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Abstract—Quantum computers offer enormous speed advan-
tages over their classical counterparts. Still, optimization on
quantum circuits is necessary to further increase their potential.
Additionally, physical realizations of quantum computers place
restrictions on quantum circuits, regarding the available quantum
gates. In order to satisfy these restrictions, non-native gates
need to be expressed as an equivalent cascade of natively
available quantum gates which induces a mapping overhead. Two
complementary approaches to this problem are to move around
the qubits (using SWAP gates) or to apply so-called remote gates,
i.e. pre-computed cascades of native gates which keep the qubit
placement.

In this paper, we explore how combinations of movements and
remote gates can be employed to reduce the required overhead
regarding the number of native gates as well as the circuit depth.
We also discuss ways to find out which qubits to address with
the movements in order to optimize these metrics. Our general
evaluation is supplemented by evaluations on two IBM quantum
computer architectures to show how quantum circuits can be
optimized by the presented patterns.

I. INTRODUCTION

Quantum computers [1] promise to have enormous com-
putational power and, thus, to solve relevant problems sig-
nificantly faster than their classical counterparts. In recent
years, large efforts have been put on their development. While
the mathematical foundations have been widely explored in
the last decades and meaningful quantum algorithms have
been proposed, the physical realization currently provides the
biggest obstacle preventing the widespread use of quantum
computers.

Driven by big players like IBM, Google, and Intel, more
and more powerful quantum computer architectures have been
presented in recent years with increasing quantity and quality
of the so-called qubits—the basic computational entities in
quantum computing. While there are several different ap-
proaches regarding the employed technology to realize qubits,
one of the physical constraints that all proposed architectures
have in common is the limited availability of quantum gates.
Typically, multi-qubit gates are much harder to realize than
single-qubit gates and in many cases there is only one multi-
qubit gate natively available, namely the two-qubit controlled-
NOT (CNOT) gate. This does not restrict the computational
power of the architectures in general, since there are universal
gate libraries consisting of the CNOT gate and single-qubit
gates only, e.g. the Clifford+T library [2] which allow to
realize arbitrary quantum computations. However, the CNOT

is typically only available on a small subset of physically
adjacent qubit pairs. Consequently, computations that require
CNOT operations on distant qubits can become quite complex.
Fortunately, there are ways to simulate these logical CNOTs at
the physical level and transform a quantum circuit that contains
non-native CNOTS to a quantum circuit containing only native
gates and, thus, being ready for the execution on the targeted
quantum architecture.

Many approaches to find efficient CNOT implementations
have been suggested, e.g. in [3]-[10]. The underlying idea
of most of these solutions is to use so-called SWAP gates
in order move distant qubits to adjacent positions where a
native CNOT gate can be applied. Alternatively, there have
been proposals to use remote CNOTs, i.e. realize non-native
CNOTs using pre-computed, optimized sequences of native
gates (sometimes also referred to as templates) [5]. Recently,
there has been a proposal to combine SWAPs with remote
gates in the mapping of high-level reversible circuits [11]
which demonstrated that this approach can outperform state-
of-the-art mapping approaches regarding the required gate
overhead. In fact, most approaches focus on the gate overhead
that is introduced, but also the resulting circuit depth shall be
considered, since a smaller depth leads to a shorter execution
time. Due to the short decoherence time of the qubits, this is
also a rather limited resource.

In this paper, we explore how a combination of SWAPs
and remote gates can be adapted to the realization of non-
native CNOT gates. More precisely, we explore combinations
of qubit movements and remote CNOTs with a focus on
reducing circuit depth without (substantially) increasing the
gate overhead. We come up with patterns which combine
the advantages of SWAPs (i.e., a smaller depth) and remote
gates (i.e., less gate overhead). We determine cost- and depth-
optimal patterns for two IBM quantum computer architectures
and evaluate their impact on the transformation of entire
quantum circuits. The main differences to [11] are:

o This work does not treat SWAPs as atomic operations,
but explicitly makes use of optimizations at the quantum
circuit level that only become possible when SWAPs are
considered as cascades of CNOT (and Hadamard) gates.

o We restrict to the realization of non-native CNOT gates,
while [11] is concerned with the realization of high-level
gates (so-called Multiple-Controlled Toffoli gates) which
are a generalization of CNOT gates. The patterns used in
this paper can hardly be generalized to these gates.



The remainder of this paper is structured as follows. The
next section introduces notations and preliminaries needed
in the paper. Section III outlines the motivation for and the
general idea of the proposed approach. In Section IV, we
discuss several possibilities to combine SWAPs with remote
gates (denoted as patterns) and outline possible optimizations
of the patterns due to the particular structure of the SWAP
gates in Section V. In Section VI, we determine depth- as
well as cost-optimal instantiations of these patterns, before we
evaluate their impact on the transformation of entire quantum
circuits in Section VII. Finally, the paper is concluded in
Section VIIIL.

II. BACKGROUND AND PRELIMINARIES

To keep the paper self-contained, this section briefly intro-
duces the basics of quantum computation and the technology
mapping of quantum circuits to (IBM) quantum computers.

A. Quantum States and Circuits

In contrast to classical bits which can only assume two
discrete states, qubits can represent any combination of the
classical Boolean values 0 and 1. More precisely, the state
space of a qubit is a 2-dimensional Hilbert space such that
all possible states can be written as |¢)) = a|0) + b|1) = ()
where |0), |1) denote the computational basis states (associated
with the classical Boolean values) and a,b € C are complex-
valued numbers such that |a|> + [b]*> = 1. Analogously,
the state space of an n-qubit quantum system has 2" basis
states (]0...00),]0...01),...,|1...11)) and the state of such
system can be described by a 2"-dimensional complex-valued
vector.

A quantum circuit is a model of quantum computation
representing a sequence of quantum operations [1]. Each
operation is a unitary transformation and is represented by
a quantum gate. The operation of a quantum gate acting on n
qubits is uniquely determined by a 2™ x 2™ unitary matrix.

A popular gate library for universal quantum computation
is the Clifford+T library [2] which contains controlled-NOT
(CNOT), Hadamard (H) and T (T) gates, represented by
the following matrices (where w = e’ i)

100 0
~lo1 00 (11 (10

exor=|g g o] =500 4)m=( 0)
0010

A CNOT on two qubits « and S, denoted as CNOT(«, (),
performs a NOT operation on the target qubit 3 if, and only
if, the control qubit « is in the |1)-state.

Example 1. The left-hand side of Fig. 1 shows the circuit
notation of a CNOT. Horizontal lines denote the qubits, the
control qubit connection is indicated by a small, filled circle
and the target qubit is illustrated by ®. As shown on the right-
hand side, control and target of a CNOT can be swapped by
applying Hadamard gates before and after the CNOT gate.

=]

~$— _
——  AH—eo—{H

Swapping control and target of a CNOT using Hadamard gates.
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Fig. 2. IBM QXS architecture.
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Fig. 3. IBM Q20 architecture.
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B. Technology Mapping to (IBM) Quantum Computers

All IBM architectures essentially support arbitrary single-
qubit gates (especially the ones from the Clifford+7" library)
as well as the CNOT gate, although its availability is limited.
More precisely, the architectures restrict the interaction of the
physical qubits, i.e., it is only possible to apply a CNOT gate
to a defined set of qubit pairs.

These CNOT restrictions are expressed in a coupling graph.
Figure 2 shows the coupling graph of the 16 qubits IBM
QX5 (Rueschlikon) architecture [12]. The circles represent the
physical qubits (Qo, @1, @2, - ..,Q15) and the arrows indicate
the availability of a CNOT gate between the qubits. To this
end, a CNOT gate can only be applied if the qubit at the
base of the arrow is the control qubit and the tip of the arrow
represents the target qubit. For instance, CNOT(Q1, ()2), i.e.
a CNOT with control on 1 and target on ()2 is available on
QX35, but not vice versa. Overall, for quantum circuits with
16 logical qubits, there are 16 - 15 = 240 different CNOT
gates possible, but only 22 are natively available in the IBM
QXS architecture. Analogously, the 20-qubit Q20 architecture
shown in Fig. 3 natively supports only 74 out of 20-19 = 380
possible CNOTs. Thus, the challenge is to find an efficient
way to realize the CNOT gates that are not natively available
in order to implement arbitrary quantum algorithms.

III. GENERAL IDEA

Existing approaches for the efficient realization of non-
native CNOTs have mainly focused on inserting SWAP gates,
which are compositions consisting of several CNOT and
Hadamard gates as shown in Fig. 4. To illustrate this idea,
consider the realization of a CNOT(Q3,Q0) in IBM QX5.
In order to implement this non-native CNOT, one could
simply swap Q3 with Q2 and @2 with Q1 using SWAP
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Fig. 6. Realization of CNOT(Q3, Q0) in IBM QX5 according to [5].

gates, transferring the state of @3 to that of @1, and then
apply the native CNOT(Q1, Q0). This is illustrated in Fig. Sa.
Alternatively, as shown in Fig. 5b, one could swap Q)3 with
@2 and Q0 with Q1—this can be done in parallel and, thus,
reduces the circuit depth—and then use the construction from
Fig. 1 to apply the (non-native) CNOT(Q2, @1). In both cases,
the qubit placement, i.e. the mapping of the logical qubits
to the physical qubits of the quantum computer, is changed
and the same set of SWAPs has to be applied in reverse
order to restore the original positions of Q1,Q2, and Q3, if
required. However, each SWAP introduces an additional cost
of 7 gates (c.f. Fig. 4) resulting in a total cost of 4-7+1 = 29
gates, but complete SWAPs may not be required. Almeida
et al. [5] identified several movements of control and target
qubits which can be realized with reduced costs—resulting in
a realization of CNOT(Q3, Q0) using only 20 gates (shown in
Fig. 6). If there is a (directed!) path from control to target in
the coupling graph, also the multi-hop construction from [13]
can be employed. It requires 4(d — 1) CNOTs (where d > 1
is length of the path between control and target) and, thus,
reduces the number of gates (as well as the depth) to 8 for the
considered CNOT (as shown in Fig. 8).

In summary, SWAPs have the advantage of being suitable
for a parallelization which might reduce the circuit depth,
while it requires a higher number of native gates and the state
of the target qubit is established quite late. In contrast, remote
CNOTs typically require a smaller number of gates, are often
able to establish the desired state of the target qubit relatively
early, but usually do not offer room for parallelization have a
large circuit depth.

The general idea of this paper is to combine SWAPs with
remote CNOTs in order to combine the strengths of both
for an efficient realization of non-native CNOTs. While most
approaches to quantum circuit transformation do not require
the original qubit placement to be restored after the execution

of a non-native CNOT, but rather carry on with modified
qubit placements, in the following we will assume that all
realizations do not have any (side) effects on any, but the target
qubit, i.e. the remaining qubits will be restored to the state that
would have occurred if only the non-native would have been
applied.

IV. METRICS AND PATTERNS

In this section, we will discuss several possibilities to
combine SWAPs with remote CNOTs (denoted as patterns)
and analyze there behavior w.r.t. the following metrics:

¢ cos: The cost of the pattern, measured as the total number
of (native) gates which have to be applied.

o dep: The total depth of the pattern, being the number of
stages needed.

e dep;: The target depth of the pattern, i.e. the number of
stages until the target qubit has its desired state and is
not changed afterwards.

While cost and depth have an immediate impact on the
reliability of the resulting circuits, since all gates are prone
to errors and the execution/decoherence time of the qubits is
limited, the target depth can have a positive impact on the
overall execution time of the circuits. If the target reaches its
desired state earlier, the execution of the following gates which
rely on this state might also be started earlier and so on.

In all patterns, the control or target qubit of the non-native
CNOT (denoted as c,t) will first be moved or copied to
positions ¢, . Then a remote CNOT(c/, ¢') will be performed.
Finally ¢/, ' will be moved back to their original positions.

Note that in some patterns, we will have ¢ = ¢’ or ¢t = t/,
i.e. sometimes control or target will not be moved at all. The
metrics will be given w.r.t. to

« the distance d. between ¢ and ¢/,
o the distance d; between t and t’, and
o the distance d between ¢ and t¢.

A. X Pattern

The X pattern is the intuitive pattern in which the control
and target movements are just sequentially carried out one
after the other. The control and the target qubit move towards
one another until a native CNOT(c¢/, ') can be carried out.
Afterwards the qubits are moved back to their starting position.

Without any further optimization, the metrics for the X
pattern are:

o cos: 2% cos(SWAP) x (d. +di) + 1

o dep: 2% dep(SWAP) « max{d,,d;} +1

o depi: 2% dep(SWAP) « max{d.,d:} + 1
where cos(SWAP) and dep(SW AP) denote the cost and
depth of a single SWAP gate in the considered archi-
tecture. E.g., for QXS5, we have cosgxs(SWAP) = 7
and depoxs(SWAP) = 5, while for architectures with
bidirectional CNOTs, like Q20, we have cos(SWAP) =
dep(SWAP) = 3.

Apparently, it has no impact to cos how d. and d; are
chosen, while the depth is minimal, if d. and d; are balanced,
i.e. as close to each other as possible.
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Fig. 7. The X movement pattern
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Fig. 8. The W movement pattern

B. W Pattern

The W pattern offers the potential of lowering cos as well as
dep; as compared to the X pattern. Neither control nor target
are moved, i.e. t = t' and ¢ = ¢/, but the W-shape multi-hop
pattern from [13] is applied directly between c and ¢ using a
path through the coupling graph. Note that by construction no
parallelization is possible here. Given that all required CNOT
gates are native to the architecture, the metrics for the W
pattern are

e cos:dx(d—1)

o dep: 4x(d—1)

o depy: 2% (d—1)+1

For each of the CNOT which is non-native, 4 Hadamard
gates need to be added (according to Fig. 1), such that in the
worst case cos grows by a factor of 5 and dep as well as dep;
grow by a factor of 3.

C. WX Pattern

The WX pattern is a combination between the X and the W
pattern. While the target qubit is not moved at all (i.e., t = t'),
the control qubit is moved to another qubit ¢’ (like in the X
pattern), and the W pattern is then applied between ¢’ and ¢
(whose distance is denoted as d,,). This has the advantage that
the first gates of the W pattern can be applied in parallel to
the control qubit movements.

The metrics for the WX pattern, given that all CNOTs of
the W pattern are native gates, are

o cos: 2% cos(SWAP) xd, + 4% (dy, — 1)

e dep;: max(dy,d. * dep(SWAP)) 4+ dy, + 1

o dep: depy + (dy — 1) + max(dy, — 2, d. * dep(SWAP))

Again, the same worst case behavior as for the W pattern
can occur.

Given the SWAP gate realization using only 2 CNOTs as
discussed for the X pattern, the gate count becomes 4 x (d. +
dy —1) = 4% (d— 1) which is the same as for the W pattern.

Before we determine optimal patterns w.r.t. to the choice of
¢, t' and the involved intermediate qubits, in the next section
we will discuss quantum-level optimizations of the SWAP
gates that lead to reduced costs.
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Fig. 9. The WX movement pattern

K—
K—
Il

L
©
a
%)
D
D
i
©

Fig. 10. SWAP gate optimization

V. SWAP GATE OPTIMIZATIONS

While investigating the above-mentioned patterns, we ob-
served that SWAP gates as used in the X and WX pattern
can be optimized. More precisely, complete SWAPs are not
required here, but two of the three CNOT gates are sufficient
as shown in Fig. 10. By this, the involved qubits remain in a
“mixed” state until the SWAP is undone later on. For instance,
in the X pattern and WX pattern, the state of qubit c is moved
to qubit ¢/, but the qubit ¢ and the ancilla qubits in-between
carry some mixed state when the native CNOT(c,t') or
the W pattern, respectively, is applied. In the X pattern, the
qubit ¢’ does not carry exactly the value of ¢ when the native
CNOT(d,t') is applied, but also a mixed state. E.g., for the
X pattern shown in Fig. 7, the states read (from top to bottom):
ap; '3 tDag @t c;cdc; c®ar.

Nonetheless, all qubits are finally in their desired state.

With this optimization, we obtain cos(SWAP) =
dep(SW AP) = 2 for architectures with bidirectional CNOTs
such as, e.g., IBM Q20.

Moreover, in order to also reduce the depth, it is beneficial to
interleave the CNOTs of the SWAP gates as shown in Fig. 11.
By this, if there are more than two SWAP gates in a row, only
the first two require a depth of 2, but for the remaining SWAPs
the depth only increases by 1 each as illustrated in Fig. 12.

Thus, the depth of the first as well as the last part of the
X pattern goes down to max{d.,d;} + 2. In addition, also
the target depth is reduced further, since the final state is
established already after max{d., d;} + 3 + d; CNOTs.

By this, the optimized X pattern reaches a cost of 4(d —
1) 41, i.e. it only requires one gate more than the W pattern,
but has a target depth of d 4 2 and an overall depth of d + 4
in the best case (i.e. d. = d;). This is especially remarkable,
since there is no way to “transfer” the value of c to ¢ using
less than d CNOTs in a row, even if would allow ¢ to not only
depend on the value of ¢, but also any other qubit in-between.

VI. DETERMINING OPTIMAL PATTERNS

In order to determine the optimal choices of ¢ and ¢’
for the X and WX pattern and also the optimal choice of
the intermediate qubits for all patterns, we performed an
exhaustive search on all shortest paths between c and ¢.

Note that for architectures, where all CNOTs are bidirec-
tional, one needs to consider a single CNOT(c, ) only for each
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Fig. 11. Optimized X movement pattern
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Fig. 12. Additional savings for more than two consecutive SWAP gates

possible distance d and one can restrict to one shortest path
each, since the patterns will be isomorphic for all shortest
paths and all CNOTs with the same distance. Since the
diameter of Q20 is rather small (the maximum distance is 5)
we will instead study an artificial 1-dimensional architecture
LN N7y with 10 qubits Qo,...,Q9, where CNOTSs exist in
both directions between qubits (); and ();41 (forz =0, ..., 8),
i.e. there is no CNOT between Qg and Q).

After constructing the corresponding patterns, we performed
a simple gate reduction in which pairs of adjacent Hadamard
or CNOT gates, which cancel out immediately, are removed.

A. Architectures with bidirectional CNOTs (Q20)

We performed single-objective optimizations w.r.t. the three
considered cost metrics. This means for each CNOT we
determined three patterns (X, W, and WX pattern) with are
optimal w.r.t. either cos, dep or dep;. As a consequence, it
might be the case that the cos-optimal pattern is not dep-
optimal and so on. However, it turned out that the dep;-optimal
patterns were always optimal w.r.t. to the other two metrics as
well such that we will restrict to these patterns in the following.

The complete metrics for the determined X, W, and WX
patterns are shown in Table I. Here the first column denotes
the distance d between control and target of the CNOT. Recall
that only this distance is important here, but not the actual
choice of control and target qubit. Afterwards the metrics are
provided for X, W, and WX patterns and also the respective
value for d, is given.

One can observe that the X patterns always require exactly
one CNOT gate more than the W and WX pattern. The WX
pattern outperforms the W pattern for d > 3, but itself is
outperformed by the X pattern regarding circuit depth and
target depth—except for d = 2 where the circuit depth is
off by 1 and d = 4 where the target depth is off by 1.
These exceptions are highlighted in bold font in Table I.

TABLE I
EXPERIMENTAL RESULTS FOR LN Nyg

X pattern W pattern WX pattern
d|cos dep dept dc || cos dep dept dc || cos dep dep: d.
1 1 1 1 0 1 1 1 - 1 1 1 0
2 5 5 3 1 4 4 3 - 4 4 30
3 9 5 4 1 8 8 5 - 8 7 4 1
41 13 9 6 2| 12 12 7 - 12 9 5 1
50 17 9 7 21 16 16 9 —|| 16 12 7 1
6| 21 11 8 3| 20 20 11 - 20 15 8 2
7025 11 9 3| 24 24 13 - 24 17 9 2
81 29 13 10 44 28 28 15 - 28 19 10 3
9 33 13 11 414 32 32 17 —|| 32 21 11 3

For the X pattern, d. is chosen such that d. and d; are
balanced, i.e. |d; — d.|] = |d — 2d. — 1] < 1. For the
WX pattern, the minimum value for dep,—according to the
formula from Section IV-C that does not take into account the
SWAP gate optimizations discussed in Section V—is achieved
if |dy — 2d.| = |d —3d.| < 1. It turned out that there are
in general multiple possibilities to choose d. such that the
resulting dep; is minimal. For d = 2 and d = 5, the provided
values of d. do not satisfy the above inequation, but the
resulting patterns have the same optimal value for dep; and a
slightly better overall circuit depth dep.

B. Architecture with uni-directional CNOTs (QX5)

Here, we performed multi-objective optimizations w.r.t. to
the three cost metrics. In the first run, we used the gate count
(cos) as the dominating metric, followed by the circuit depth
(dep) and target depth (dep:). In the second run, we used
circuit depth (dep) as the dominating metric, followed by the
gate count (cos) and the target depth. In the third run we only
used target depth (dep;) as dominating metric.

The results show that cos and dep are conflicting metrics.
More precisely, it is often not possible to determine a pattern
which is optimal w.r.t. both metrics.

Depth-optimal X patterns are typically not cost-optimal, and
also have a higher target depth than the cost-optimal patterns
which, in most cases, also have an optimal target depth.

For W patterns, the metrics are not conflicting, while for
WX patterns the depth-optimal patterns also have a minimal
target depth, but lowering the depth always comes at a higher
gate count.

In order to give an impression of these trends, the results for
all CNOTs with a control on Qg and targeton t = @1, ..., Qg
are summarized in Table II. Here, the first column denotes the
target qubit ¢, and the remaining columns provide the metrics
for cos- and dep-optimal X, W, and WX patterns. Note that
for the W pattern there is only one series, since all patterns
are both cos- and dep-optimal.

Comparing X against W and WX patterns, we observe
that the X patterns have a higher gate count, i.e. a larger
cos-value, than W and WX (for both, cos- and dep-optimal
patterns), while W and WX almost have the same gate count.
Regarding circuit depth, W has the largest circuit depths by far.
X performs slightly better than WX for cos-optimal patterns,
and significantly better than WX for dep-optimal patterns.



TABLE II
EXPERIMENTAL RESULTS FOR QXS5 (CONTROL ON Qq)

X pattern
cos-optimal dep-optimal
cos dep dep || cos dep dept

~+

W pattern

cos dep dept

WX pattern
cos-optimal dep-optimal
cos dep dept || cos dep dept

1

2| 11 9 5 11 9 5| 10
31 19 13 71 21 9 8| 14
4|1 27 15 81|l 31 13 11| 18
5135 21 11y 37 13 114 28
6| 43 15 12| 43 15 12| 36
71 51 25 13| 55 17 15| 42
8| 59 21 16| 61 19 17| 52
9| 53 21 15 55 17 15| 48

24 15| 28 18 11 28 18 11
30 17]| 36 22 13| 40 21 12
36 19| 42 28 15 46 25 13
44 251 52 36 21| 56 29 16
40 23| 48 27 15| 48 27 15

Overall, the WX pattern seems to be a good compromise. It
outperforms the W pattern in all regards, while X patterns yield
the smallest circuit depths at the price of higher gate count.
We will explore by means of larger benchmark circuits, how
these different characteristics of the patterns show themselves
in practice.

VII. EXPERIMENTAL EVALUATION

In order to evaluate the impact of the patterns on entire
Clifford+T circuits, we considered a suite of benchmarks taken
from RevLib [14] and the naive qubit mapping which maps
i-th qubit of the circuit to qubit Q. All non-native CNOTSs
are replaced with the corresponding X, W, or WX pattern and
finally the same simple gate reduction is performed in which
pairs of adjacent Hadamard or CNOT gates are cancelled out.

The results for Q20 are shown in Table III. The first column
denotes the benchmark name and the remaining column the
overall cost and depth for the resulting circuit after performing
the pattern replacement and gate reduction.

As suggested by the findings from Section VI-A, the X pat-
tern leads to a depth reduction and cost increase as compared
to the W pattern. However, in contrast to what was suggested
by the results from Section VI-A, the depth when using the
WX pattern is often even smaller than for the X patterns. So,
overall the WX pattern outperforms the X and W pattern.

For QXS, the qualitative findings from Section VI-B were
confirmed also at the larger scale.

The runtime is negligible in all cases, since the replacement
of the patterns as well as the gate reduction require only two
to three passes of the circuit.

VIII. CONCLUSIONS

In this paper, we explored how combinations of SWAP-
based qubit movements and remote gates can be employed to
reduce the transformation overhead required to transform non-
native gates in a quantum circuit regarding both the number of
native gates as well as the circuit depth. We discussed several
possibilities to combine SWAPs and remote gates (X, W, and
WX pattern) and came up with SWAP gate optimizations
that become possible by the particular use of SWAP gates
in the patterns and yield cost as well as depth reductions. We
developed a methodology to determine optimal instantiations

of the patterns for quantum computer architectures with uni-
directional as well as bi-directional CNOTs. Our experimental
evaluations indicate that the WX pattern, i.e. a balanced
combination of SWAPs and remote gates, gives the best
compromise between circuit cost and depth.

TABLE III
CIRCUIT TRANSFORMATION FOR IBM Q20

X pattern W pattern WX pattern
Benchmark cos dep cos dep ‘ cos dep
0410184_169 405 226 370 277 370 224
4gt4-v0_72 632 390 602 499 588 418
4gt4-v0_73 804 530 724 553 716 497
4gt4-v0_78 458 281 416 300 406 256
4gt4-v0_80 423 262 393 321 391 287
4mod5-bdd_287 176 108 159 127 163 108
alu-bdd_288 197 119 185 145 181 118
C17_204 1089 694 961 741 965 666
cml52a_212 2606 1620 2174 1445 2192 1375
cm42a_207 3478 1953 3087 2068 3123 1966
cm82a_208 1262 803 1171 915 1139 788
cnt3-5_179 382 215 332 227 338 213
conl_216 1989 1250 1747 1320 1773 1215
dcl1_220 4581 2546 4273 3294 4253 2808
decod24-bdd_294 118 75 109 83 109 72
ex2_227 1243 781 1087 795 1107 735
ex3_229 969 608 896 682 890 576
2232 2005 1200 1799 1267 1787 1154
ham7_104 889 576 813 688 805 579
hwb5_53 2934 1821 2664 2002 2638 1758
hwb6_56 12583 7745 | 11517 8578 | 11391 7527
majority_239 1296 801 1149 840 1173 780
mini_alu_305 242 120 230 163 224 130
mod5adder_127 1378 891 1259 1010 1251 868
mod8-10_177 1179 727 1081 845 1073 728
rd53_130 2312 1423 2086 1631 2098 1428
rd53_131 920 594 868 659 854 558
rd53_133 1330 826 1278 1036 1238 832
rd53_135 546 358 516 409 500 353
rd53_138 234 153 210 155 204 144
rd53_251 2610 1615 2208 1578 2232 1474
rd53_311 542 329 458 306 460 291
rd73_140 330 188 289 190 291 175
sf_274 1498 1007 1372 1001 1314 916
sf_276 1498 1007 1372 1001 1314 916
square_root_7 13450 7715 11378 7070 | 11760 7086
sym6_145 7659 4951 6929 5381 6901 4760
sym6_316 566 319 482 286 486 284
sym9_146 778 479 698 540 706 470
sys6-vO_111 351 191 312 208 312 187
wim_266 2339 1290 2121 1579 2139 1355
74_268 6241 3686 5640 4104 5600 3618
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