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Abstract—Only a few trends have gained as much traction
as Edge Computing and Neural Networks (NN). Both have
the potential to radically change how technology influences us.
However, since edge devices feature only very limited resources,
the sheer amount of performance required by modern NNs limits
their use on the edge. Especially, the conversion of Convolutional
Neural Networks (CNN) into feasible on-chip designs remains a
hard task. Currently, hand-crafted and most-often very heavy ar-
chitectures have to be used as existing High-Level Synthesis (HLS)
frameworks provide only inefficient solutions.

In this paper, we introduce the Crossbar Neural Net-
work (XbNN) architecture. Our architecture employs a novel
approximate on-chip dot product encoding for the efficient
synthesis of CNNs on hardware. This encoding embeds the
weights used in CNNs into the hardware design itself, signifi-
cantly reducing the required memory and computation time. In
addition, we present a methodology for the automated conversion
of traditional CNNs given in TensorFlow into accelerators on top
of the XbNN architecture. To demonstrate the effectiveness of
XbNN, we conduct experiments on a common CNN test dataset
and analyze the accuracy and performance of the resulting XbNN
accelerators. We show that XbNN (a) achieves similar accuracies
compared to TensorFlow CNNs and (b) provides much better
area and performance results in comparison to a state-of-the-art
HLS flow.

I. INTRODUCTION

The process to shift computation from data centers to the
edge picks up speed steadily. At the edge more and more
but at the same time smaller and smaller devices are found
enabling a variety of unique applications. However, while
the number of edge devices has heavily increased, they are
inherently limited by their available computation power and
energy consumption [1].

In the recent years, machine learning has become a key part
of modern technologies, such as self-driving cars [2], general
image recognition tasks [3] or natural language processing [4].
Neural Networks (NNs) have been successfully utilized in the
context of machine learning and are the state-of-the-art tech-
nique used. NNs consist of multiple layers including countless
neurons, which ultimately lead to very complex structures
with many parameters. The parameters of NNs are trained
during a time consuming training phase such that a given NN
structure performs well on given training and test data sets in
terms of accuracy. Different classes of NNs exist, however,
especially Convolutional Neural Networks (CNNs) are widely
used for image recognition tasks [5]–[7]. Filters, which play
a key role in the convolutional layers of CNNs, require a
lot of computation time and energy. During execution, they

are mapped to a multitude of dot products, which have to
be computed. Consequently, optimizations of the dot product
have gained a lot of research interest [8]–[10].

The conversion of existing CNNs into on-chip designs
feasible for the use in edge devices remains a hard task. Cur-
rently, hand-crafted architectures have to be employed for on-
chip implementations as existing High-Level Synthesis (HLS)
frameworks provide only inefficient solutions. Thus, to enable
CNNs for the edge in practice, reducing the complexity of
CNNs by quantization [11], [12] or even binarization in Binary
Neural Networks (BNNs) [13] has come into focus in several
recent works. However, CNNs can hardly be translated into
BNNs efficiently and without significant loss of accuracy.
Therefore, a major drawback of BNNs is their requirement
of custom models and training processes which are time
consuming and difficult to automate.

In this paper, we propose a novel NN structure called
Crossbar Neural Network (XbNN). XbNNs use approximation
techniques and leverage characteristics inherent to digital logic
combing the expressiveness of CNNs with the high perfor-
mance of BNNs. In the XbNN architecture, the computation of
the filters are mapped to an approximate dot product encoding.
To find the encoding we map the problem to an Integer
Linear Programming (ILP) instance under given resource
constraints. Overall, this results in a highly efficient hardware
implementation of convolutional layers.

In addition, we present a methodology for the automated
conversion of traditional CNNs given in TensorFlow [14] into
accelerators on top of the XbNN architecture. This allows the
direct adoption of XbNNs for SW developers, since no knowl-
edge about HDL programming is required. To demonstrate the
effectiveness of XbNN, we conduct experiments on a common
CNN test data set and analyze the accuracy and performance
of the resulting XbNN accelerators. We show that XbNN
achieves similar accuracy compared to TensorFlow CNNs.
Moreover, XbNN provides much better area and performance
results in comparison to a state-of-the-art HLS flow.

II. RELATED WORK

First, we consider related work which targets the “opti-
mization” of the core operation (dot product) of NNs, for in-
stance [8]–[10]. Essentially, these approaches use quantization
or some form of approximation (often based on a fixed-point
representation) of the weights. In contrast in this paper, we



encode the weights and a large part of the arithmetic operations
implicitly into the hardware logic and hence can significantly
reduce area since no memory is needed and the number of
computation blocks such as multipliers and adders is reduced.

Second, there is a recent approach targeting CNN accel-
eration on the edge [15]. The authors devise a method to
store all weights on FPGA memories, but they still keep
the traditional separation of memory and computational logic.
In this paper, we break with this separation and remove the
memory dependency as the major performance bottleneck.

Next, we have to look on papers related to HLS of NNs.
In [16] LeFlow has been introduced. LeFlow is a HLS design
flow for NNs which allows to synthesize NNs which are given
in the TensorFlow framework [14]. LeFlow first translates the
given NN definition to an optimized LLVM-IR [17] using
Googles XLA compiler [18]. Then, it uses an enhanced version
of LegUp [19] to generate synthesizable Verilog from the
LLVM-IR representation. We show in the experiments that
we clearly outperform LeFlow. Integrating given approximate
components (e.g. adders, multipliers [20]–[22]) into LeFlow
has been considered in [23]. In [24], the authors proposed
an approximation resilience exploration metric and an ap-
proximate accelerator for convolutional layers targeted for
edge devices. FINN [25], [26] is a HLS-framework for BNNs
which uses a streaming architecture. However, FINN is tied
to the usage of PYNQ boards, and is therefore not applicable
to arbitrary hardware. In contrast, we present a method to
generate synthesizable Verilog code for our proposed XbNN
architecture. Hence, our approach is much more flexible and
can be used in any FPGA or ASIC flow.

III. PRELIMINARIES

We briefly review CNNs and then focus on the dot product
as the core operation when going into hardware. CNNs are
state-of-the-art for many classification problems, for instance
in image recognition. In contrast to conventional NNs, CNNs
feature convolutional layers. Based on filters, these convolu-
tional layers detect patterns in input images, which can then
be combined to more complex features of these images. The
filters consist of two or three dimensional matrices, which are
convolved across the input. The output of one convolutional
layer can be fed into another convolutional layer to combine
the detected patterns. In addition to convolutional layers,
CNNs also feature pooling layers, which reduce the size of
the output of a convolutional layer by summarizing multiple
adjacent outputs.

In practice, the computation of the convolution of the filters
is mapped to the computation of numerous dot products and is
a very computational intensive task. The dot product < x, y >
of two vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) is
defined as

< x, y >=
n∑

i=1

xi · yi (1)

and thus can be computed by Multiply-Accumulate (MAC)
operations. In CNNs, one of these vectors represents the fixed
weights of a filter, while the other vector is the input.

Fig. 1. Implementing multiple MACs that depend on more than one input
and factors that are not a power of two.

IV. APPROXIMATE ON-CHIP DOT PRODUCT ENCODING
AND XBNN UNIT

In this section we lay the foundation for the proposed XbNN
architecture which enables the synthesis of very efficient CNN
accelerators by a novel hardware approximation of the dot
product. For this, we leverage the encoding of binary numbers
to implement all MACs of a dot product operation. We use
the fact that each bit of a binary number represents a special
case of the MAC operation, in which one operand is always
binary, to encode an approximation of the dot product into a
composition of wires and a single adder.

The foundation of the XbNN architecture is the encod-
ing of integers in the binary system. The decimal value
of an unsigned n-bit integer y ∈ {0, 1}n is defined as
y =

∑n−1
i=0 2i · yi. We can see, that the value is composed of

multiple MAC operations and thus is similar to the definition
of the dot product in Eq. 1.

Before we formalize the XbNN architecture, we illustrate
the idea using the example in Fig. 1. In this example we
assume a 4-bit integer, which is from now on referred to as the
accumulator, because it sums the results of the multiplication
of the dot product (cf. Eq. 1). We also assume two binary
inputs which represent the input vector x = (x2, x1) from
Eq. 1. Each input xi should implement a MAC operation of
the form +(xi ·w) with xi ∈ {0, 1} and w ∈ N. We assume x1

should implement the MAC operation +(x1 ·8) and x2 should
implement +(x2 ·5). To implement the MAC operation for x1,
the most significant bit of the accumulator is connected to x1

as can be seen in Fig. 1 (red). Therefore, whenever x1 = 1,
the value of the accumulator is increased by 8.

The MAC operation +(x2 · 5) for input x2 (blue) cannot
be expressed by connecting x2 to a single bit, because the
accumulator bits all encode values which are a power of two.
To implement this MAC operation, x2 can be connected to
multiple accumulator bits whose summed up values result in 5.
Accumulator bits which are not needed to form the necessary
MAC operations are set to constant 0.

As can be seen from the example, this model allows to
implement multiple MAC operations. However, there are two
major issues: First, negative weights cannot be implemented
and second, a weight can only be implemented once because
each integer value can be encoded by exactly one combination
of accumulator bits. Therefore, we extend our model to
mitigate these problems. For this extension, the accumulator
is split in two parts of which one is interpreted as a positive
integer while the other is interpreted as a negative integer.
The value of the accumulator is then calculated by summing
the positive and negative parts. Fig. 2 shows the architecture



Fig. 2. Exemplary mapping of weight matrix to wiring of XbNN unit

of this extended model; due to the crossbar structure of the
connections we denote it as XbNN unit.

Negative weights can be implemented by connecting inputs
to the negative part of the accumulator (cf. x3 in green). If two
inputs have the same factor, the positive and negative parts can
be combined to implement this weight multiple times. This can
be seen in Fig. 2 with x3 (green) and x4 (yellow), which both
realize the weight −2.

We now formalize the XbNN unit as the approximate dot
product:

~x�B =

i∑
j=1

(

n
2∑

k=1

bkj · 2
n
2 −k −

n∑
k=n

2 +1

bkj · 2n−k) · xj (2)

The approximate dot product is defined on a binary input vec-
tor ~x ∈ {0, 1}i and a binary connection matrix B ∈ {0, 1}n×i

where i is the number of inputs and n is the accumulator
size. The binary connection matrix encodes which inputs are
connected to which accumulator bits.

In hardware a bit can only be driven by a single source.
Therefore, to be able to generate synthesizable hardware that
implements an XbNN unit, we must constrain the binary
connection matrix B as follows:

∀j ∈ {0, 1, . . . , n} :
i∑

k=1

bkj ≤ 1 (3)

The constraint in Eq. 3 specifies that each accumulator bit can
only be connected to at most one input.

Not every combination of MACs can be mapped to the
proposed approximate dot product. For some combinations
(e.g. all weights are equal) no mapping may exists, which
means that some weights have to be approximated to be able to
create an XbNN unit. Furthermore, the size of the accumulator
has a significant impact on the quality of the mapping as well
as the performance of the hardware implementation.

In the next section, we present a methodology for the con-
version of CNNs and their trained weights to the approximate
dot product using ILP and a hardware generator.

V. DESIGNING ACCELERATORS ON TOP OF THE XBNN
ARCHITECTURE

In this section, we first present a methodology for converting
CNNs into the XbNN architecture. In the second part, we
propose an efficient accelerator design on top of the XbNN
architecture.

A. Conversion of CNNs to the XbNN Architecture

Converting CNNs to the XbNN architecture is an approxi-
mation, because not every CNN filter can be directly mapped

to an XbNN unit due to the limited possibilities of representing
weights in an XbNN unit. Therefore, a methodology for
mapping existing CNNs to the XbNN architecture is needed.
To find mappings of CNN weights to connections in the XbNN
unit, we propose to formulate the mapping task as an ILP
optimization problem. Our proposed formulation employs a
variable binary connection matrix (cf. Eq. 2) which encodes
the connections of the XbNN unit. The solver then finds an
assignment of this matrix, which is the best approximation
of the CNN weights for a fixed accumulator size, i.e. the
optimization goal is to minimize the difference between the
CNN and XBNN weights.

XbNN units can only implement dot products for binary
inputs and integer weights. To enable the conversion of
floating-point CNNs into the XbNN architecture, we propose
to first convert the floating-point weights to integers. For
this, we make use of the observation, that the relative size
of the weights is more important than their actual values.
Our proposed method of converting floating-point weights
first finds the largest absolute value l max of all weights
in a convolutional layer. We then map every weight of the
layer from the number range (-l max, l max) into the range
(-xbnn max, xbnn max) where xbnn max, usually related to
the accumulator size, can be chosen by the user during the
conversion process.

Converting CNNs to XbNNs introduces approximations in
the convolutional layers. This leads to the problem that the
features found by the convolutional layers and the features
expected by the fully connected layers can be different,
which can result in a significantly lower prediction accuracy.
To reduce this problem, we propose to perform a second
training phase in which the weights of the XbNN modules are
converted back into an CNN. The convolutional layers of this
model are then fixed such that the second training phase only
updates the fully connected layers. This approach is similar to
transfer learning [27], which is commonly used for reusable
feature extractors [28]. Since only the last layers have to be
trained again the training time is significantly shorter.

Finally, when converting CNNs to the XbNN architecture
the size of the accumulators of the XbNN units can be chosen
for each convolutional layer. A larger size has the advantage
of a smaller difference between CNN and XbNN weights.
On the other hand a larger accumulator also requires more
area and a larger adder. Considering the potentially hundreds
or thousands of XbNN units in a design, this can add up
to significant amounts of added area and delay. Choosing a
smaller accumulator size can be useful to achieve a higher
performance but at the cost of potential accuracy losses.

B. Accelerator Architecture

Our proposed accelerators are based on a streaming archi-
tecture in which each layer is an independent module. Each
of these modules is connected to its predecessor and the
following module using streams and a buffer that stores the
currently required data for each module. The backbone of each
accelerator are the XbNN Conv2D modules that implement



Fig. 3. Schematic of the Conv2D module. Each Conv2D module implements
a convolutional layer and is connected to other modules using handshake-
synchronized streams.

convolutional layers. The structure of XbNN modules is shown
in Fig. 3. The buffer contains the control logic of the module
and manages reads from the input stream. As soon as the buffer
is filled with enough data the XbNN units start calculating the
dot products of the input data and the weights. The weights are
encoded into the XbNN units and each of them implements
one 2D-filter of the layer. After the dot products are calculated
the channels are merged together by the Sum Unit and the
result is put on the output stream.

VI. EXPERIMENTAL RESULTS

In this section we present our experimental results of
converting CNNs to the XbNN architecture. We analyze the
impact of the conversion on the prediction quality and the
performance characteristics of the accelerators. Finally, we
compare our XbNN architecture to LeFlow.

A. Performance on Fashion MNIST

In many scenarios, a pretrained CNN model is available or
already in use. The XbNN architecture specifically aims at
generating accelerators for these models. To simulate this use
case, we trained a conventional floating point CNN model (cf.
Table II) on the fashion MNIST data set [29].

TABLE I
CHARACTERISTICS OF XBNN ACCELERATORS A AND B.

Model Accuracy Relearned LUT % Frequency FPS

TF 91.23% - - - -
A 60.60% 86.26% 51.10% 100.00 MHz ∼ 31,000
B 56.47% 85.54% 36.68% 111.11 MHz ∼ 34,000

The accuracies of the baseline TensorFlow (TF) model and
two selected XbNN configurations (A, B) and their accelerator
performance are shown in Table I. We chose the configurations
to represent two common scenarios: (A) a higher accuracy
scenario with moderate approximation and (B) a high per-
formance scenario with high approximation. The difference
between configuration A and B is the size of the accumulators
in the XbNN units. In configuration A all XbNN units feature
an accumulator size of 10 bits (5 positive and 5 negative). In
configuration B only the first convolutional layer uses XbNN
units with 10 bit accumulators. In the remaining two layers
the accumulator size is reduced to only 8 bits.

Compared to the baseline accuracy of 91.23% both XbNN
configurations have significantly lower accuracies. However,

TABLE II
CONV2D AND POOLING LAYERS OF THE FASHION MNIST XBNN MODEL.

Type Filter Shape Input Shape

Conv2D 1× 3× 3× 16 1× 28× 28
Conv2D 1× 3× 3× 32 16× 26× 26
MaxPool2D 2× 2 32× 24× 24
Conv2D 32× 3× 3× 64 32× 12× 12

after the second learning phase, the accuracies of both config-
urations can be significantly improved (Relearned). We syn-
thesized the accelerators for the Pynq Z2 development board
and measured their performance in terms of LUT utilization,
maximum frequency, and maximum theoretical Frames Per
Second (FPS). The FPS are calculated by dividing the clock
cycles per second by the clock cycles the accelerator needs to
process one image. A clear performance improvement, both in
utilization, frequency and FPS, can be observed for the high
approximation configuration B.

B. Comparison to LeFlow
Table III shows a comparison of the accelerators generated

by LeFlow and XbNN for a three layer MNIST [30] CNN
(Conv2D 3×3×32, Maxpool 2×2, Conv2D3×3×64). The ac-
celerator generated by LeFlow requires nearly 70 million clock
cycles to process the complete network. Compared to this, the
XbNN accelerator requires only 1816 clock cycles to process
the same network. The significantly lower required number of
cycles of the XbNN accelerator and a maximum frequency
more than three times higher result in an FPS performance
advantage of multiple orders of magnitude. This advantage is
a result of the very high degree of parallelization possible with
the XbNN architecture. Also, due to the area efficient XbNN
architecture the amount of required logic elements is nearly
identical for both accelerators (19% vs. 21%). Further, XbNN
requires no on-chip memory, since all parameters are encoded
in the accelerator.

TABLE III
CHARACTERISTICS OF XBNN AND LEFLOW ACCELERATORS.

Property LeFlow XbNN

Cycles 69,289,300 1816
Frequency 51.7 MHz 183.62 MHz
FPS 0.74 101,112
Logics Util. 19% 21%
Memory Util. 66% 0%
Accuracy 97.42% 95.13%

VII. CONCLUSION

In this paper we have proposed the novel XbNN architec-
ture. We have shown how to derive the XbNN architecture for
a given CNN model and how to create the final accelerator
implementation. In the experiments, we have demonstrated
that the accuracy penalty of XbNNs compared to CNNs lies
within an acceptable limit for many applications (5-6%) while
performance improvements of multiple orders of magnitude
are achieved.
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