluation of the
proposed codeword-based compression technique orchestrating
a two-stage neural network and discusses the obtained results
concerning the superiority of the proposed enhancements of
the basic ANNs’ structure.

All experiments have been conducted on an AMD Ryzen 7
2700X with 16 GB system memory within a C++ software
environment using the dlib 19.7 [12] library for ANNs. The
proposed ANNs scheme is meant to be transformed to a
hardware implementation by following the technique [13].
During the last years, a lot of research work has been spent
on the hardware realization of ANNs since they have proven
themselves as fast and accurate classification instruments [14].
In particular, off-chip learning approaches benefit from the
more accurate training on a software basis [15]. In this work,
the resulting hardware overhead has been considered as an
essential factor during the design phase of the proposed scheme
and, hence, only small ANN topologies have been invoked.
The different kinds of Stage-I ANNs, as introduced later,
consist of 84 to 128 hidden neurons per hidden layer. The
ANN of Stage-II has one hidden layer with 240 hidden nodes
and 240 output neurons, and 16 input neurons.

The considered training and validation data sets have been
generated by a randomly investigated set of 16 signals of a
state-of-the-art open-source microprocessor implementation of
an OpenRISC 1000 SoC [8] while executing functional verifi-

TABLE II: Stage-I results

values
ANN

ANNI−1 ANNI−2 ANNI−3

training phase 22.3 s 42.3 s 22.7 s
validation phase <1 s <1 s <1 s

matches 90.1 % 84.8 % 71.0 %
overestimations 5.6 % 7.4 % 28.1 %

underestimations 4.3 % 7.8 % 0.9 %

TABLE III: Stage-II results

values Huffman [18]
compression ratio 28.2%

correct bits 100.0%
tradeoff 28.2%

cation benchmarks from the Dhrystone benchmark suite [16].
These random data are characterized by a very high entropy
such that the lower bound for compression ratio should be
determined [17]. Furthermore, an equally sized set of on-chip
generated debug data has been evaluated. The ANN is trained
with a set of 768 samples, i.e., a training rate of 1.5× 10−5

is achieved, and the following experimental evaluation is done
on the basis of a disjoint validation set holding 768 samples.
The labels – representing n≈ – for the training data set are
calculated by applying the technique of work [18].

The comp-seq size is set to 16 bits and, hence, the input- and
output layer sizes of Stage-I are 16 as well. The ANNI−1 holds
one fully-connected hidden layer with 84 hidden neurons, and
ANNI−2 holding three fully-connected hidden layers with 84,
128 and 84 hidden neurons. ANNI−3 has the same topology
as ANNI−1 but uses the adapted gradient’s calculation. The
respective results for the random data are shown in Table II.

The validation time is negligible for all ANN types. The
training time of ANNI−2 is 1.9 times higher than of ANNI−1
due to the increased number of hidden layers and, conse-
quently, the larger network size. It has to be noted that
the introduction of two additional layers does not increase
the accuracy. In case of an overestimation, the compression
ratio is reduced since the Stage-II ANN misses the optimum
(meaning highest possible compression ratio) due to the in-
correct parameterization by Stage-I. Even though the data
content will not be affected in such a case. In return, an
occurring underestimation can potentially lead to (partial) data
corruption. This partial corruption is completely negligible for
different debug applications as long as a certain bound is not
exceeded, e.g., some corrupted signals in the overall debug
traces do not affect the application. In case, however, the
corruption has to be completely avoided, a safety margin can
be added to the Stage-I prediction value, or a recalculation
of the compressed data can be induced if a certain level of
confidence is undershot.

ANNI−1 and ANNI−2 perform a classical calculation of
the gradient. Accordingly, over- and underestimations are
equally distributed. Using the adapted gradient’s calculation
in ANNI−3 impacts the results by drastically reducing the
number of underestimations. However, the adapted gradient’s
calculation leads to significantly more overestimations mean-
ing that the overall accuracy is decreased. As mentioned, the
compression ratio is reduced when overestimations occur.

Figure 4 presents the final results as a heat map for ANNI−1
while the single validation sample is given at the x-axis, the
(relative) distance n≈ − n to the expected value at the y-
axis, and the (absolute) expected value n at the z-axis, as
used for dyeing. For ANNI−1, the obtained results prove

Figure 4: Stage-I validation heat map for ANNI−1

that the classification works excellent for approx. 96% of all
investigated data sets, which have not been a-priori known:
The standard error of the calculation is just about 0.04, and all
missclassifications miss the expected value by 3. Even in case
of an underestimation – as occurring in 4.3% of the validations
– the standard error is 0.11, whose adverse impact on the final
compression ratio is manageable.

In order to have a baseline result, the ANNII−1 is used for
codeword-compression without the adapted loss function and
without the approximation of Stage-I. Afterward, it has been
evaluated using ANNI−1 for parametrization with all com-
binations of the described optional features for Stage-II. Even
though all results exceed the baseline, the best predictions were
achieved with a combination of reward boosting (ANNII−2)
and using reward boosting with SWA-supported parametriza-
tion (ANNII−3). Thereby the total number of parameter-sets
is three by only using Stage-I for parametrization and 13 with
an additional parametrization by the SWA.

The results are evaluated considering different ratios as
follows: At first, the compression ratio describes the per-
centage of saved bits of the compressed data compared to
the uncompressed data. Secondly, the value correct bits
measures the number of matching bits by comparing the
original uncompressed data with the uncompressed data after
compression. Finally, a tradeoff of both values shows the
effective compression ratio considering the correct bits and
is computed by (compressionrate)− (correctbits)− 1. The
reference values are calculated using the word-level Huffman
Encoding approach of [18], as presented in Table III. The
results emphazise the great potential compression with more
complex off-chip compaction techniques.

Table IV presents the classification ratios in % for com-
pression, correct bits, and the tradeoff for the random data.
The deviation of the training time of the slightly modified
setups increases with the number of trained sets of parameters.
However, ANNII−1 has the least correct bits and the lowest
compression efficacy. In contrast to ANNII−3, ANNII−2
achieves a higher compression but less correct bits. The most
appropriate configuration depends on the intended use case and
can be adapted to the designer’s choice.

Since highly entropic random data does not necessarily
correspond to regular on-chip generated trace/debug data, the
ANNs are also evaluated on a further data set, which holds

TABLE IV: Stage-II results

values
ANN

ANNII−1 ANNII−2 ANNII−3

training phase 45.1 s 295.1 s 814.7 s
validation phase < 1 s < 1 s < 1 s

compression ratio 35.1% 44.7% 27.3%
correct bits 57.3% 86,4% 91.5%

tradeoff -7,6% 31.1% 18.8%
parameter-sets 1 3 13

TABLE V: Stage-II results on debug data

Values
ANN

ANNII−1 ANNII−2 ANNII−3

training phase 42.9 s 284.1 s 839.2 s
validation phase < 1 s < 1 s < 1 s

compression ratio 37.8% 41.9% 30,9%
correct bits 59.5% 87.9% 94.5%

tradeoff -2.7% 29.8% 25.4%
parameter-sets 1 3 13

Figure 5: Stage-II validation heat map for ANNII−2

less entropy and has been omitted by tracing single functional
registers. These data are more continuous than the initial con-
sidered random data. Consequently, the compression efficacy
increases for this less-entropic data, as presented in Table V.

Figure 5 (6) presents the final results as a heat map for
ANNII−2 (ANNII−3) while given the single validation sample
at the x-axis, the bits of the predicted uncompressed data at
the y-axis, and the bit errors at the z-axis. The red marks
indicate a bit error after decompressing. Bits that exceed the
expected number of bits in the uncompressed data can be
ignored because the size of the uncompressed sequence is a-
priori known. For the ANNII−2, the data show that many bit
errors are equally distributed in the bits 0-2 and 4-6 bit position
ranges. ANNII−3 shows fewer bit errors and many of them are
caused by underestimations of the uncompressed data length.

V. CONCLUSIONS

This paper presented a novel scheme orchestrating a two-
stage ANN to implement a (codeword-based) compactor,
which can be introduced to modern SoC designs. To the end,
the proposed approach allowed to compress random data as
well as on-chip generated debug data to, finally, reduce the
size of required memory and accelerate the transfer of on-
chip generated data by up to 30%, which was competitive to
the word-level Huffman Encoding approach. Future work will
focus on the orchestration of neuro-evolutionary algorithms

Figure 6: Stage-II validation heat map for ANNII−3

on top of the proposed ANN scheme to further improve the
resulting correctness of the compressed data such that the
trade-off is being increased even more.

VI. ACKNOWLEDGEMENTS

This work was supported by the AI initiative of the Free
Hanseatic City of Bremen.

REFERENCES

[1] “IEEE standard for test access port and boundary-scan architecture,” IEEE Std.
1149.1-2013 (Revision of IEEE Std. 1149.1-2001) - Redline, pp. 1–899, 2013.

[2] “IEEE standard for access and control of instrumentation embedded within a
semiconductor device,” IEEE Std. 1687-2014 - Redline, pp. 1–283, 2014.

[3] Y. Liu, W. h. Wu, X. f. Zhou, and D. Zhou, “A novel on-chip debug system with
quick all-registers scan chain based on JTAG,” in International Conference on
Solid-State and Integrated Circuit Technology, 2006, pp. 1941–1943.

[4] X. Liu and Q. Xu, “On reusing test access mechanisms for debug data transfer in
SoC post-silicon validation,” in IEEE Asian Test Symposium, 2008, pp. 303–308.

[5] L. van de Logt, F. van der Heyden, and T. Waayers, “An extension to JTAG for
at-speed debug on a system,” in International Test Conference, vol. 2, 2003, pp.
123–130 Vol.2.

[6] S. Huhn, S. Eggersglüß, and R. Drechsler, “VecTHOR: Low-cost compression
architecture for IEEE 1149-compliant TAP controllers,” in IEEE European Test
Symposium, 2016, pp. 1–6.

[7] S. Huhn, S. Eggersglüß, K. Chakrabarty, and R. Drechsler, “Optimization of
retargeting for IEEE 1149.1 TAP controllers with embedded compression,” in
Design, Automation and Test in Europe, 2017, pp. 578–583.

[8] D. Lampret, “OpenRISC-1000 SoC,” 2003, http://opencores.org/project,jtag.
[9] G. Jian-min and L. De-lin, “A functional enhancement methodology to JTAG

controller in complex SoC,” in International Conference on Computer Science
Education, 2009, pp. 1128–1131.

[10] A. Limited, “CoreSightTM components technical reference manual,” 2009.
[11] A. Wurtenberger, C. Tautermann, and S. Hellebrand, “Data compression for

multiple scan chains using dictionaries with corrections,” in International Test
Conference, 2004, pp. 926–935.

[12] D. E. King, “Dlib-ml: A machine learning toolkit,” Journal of Machine Learning
Research, vol. 10, pp. 1755–1758, 2009.

[13] H. Faiedh, Z. Gafsi, K. Torki, and K. Besbes, “Digital hardware implementation
of a neural network used for classification,” in International Conference on
Microelectronics, 2004, pp. 551–554.

[14] N. Botros and M. Abdul-Aziz, “Hardware implementation of an artificial neural
network,” in IEEE International Conference on Neural Networks, 1993, pp. 1252–
1257 vol.3.

[15] M. Forssell, “Hardware implementation of artificial neural networks,” Technical
report, Carnegie Mellon University, Department of Electrical and Computer
Engineering, Tech. Rep., 2014.

[16] R. P. Weicker, “Dhrystone: A synthetic systems programming benchmark,”
Commun. ACM, vol. 27, no. 10, p. 1013–1030, Oct. 1984. [Online]. Available:
https://doi.org/10.1145/358274.358283

[17] K. Balakrishnan and N. Touba, “Relationship between entropy and test data
compression,” IEEE Transaction on CAD of Integrated Circuits and Systems,
vol. 26, no. 2, pp. 386–395, 2007.

[18] K. Ilambharathi, G. Manik, N. Sadagopan, and B. Sivaselvan, “Domain specific
hierarchical Huffman encoding,” ArXiv, vol. abs/1307.0920, 2013.

