
Depth Optimized Synthesis
of Symmetric Boolean Functions

Martha Schnieber Saman Froehlich Rolf Drechsler
Cyber-Physical Systems, DFKI GmbH and Group of Computer Architecture, University of Bremen, Germany

Martha.Schnieber@dfki.de froehlich@uni-bremen.de drechsler@uni-bremen.de

Abstract—Symmetric Boolean functions are characterized by
the fact that their output can be determined by the Hamming
weight of their inputs. Symmetric Boolean functions are essential
for many complex systems and possess significant cryptographic
properties.

Due to their popularity and significance, research has been
focusing on optimization of synthesis strategies for symmetric
Boolean functions. However, none of them has targeted optimiz-
ing the depth of the final synthesis, yet.

In this paper, we propose a synthesis scheme for symmetric
Boolean functions which generates circuits with a worst-case
depth of O(log2 n). To the best of our knowledge we are the
first to propose a synthesis scheme that aims at reducing the
depth of the generated circuits for symmetric Boolean functions.
In the experiments we show that our approach allows to reduce
the depth of the final implementation by up to 25.93% compared
to the state-of-the-art.

I. INTRODUCTION

Symmetric Boolean functions are characterized by the fact
that their output can be determined by the Hamming weight
of their inputs. Research has focused on generating symmetric
Boolean functions which are correlation immune [1], non-
linear [2], [3] and possess algebraic immunity [4], [5] and
thus include all cryptographic properties presented in [6] and
are of cryptographic significance. Due to their significant
cryptographic properties, symmetric Boolean functions are
essential for many complex systems [7] (e.g., stream ciphers,
block ciphers, or hash functions [8]).

As symmetric Boolean functions can be represented in very
compact ways, the required memory space and the complexity
of the hardware implementation are very limited. Specially, it
has been shown that all symmetric Boolean functions can be
computed by a circuit with a depth of O(log n) in theory [9],
however, no methodology which results in such a circuit has
been proposed, yet.

Due to their popularity and significance, research has been
focusing on optimization of synthesis strategies for symmetric
Boolean functions. These strategies often consist of three steps
(see Figure 1): (1) Synthesis of special symmetric Boolean
functions (such as unate symmetric Boolean functions or Ma-
triochka symmetric Boolean functions), (2) composing them
to elementary symmetric Boolean functions, (3) combining
the elementary symmetric functions to synthesize arbitrary
symmetric Boolean functions. Often the first step is the most

This work was supported by the German Research Foundation (DFG)
within the Project PLiM (DR 287/35-1) and the Reinhart Koselleck Project
PolyVer (DR 287/36-1).

Step 1:
Synthesis of special

symmetric Boolean functions
(often multiple stages)

Step 2:
Synthesis of elementary

symmetric Boolean functions

Step 3:
Synthesis of arbitrary

symmetric Boolean functions

Fig. 1. General structure of synthesis strategies

complex one and consists of multiple stages. While the focus
has been on reducing the complexity of the final implementa-
tion in terms of area (e.g. [10], [11], [12]), none of them has
targeted optimizing the depth of the final synthesis, yet and
they all have a worst-case complexity of O(n) at best.

In this paper, we are the first to propose a synthesis scheme
for symmetric Boolean functions that generates circuits with
below linear depth scaling. Our proposed synthesis scheme
is applicable to any symmetric Boolean function and results
in circuits with a worst-case depth of O(log2 n). We propose
to use a three-step approach, where a novel third stage in
the first step and a novel third step result in significant depth
reductions. Finally, we provide a proof that we can synthesize
arbitrary symmetric Boolean functions with a worst-case depth
of O(log2 n) using our proposed synthesis scheme. In the
experiments, we show that our approach allows to reduce the
depth by up to 25.93% compared to the state-of-the-art.

The remainder of this paper is structured as follows: In
Section II, related work is presented. Section III introduces
preliminary knowledge. Our proposed synthesis scheme for
symmetric Boolean functions is presented in Section IV.
In Section V, our proposed synthesis scheme is evaluated
experimentally and compared to the state-of-the-art. Finally,
Section VI concludes the paper.

II. RELATED WORK

In this section, related work is reviewed and the differences
to our synthesis scheme are shown. As synthesis schemes for
symmetric Boolean functions often consist of the three steps
shown in Figure 1, we refer to these steps. We also refer to
the stages the first step often consists of.

The authors of [10] present a scheme for symmetric Boolean
functions. In the first step, a cellular network is used as first
stage for the synthesis of unate symmetric functions, which are
decomposed in the next stage. As final, third stage a cascade
of cells is introduced. Specially, this last stage has a worst-
case delay of O(n). As the second stage is a recursion of all
three stages, this results in a worst-case delay of O(n · log n).
Due to the optimization of the third stage in the first step and
the optimized third step, our proposed methodology only has
a delay of O(log2 n).

The work [11] presents a synthesis method for symmetric
Boolean functions with focus on generating networks with
complete and robust path testability and is similar to that
of [10]. Even though optimizations have been proposed to
guarantee testability, the complexity remains O(n · log n).

In [12], the authors propose a three-step network for the
synthesis of symmetric Boolean functions with focus on area
reduction. The first step consists of a half-adder network which
implements Matriochka Symmetric functions. This first step
has the depth O(n). In the second step, an inverter-AND
network is used and an OR-network in the third stage. In
contrast, our synthesis scheme uses an AND-OR network in
the first step and in the third step. While the third step is also
an OR-network, our third step has only logarithmic depth and
the overall depth of our synthesis scheme scales better. Further,
the authors of [12] do not provide any benchmarks on arbi-
trary symmetric Boolean functions, but only on Matriochka
Symmetric functions.

III. PRELIMINARIES

In this section, we introduce basic knowledge about sym-
metric Boolean functions. First, we introduce symmetric
Boolean functions in Section III-A. Subsequently, consecutive
symmetric functions and their relation to arbitrary symmetric
Boolean functions are presented in III-B. Finally, we introduce
unate symmetric Boolean functions and show how to generate
consecutive symmetric functions from unate symmetric func-
tions in Section III-C.

A. Symmetric Boolean Functions

A function f(x1, . . . , xn) with n inputs and one output is
symmetric, if f is invariant under all possible permutations of
the inputs, meaning the output only depends on the number
of inputs that are set to true. We denote a symmetric function
by Sn(A) with A ⊆ {0, 1, . . . , n}, which has n inputs and
evaluates to true, if and only if exactly Am inputs are set to
true for one Am ∈ A (see [9]). E.g., S10(2, 6, 8) evaluates to
true if and only if either exactly 2, 6 or 8 of the 10 inputs are
set to true.

B. Consecutive Symmetric Boolean Functions

A symmetric function Sn(A) with n inputs and one output
is consecutive if Am+1 = Am + 1 for every Am, Am+1 ∈ A,
meaning A consists of consecutive numbers, and is denoted
as Sn(A0 − Aj), where A0 is the first number of A and Aj

is the last number of A. Thus, S10(3− 7) = S10(3, 4, 5, 6, 7)

x y

x+ y xy

Fig. 2. AND-OR cell

is a consecutive symmetric function. Each symmetric function
can be divided into several consecutive symmetric functions:

Sn(A) = Sn(A1) ∨ Sn(A1) ∨ · · · ∨ Sn(Ai)

E.g. S16(1, 2, 3, 6, 9, 10, 15) = S16(1 − 3) ∨ S16(6) ∨
S16(9 − 10) ∨ S16(15) [10].

C. Unate Symmetric Boolean Functions

A positive unate symmetric function ui(n) with n inputs and
one output is equivalent to Sn(i − n), meaning the function
evaluates to true if and only if at least i of the n input variables
are set to true. A negative unate symmetric function evaluates
to true if at most i inputs are set to true. However, in this
paper, we will use exclusively positive unate functions and
will therefore refer to them as unate functions. Each unate
symmetric function is also consecutive and furthermore, each
consecutive symmetric function can be expressed with unate
symmetric functions:

Sn(A0 −Aj) = Sn(A0 − n) ∧ ¬Sn(Aj + 1− n)

= uA0
(n) ∧ ¬uAj+1(n)

For example, S16(5− 9) = u5(16) ∧ ¬u10(16) (see [11]). In
this paper, we substitute ui(n) with ui if the corresponding n
is evident from the context.

IV. SYNTHESIS OF SYMMETRIC BOOLEAN FUNCTIONS

In this section, we present our novel synthesis scheme. First,
we describe how to synthesize unate symmetric functions.
Based on this, we show how consecutive symmetric functions
and general non-consecutive symmetric functions can be real-
ized. Our synthesis scheme is therefore split into three steps.
Furthermore, we will provide an analysis of the depth for each
step.

Step 1: Synthesis of Unate Symmetric Functions

In the first step, we construct Module(n), which has n
inputs and n outputs, where the i-th output realizes the unate
symmetric function ui. We propose an improvement to the
synthesis of unate symmetric functions in [11], such that the
worst-case depth is constrained to O(log2 n). The synthesis
uses AND-OR cells, which are shown in Figure 2.

We define Module(n) for n = 2k. For 2k−1 < n < 2k,
Module(n) can be constructed by building Module(2k), setting
all inputs xi with i > n to 0 and optimizing the resulting
circuit, i.e. removing all affected gates. Thus, for the remainder
of this section, we focus on the case n = 2k.

Module(n) consists of three stages:

x1 x2 x3 x4 x5 x6 x7 x8

1 2 3 4 5 6

u1 u8

Fig. 3. First Stage of Module(8)

Module
(k
1

)
Module

(k
2

)
Module

(k
k−1

)
1st Part 2nd Part (k-1)th Part

.

.

.

u2

u3

un−1

un−2

y1 yn−6

Fig. 4. Second Stage

1 2 4 3 5 6

(001) (010) (100) (011) (101) (110)

Module(3) Module(3)

u2

u3

u7

u6

y1 y2

Fig. 5. Second Stage for n = 8

1) First Stage: The first stage consists of log n layers,
where each layer is built of n

2 AND-OR cells. For Module(8),
the first stage is shown in Figure 3 where each box corresponds
to one AND-OR cell. The layers are connected as in shuffle-
exchange networks [13]. The first stage has n outputs, where
the first output realizes the final unate symmetric function u1

and the last output realizes the final symmetric function un,
because the first output is an OR-tree of all inputs and the last
output is an AND-tree of all inputs. All outputs but u1 and
un are passed on to the second stage.

2) Second Stage: The second stage has n−2 inputs, which
are divided into k − 1 parts. The inputs of the second stage
are numbered from 1 to n − 2. The j-th part of the second

Module(4) Module(4)Module(6)

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

z1 z2 z3 z4 z5 z6 z7 z8 z9 z10

j=1 j=2 j=1 j=2 j=2 j=2 j=2 j=3 j=2 j=3

u2

u3

u15

u14

Fig. 6. Connection from second stage to third stage for n = 16

z1 z2 z3 z4 z5 z6 z7 z8 z9 z10

u12

Fig. 7. Third stage for u12

stage consists of all inputs where the binary representation of
the corresponding number has j ones. Thus, the second stage
consists of k − 1 parts, where each j-th part is Module

(
k
j

)
,

i.e. a recursive call of Module(m), as shown in Figure 4.
An example of the second stage is shown in Figure 5 for
n = 8. For n = 8, the second stage has n−2 = 6 inputs and
two recursive calls of Module(3). The first Module(3) has the
inputs 1, 2 and 4 with the binary representations (001), (010)
and (100) since they each have exactly one one in their binary
representation. The second Module(3) has the inputs 3, 5 and 6
with the binary representations (011), (101) and (110) since
they each have exactly two ones in their binary representation.

If the i-th output of the j-th part of the second stage
evaluates to true, at least i conjunctions of 2j inputs of the first
stage are all true. For example, if for Module(8) in Figure 5 the
third output of the first part (i.e., the left Module(3)) evaluates
to true, there are at least three combinations of 2 of the 8
inputs, which evaluate to true.

The second stage has n − 2 outputs. If the first output of
the second stage evaluates to true, at least 2 of the inputs of
the first stage are true, etc. Therefore, the first two outputs
realize u2 und u3, whereas the last two outputs realize un−2
and un−1.

3) Third Stage: The third stage has n − 6 inputs
y1, y2 . . . yn−6. First, these inputs are rearranged. We call
these rearranged inputs z1, z2 . . . zn−6, which are assigned
sequentially from z1 to zn−6. For i ≤ n−6

2 , we set j as the
number of ones in the binary representation of 2(i+1) and zi
is the first output of the j-th part of the second stage which
is neither u2, u3, un−2, un−1, or already assigned to another

z1 z2 z3 z4 z5 z6 z7 z8 z9 z10

u4 u5 u6 u7 u8 u9 u10 u11 u12 u13

Fig. 8. Third stage for n = 16

za with a < i. For i > n−6
2 the process is similar, except that

we set j as the number of ones in the binary representation
of 2(i−5)+1. Figure 6 shows these connections for n = 16. At
the top, the outputs of the second stage are shown, whereas on
the bottom, the rearranged inputs of the third stage are shown,
as well as the corresponding value of j.

In [11], the third stage consists of a cascade of cells, which
leads to a linear depth. Here, we present a novel third stage
which has a logarithmic depth.

Each output ui+3 of this stage can be described using a
distinction of cases.

1) If i < n−6
2 , ui+3 is the disjunction of the input zi+1

and the conjunction of all inputs zj with j ≤ i, i.e.
ui+3 = zi+1 ∨ (z1 ∧ z2 ∧ · · · ∧ zi).

2) If i > n−6
2 + 1, ui+3 is the conjunction of the input

zi−1 and the disjunction of all inputs zj with j ≥ i, i.e.
ui+3 = zi−1 ∧ (zi ∧ zi+1 ∧ · · · ∧ zn−6).

3) If i = n−6
2 , ui+3 = (z1 ∧ z2 ∧ · · · ∧ zi)∨ (zi+1 ∨ zi+1 ∨

· · · ∨ zn−6).
4) If i = n−6

2 + 1, ui+3 = (z1 ∧ z2 ∧ · · · ∧ zi−1) ∧ (zi ∨
zi+1 ∨ · · · ∨ zn−6).

Thus, we propose to realize each output ui+3 of the third
stage depending on i and the described cases:

1) with a logarithmic tree of conjunctions followed by a
disjunction if i < n−6

2 ,
2) with a logarithmic tree of disjunctions followed by a

conjunction if i > n−6
2 + 1,

3) with a disjunction of two logarithmic trees if i = n−6
2

or
4) with a conjunction of two logarithmic trees if

i = n−6
2 + 1.

In Figure 7, an example for u12 is shown for the case
that 9 ≤ n−6

2 . As described, u12 is calculated by a logarithmic
tree of conjunctions, i.e. a tree of AND-gates, followed by
a disjunction, i.e. an OR-gate. The complete third stage for
n = 16 is shown in Figure 8, where the outputs for case 1)
are marked in red (u4, u5, u6, u7), case 2) in blue (u10, u11,
u12, u13), case 3) in green (u8) and case 4) in violet (u9).

x1 xn

u1 unuA0
uAj+1

Sn(A0 −Aj)

Module(n)

.

.

Fig. 9. Consecutive Symmetric Function Sn(A0 −Aj)

u1 u2 u3 u6 u7 u9 u11

S12(1) S12(3− 5) S12(7− 8) S12(11− 12)

S12(1, 3, 4, 5, 7, 8, 11, 12)

Fig. 10. Non-consecutive Symmetric Function S12(1, 3, 4, 5, 7, 8, 11, 12)

Step 2: Synthesis of Consecutive Symmetric Functions

Every consecutive and not unate symmetric function can be
realized with two unate symmetric functions, since Sn(A0 −
Aj) = uA0(n) ∧ ¬uAj+1(n). Thus, to realize Sn(A0 − Aj),
an AND-gate and a NOT-gate have to be added to Module(n)
as in [11], which is shown in Figure 9.

Step 3: Synthesis of Non-consecutive Symmetric Functions

As every non-consecutive symmetric function can be di-
vided into at most n

2 consecutive symmetric functions, every
non-consecutive symmetric function can be synthesized by a
disjunction of the outputs of consecutive symmetric functions.
To maintain a logarithmic depth, we propose to realize the
disjunction as a logarithmic tree. An example of this is shown
in Figure 10 for S12(1, 3, 4, 5, 7, 8, 11, 12).

Depth Analysis

Theorem 1. The first stage of Step 1 has a depth of dlog ne.

Proof. The first stage consists of dlog ne consecutive levels
and there is no connection from level i to level j for every
j ≤ i. Thus, the depth is dlog ne.

We analyze the second stage after the third stage, as the
second stage consists of recursive calls of all three stages of
Module.

Theorem 2. The third stage of Step 1 has a depth of
dlog((n− 6)/2)e+ 1.

Proof. The ouputs with the largest depth are z(n−6)/2 and
z(n−6)/2+1. We realize these as a conjunction or disjunction
of two logarithmic trees. Both of these logarithmic trees have a
depth of dlog((n− 6)/2)e, as each tree has (n− 6)/2 inputs.
Therefore, after the conjunction or disjunction, the depth of
this stage is dlog((n− 6)/2)e+ 1.

Theorem 3. The depth of the second stage of Step 1 has an
upper bound of 2dlog2 ne − 3dlog ne+ 2.

Proof. The second stage consists of multiple sub-modules.
The largest and deepest sub-module is Module

(dlogne
(dlogne)/2

)
. In

the second stage of Module
(dlogne
(dlogne)/2

)
, there are more sub-

modules. However, it holds that dlog
(dlog ie
(dlog ie)/2

)
e < dlog ie

for each i. Thus, the logarithm of the number of inputs is
reduced with each recursive call and the number of recursive
calls is therefore bounded by dlog ne. Additionally, each call
of Module(m) has a first and third stage, which have a depth
of at most dlogme and dlogme + 1 respectively, as shown
in Theorem 1 and Theorem 2. Thus, the overall depth of the
second stage is bounded by:

D(n) ≤
dlogne−1∑

i=2

(dlog ie+ dlog ie+ 1)

=

dlogne−1∑
i=2

(2dlog ie+ 1)

≤ (dlog ne − 1) · (2(dlog ne − 1) + 1)

= 2dlog2 ne − 3dlog ne+ 2

Theorem 4. Step 2 has a depth of 2.

Proof. Step 2 adds a NOT-gate and a consecutive AND-gate.
Thus, the depth is 2.

Theorem 5. The depth of Step 3 has an upper bound of
dlog n

2 e.

Proof. A symmetric function can be split into at most n
2

consecutive symmetric functions. Thus, the logarithmic tree
of OR-gates has at most n

2 inputs and has therefore a depth
of at most dlog n

2 e

Theorem 6. The depth of the whole circuit is O(log2 n)

Proof. Connecting all stages and steps, the depth is:

O(2dlog2 ne − 2dlog ne+ dlog((n− 6)/2)e+ dlog n

2
e+ 5)

=O(log2 n)

Thus, we have shown, that our synthesis guarantees sublin-
ear depth, in particular a depth of O(log2 n).

TABLE I
NUMBER OF GATES AND MAXIMUM DEPTH ON UNATE SYMMETRIC

FUNCTIONS FROM n = 2 TO n = 32

n Number of Gates Depth
[11] Proposed [11] Proposed Reduction

2 2 2 1 1 -
3 6 6 3 3 -
4 10 10 3 3 -
5 18 18 7 7 -
6 24 24 7 7 -
7 32 32 7 7 -
8 38 38 7 7 -
9 52 56 12 11 8.33%
10 62 68 12 12 -
11 78 80 12 15 -
12 84 88 13 15 -
13 98 100 13 15 -
14 108 110 13 15 -
15 118 120 13 15 -
16 126 128 13 15 -
17 144 185 24 18 25%
18 166 197 24 19 20.83%
19 170 213 24 21 12.5%
20 186 227 24 21 12.5%
21 206 243 24 22 8.33%
22 220 255 24 22 8.33%
23 236 269 24 22 8.33%
24 248 282 24 22 8.33%
25 264 294 24 22 8.33%
26 278 312 26 22 15.38%
27 300 330 28 23 17.86%
28 314 344 28 23 17.86%
29 332 358 28 23 17.86%
30 344 372 28 23 17.86%
31 360 386 28 23 17.86%
32 370 396 28 23 17.86%

V. EXPERIMENTAL RESULTS

To evaluate our method, we implemented our proposed
scheme as well as the approach proposed in [11] for
Module(2k) in Verilog for k ≤ 5. For Module(n) with n < 2k,
we built Module(2k) and optimized the resulting circuits with
Yosys 0.9 [14] for both, our proposed synthesis scheme and the
approach proposed in [11]. First, we evaluate the improvement
of the depth of Module(n) compared to [11] in Section V-A.
Subsequently, we evaluate the depth of consecutive and non-
consecutive symmetric Boolean functions in Section V-B.

A. Depth of Module(n)

In Table I, we compare our proposed methodology for the
synthesis of Module(n) for 2 ≤ n ≤ 32 to that of [11]. In the
Columns 2-3, we compare the number of gates needed for our
proposed method to that of [11]. Columns 4-5 show the depth
of the synthesized circuits and Column 6 shows the reduction
in %. As can be seen, the results for n ≤ 8 are equal, because
the third stage for n ≤ 8 consists of at most one AND-OR

TABLE II
DEPTH ON SYMMETRIC FUNCTIONS

Symmetric Function [11] Proposed Reduction

S17(1-8) 19 18 5.26%
S17(5-7,9,11-12) 24 21 12.5%
S20(1-5,13-14) 26 22 15.38%
S20(7-9,16-19) 26 23 11.54%
S22(13) 24 21 12.5%
S22(6-10,15-22) 24 20 16.67%
S25(9-17) 25 22 12%
S25(1-8,13-16,18-19,22-25) 28 26 7.14%
S27(3-22) 24 24 -
S27(1,15,22) 32 27 15.63%
S29(19) 27 24 11.11%
S29(1-15,21) 26 21 19.23%
S32(13-20,31) 27 20 25.93%
S32(2-12,14-15,18,21-23,25-32) 33 28 15.15%

cell and therefore, our method is equivalent to the method
proposed in [11]. For 11 ≤ n ≤ 16, the depth of the circuits
generated by our proposed methodology is slightly increased.
The reason for this is, that for 9 ≤ n ≤ 16, the depths of
the third stages of both methods are very similar, with the
third stage of [11] having a depth of 5, and our third stage
having a depth of 4. As the first and last outputs of the second
stage have a low depth compared to the other outputs of the
second stage, the third stage of [11] can already start in the
second stage and is therefore partially shifted into the second
stage. Because of the logarithmic tree, our third stage cannot
be shifted into the second stage and therefore our results are
slightly worse for 11 ≤ n ≤ 16. For n ≥ 17 however, our
method shows a depth reduction of up to 25%. As our third
stage requires more gates, we report a slight increase in the
number of gates compared to [11].

B. Depth of Symmetric Boolean Functions
Table II shows the depth of exemplary consecutive and non-

consecutive symmetric Boolean functions using the proposed
method and compares the results to [11]. As it is not stated
in [11] how the disjunction of step 3 is implemented, we
use a logarithmic tree of disjunctions for the results of both
our method and the method from [11]. Using our proposed
method, we can report a depth reduction of up to 25.93%.

In practice, our proposed method generally reduces the
depth in comparison to [11]. Even though the reduction varies,
the worst case of [11] can reach a depth of O(n log n), whereas
our method guarantees a depth of O(log2 n) in the worst case.

VI. CONCLUSION

In this paper, we have presented a novel scheme for the
synthesis of symmetric functions and have shown that our
method guarantees a depth of O(log2 n). The synthesis scheme
consists of three steps, where the first step realizes unate
symmetric functions, the second step realizes consecutive
functions and the third step realizes non-consecutive symmet-
ric functions. In our experiment, we have been able to report
a depth reduction of up to 25% on unate symmetric functions
and up to 25.93% on symmetric functions compared to the
state-of-the-art.

REFERENCES

[1] P. Sarkar and S. Maitra, “Balancedness and correlation
immunity of symmetric boolean functions,” Discrete Math., vol.
307, no. 1920, p. 23512358, Sep. 2007. [Online]. Available:
https://doi.org/10.1016/j.disc.2006.08.008

[2] C. Carlet, “On the degree, nonlinearity, algebraic thickness, and non-
normality of boolean functions, with developments on symmetric func-
tions,” IEEE Transactions on Information Theory, vol. 50, no. 9, pp.
2178–2185, 2004.

[3] S. Maitra and P. Sarkar, “Maximum nonlinearity of symmetric boolean
functions on odd number of variables,” IEEE Transactions on Informa-
tion Theory, vol. 48, no. 9, pp. 2626–2630, 2002.

[4] L. Qu, K. Feng, F. Liu, and L. Wang, “Constructing symmetric boolean
functions with maximum algebraic immunity,” IEEE Transactions on
Information Theory, vol. 55, no. 5, pp. 2406–2412, 2009.

[5] Na Li and Wen-Feng Qi, “Symmetric boolean functions depending on
an odd number of variables with maximum algebraic immunity,” IEEE
Transactions on Information Theory, vol. 52, no. 5, pp. 2271–2273,
2006.

[6] Y. Xianyang and B. Guo, “Further enumerating boolean functions of
cryptographic significance,” J. Cryptol., vol. 8, no. 3, p. 115122, Sep.
1995. [Online]. Available: https://doi.org/10.1007/BF00202268

[7] G. Gao, Y. Guo, and Y. Zhao, “Recent results on balanced symmetric
boolean functions,” IEEE Transactions on Information Theory, vol. 62,
no. 9, pp. 5199–5203, 2016.

[8] A. Canteaut and M. Videau, “Symmetric boolean functions,” IEEE
Transactions on Information Theory, vol. 51, no. 8, pp. 2791–2811,
2005.

[9] I. Wegener, The Complexity of Boolean Functions. USA: John Wiley
Sons, Inc., 1987.

[10] H. Rahaman, D. K. Das, and B. B. Bhattacharya, “A new synthesis of
symmetric functions,” in Proceedings of ASP-DAC/VLSI Design 2002.
7th Asia and South Pacific Design Automation Conference and 15h
International Conference on VLSI Design, 2002, pp. 160–165.

[11] H. Rahaman and D. K. Das, “A simple delay testable synthesis of
symmetric functions,” in Applied Computing, S. Manandhar, J. Austin,
U. Desai, Y. Oyanagi, and A. K. Talukder, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2004, pp. 263–270.

[12] A. Deb, D. K. Das, and B. B. Bhattacharya, “Synthesis of symmetric
boolean functions using a three-stage network,” in 2014 Fifth Interna-
tional Symposium on Electronic System Design, 2014, pp. 182–186.

[13] I. Gunawan, “Reliability analysis of shuffle-exchange net-
work systems,” Reliability Engineering System Safety,
vol. 93, no. 2, pp. 271–276, 2008. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0951832007000452

[14] C. Wolf, “Yosys - yosys open synthesis suite.” [Online]. Available:
http://www.clifford.at/yosys/about.html

