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Abstract. Decisions delegated to artificial intelligence face an alignment problem: humans 
expect the algorithm to make fast and well-informed decisions aligning with human morals. 
In the design and engineering process of algorithms, ethical principles enter the black box 
explicitly and implicitly as functional or non-functional properties, much to the detriment 
of explainability and transparency. Previous work has established surrogate modeling to 
promote explainability and transparency of the decision-making process. We extend on this, 
model in lower complexity decision trees and as labeled transition systems, which is a 
method inherent to bisimulation theory, as well as evaluate on synthetic data with a rule-
based algorithm. As a case study, we analyze the triage processes in German and Austrian 
hospitals during the COVID-19 pandemic, based on official guidelines that regulate the 
allocation of intensive care unit beds. We discovered that the decision processes are similar, 
however, the systems do not behave in the same manner. The diverging behavior equates 
to a discrepant ratio of patients treated in intensive care in contrast to the general ward. Our 
insight leads us to the conclusion that our approach ensures ethical decision-making in 
healthcare and should be considered due to its explainability and transparency.  
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1 Introduction 

Machine learning and artificial intelligence (AI) in general can support virtually any human 
decision. Whether we assume the decisions made or intervene to revise it, with data supply and 
automation, we entrust a mostly black box with coming to the best conclusion it possibly can. 
Often, these decisions we delegate require fast conclusions and a high degree of expert 
knowledge. While algorithms can fulfill these criteria of decision-making, a human decision is 
inherently one that draws upon human morals. That we demand of algorithms to emulate this, 
gave rise to a new field of research that is located at the intercept of computer science and 
philosophy: machine ethics [1]. 
 Machine ethics, also referred to as AI ethics when defined in a narrower sense, became an 
increasingly vital factor in AI research, because the decisions we now automate, have direct 
implications on human lives. Machine ethics places an emphasis on the establishment of values 
that should steer the development and deployment of artificial intelligences in the form of 
guidelines for “ethical AI” [2]. Ethicists agree with the pressing issue of ethical algorithmic 
decision-making by advocating particularly for transparency [3] and explainability [4] of the 
decisions produced by the black box that a machine learning algorithm, or even more so a deep 
learning algorithm, can represent. 
Related work in algorithmic explainability and transparency put forward various approaches, 
including but not limited to, surrogate modeling and formal verification. Previous research in the 



area of surrogate modeling advanced to complex cases of decision tree modeling of a neural net, 
with a well-founded result of reduced complexity, high fidelity, and comprehensibility [4]. Even 
though it has not yet been done in full terms, approximate-bisimulation has been employed to 
model (dynamic) neural networks and their behavior in terms of their input and output [5]. These 
approaches add to the extensive list of measures to analyze the decision-making process with the 
intention of optimizing for ethical decision-making of the system. However, they fail to consider 
that some explainability and transparency is better than none, especially for use cases that involve 
critical decisions in healthcare. 
 AI represents an evolution of informed decision-making in the medical field [6]. In the 
clinical environment, well informed decisions must be made fast. Not only in Germany this 
potential has been identified, and discussions to implement decision-making software are well 
under way or already implemented. SmED (short for “structured initial medical assessment in 
Germany”) is an algorithm that assists medical on-call services to decide where a patient’s 
healthcare needs can be addressed best: a general practitioner or an emergency clinic [7]. While 
both are not yet applied in the clinical context, OPTINOFA (short for “optimization of 
emergency care through a structured initial assessment using intelligent assistance services”) 
aims to provide an algorithmic assessment of the urgency of treatment in clinics [8]. The most 
striking difference between the softwares: SmED appears to be rule-based and is not openly 
accessible, OPTINOFA is composed of an AI and will be openly accessible. 
 In the interest of examining a contemporary decision process in healthcare, as a case study, 
we compare approaches to the decision-process of triage during the COVID-19 pandemic in two 
countries: Germany and Austria. The decision processes of triage are based on a practice of 
resource allocation historically attributed to military medicine, which categorizes patients and 
commonly prioritizes treatment of patients with a high chance of survival [9]. At the beginning 
of the pandemic, the allocation of resources, i.e., particularly intensive care beds that can 
accommodate a ventilator, has been regulated by strict guidelines in Germany [10] and Austria 
[11]. It is exactly this type of situation in which algorithms are capable to provide humans with 
relief to make well informed, fast decisions. However, it is of the utmost importance that the 
decisions provided by machines agree with human ethical values.  
 With this paper we provide a recommendation for transparent and explainable algorithmic 
decision-making in healthcare, that complies with the ethical principles of explainability and 
transparency in form of non-functional properties of the system. We build on related work in the 
area and propose formal surrogate modeling with decision trees, including associated entropy 
and information gain values indicating the informative strength of a node within the tree, as well 
as modeling as labeled transition systems, a method inherent to bisimulation, which provides a 
comparative analysis of the behavior of two systems [12]. With an algorithmic data evaluation, 
we support the findings of our analysis numerically, and demonstrate, that drawing on metrics 
inherent to the models provide reference for a comparative analysis of systems. With this 
recommendation, we hope to contribute an opportunity for ethical healthcare software to be 
transparent and explainable for medical professionals and patients alike.  

2 Methods 

This section outlines the methodology applied to construct decision trees and a bisimulation 
evaluation of triage processes, as well as a description of the algorithm we deployed to measure 
effects in ratios. Our hybrid approach of two comparative modeling systems and a test with 
synthetic data was chosen, because it gives a valuable insight into robust tools that can be 



accessed for the purpose of investigating strengths and weaknesses of systems such as the triage 
decision process. We compared and identified differences in the German and Austrian triage 
guidelines first by focusing on their underlying ethical principles and subsequently in terms of 
their functional properties.  
 Both guidelines are governed by implicitly or explicitly defined ethical principals. The 
Austrian guideline, “Allocation of intensive care resources due to the Covid-19 pandemic”, lists 
four ethical principles influencing every decision within the triage process: justice, non-
maleficence, doing good, and the observation of autonomy of the patient [11]. The definition of 
each principle is linked to several more, some non-ethical, values that shall be upheld: using 
resources efficiently, allocating fairly, not endangering the supply system, serving the well-being 
of each individual patient, respecting guardians of patients, and respecting individual freedom 
[11]. Although the Austrian guideline does not connect these values and principles to individual 
decisions, each decision made within the process should be guided by them. The German 
guideline mentions ethical principles predominantly implicitly by connecting them to decisions 
in the assessment process, including the needs of the patient for intensive care unit (ICU) 
treatment and the patients will that are directly reflected in decisions within the process, whereas 
a prohibition of discrimination due to age, social characteristics, and disabilities, as well as 
fairness are implicit and not represented as decisions within the process per se [10]. 

Decision Trees 

To investigate the sequence of decisions and the associated informative value of decisions, we 
manually translated the triage guidelines into their respective decision trees and compared the 
metrics of entropy and information gain, both inherent to information theory. Each decision 
outlined in the triage guidelines translates into a decision node of a tree. The end nodes represent 
the decision for or against ICU treatment of an individual patient.  
 Entropy is measured in bits and represents the average level of information or uncertainty of 
possible outcomes of a variable. Given a variable X, with possible outcomes x1,…, xn, with an 
associated probability of P(x1),…, P(xn), the entropy of X is defined by Shannon [13] as: 

 H(𝑋𝑋) = −� P(𝑥𝑥𝑖𝑖) log P(𝑥𝑥𝑖𝑖)
𝑛𝑛
𝑖𝑖=1   (1) 

Entropy can be calculated for each node in a decision tree. For a description of the strength of 
the node, the value of information gain expresses the change in information entropy from one 
node to the next: 

 𝐼𝐼𝐼𝐼(𝑇𝑇, 𝑎𝑎) = H(𝑇𝑇) − H(𝑇𝑇|𝑎𝑎), (2) 

where H(𝑇𝑇|𝑎𝑎) is the conditional entropy of T given the value of 𝑎𝑎 [14]. Information gain can 
therefore adopt values between zero and one, a higher information gain is associated with a 
strong decision node, at which an informative decision is made. 

Evaluation 

To verify the differences in the performance of the two systems, we evaluated benchmark data 
flowing through the process modeled as decision trees. To this end, we implemented a rule-based 
algorithm that sorted and evaluated synthetic data of 100 patients based on the health data 
required for the German triage decision process.  



 Although the triage criteria to receive intensive care are different for German and Austrian 
patients, both guidelines have baselines in common, whose negation can in no circumstance lead 
to treatment in intensive care. For one, a patient must give consent to receive intensive care. 
Moreover, though the German guideline explicitly states that a necessity for intensive care must 
be assessed, the same can be assumed for the Austrian system. German medical personnel are 
furthermore urged to assess the prospect of success of intensive care for a patient as one of the 
first steps in the triage process, whereas Austria assesses hopelessness and proportionality of 
ICU treatment only as a criterion for the abortion of intensive care [11]. For our purpose, we 
equate the assessment of prospect of success in Germany with the assessment of hopelessness 
and proportionality in Austria and quantify this criterion with 96%, i.e., the average reported 
survival rate of COVID-19 in Germany and Austria [15]. 
 Beyond the shared baseline assumptions, the triage systems additionally assess the patients 
on health criteria. These criteria have determined our algorithmic implementation and data 
development and have been summed to a health score. The criteria formulated for the health 
assessment of German patients consist of five points, which quantify scores or represent the 
presence or absence of a criterion: heightened severity of illness, e.g., acute pulmonary 
embolism, acute organ failure assessed on the sepsis-related organ failure assessment score 
(SOFA), a prognostic marker for COVID-19 patients (we assume this marker to be a positive 
COVID-19 test), comorbidity, e.g., neurological disease, and health status assessed on the 
clinical frailty scale (CFS) [10]. In Austria, health assessment is done in nine points: chance of 
survival via SOFA score, comorbidity, presence of cardiac insufficiency or failure, renal 
insufficiency or failure, presence of immunosuppression, dementia assessed on Activities of 
Daily Living score (ADL), pulmonary disease, other primary disease, and other relevant criteria 
[11]. 
 As a first step to data creation, we affirmed the baseline assumptions for ICU treatment and 
created five health data points for each patient randomly, modeling the German health 
assessment. We randomly one-hot encoded for the presence or absence of a criterion and appoint 
scores where applicable, i.e., a SOFA score between 0-24, counts of comorbidities between 0-5, 
and overall health status of CFS score between 1-9. This encoding resulted in an overall health 
assessment score sum between 1-40, with a higher score being associated with a more critical 
condition. For scores under 20, we assumed care at the general ward as sufficient, patients with 
scores over 20 require intensive care. In the corresponding trees, this decision node is represented 
as a score of under 50% or over 50%. 
 As a next step we translated the patient data for the Austrian decision process of nine health 
assessment points, which involved the addition of more scores. As the survival chance in Austria 
is also indicated by the SOFA score, we adopted it from the German model patient. We 
transferred comorbidity counts over zero as the presence of a comorbidity and associate a 
heightened severity in Germany with a primary disease in Austria, as well as translate the CFS 
score of five and above as the presence of dementia. The remaining criteria, i.e., cardiac or renal 
insufficiency, immunosuppression and pulmonary disease were again one-hot encoded with a 
random distribution. The complete assessment results in an overall summed score between 1-31. 
We again divided the score in over 50% and under 50%, a score of 15 or lower does not receive 
intensive care. 



Bisimulation  

To further investigate the difference in behavior of the two triage processes, we remodeled the 
decision trees as a bisimulation evaluation. Our notation for this evaluation was adopted from 
Davide Sangiorgi [12]. Specifically, we explore the states and transitions of the processes 
modeled as labelled transition systems (LTS), which are formally described with triples, i.e., 
(𝑃𝑃𝑃𝑃,𝐴𝐴𝐴𝐴𝐴𝐴,→) where Pr is a (non-empty) set, also referred to as the domain or the set of the 
processes of the LTS, Act is the set of actions or transitions, and → denotes the transition relation 
between processes. Bisimulation is a binary relation on the states of two systems P and Q, if for 
all μ we have: 

 1) for all P’ with 𝑃𝑃
𝜇𝜇
→𝑃𝑃′, there is Q’ such that 𝑄𝑄

𝜇𝜇
→𝑄𝑄 and 𝑃𝑃′𝑅𝑅 𝑄𝑄′; 

2) for all Q with 𝑄𝑄
𝜇𝜇
→𝑄𝑄′, there is P’ such that 𝑃𝑃

𝜇𝜇
→𝑃𝑃′ and 𝑃𝑃′ 𝑅𝑅 𝑄𝑄′. 

 

 

 

(3) 

If the bisimulation is complete, meaning for each process in the system P there is an equivalent 
process in system Q, the systems are bisimilar, i.e., they behave in the same way. If not all 
processes in system P can be mapped to an equivalent process in system Q, the systems might 
have equal inputs and outputs, but internally do not behave the same way. 

3 Results 

Decision Trees 

Both triage decision processes were modeled as decision trees. Figure 1 is a comparison of the 
German triage system and the Austrian triage system. For reference, we added entropy (H) values 
for each decision node in the trees. Due to our assumption of the baseline criteria for intensive 
care treatment as being met, i.e., necessity of treatment (represented as the first decision node 
with H = 1 as is standard for decision trees) and consent of the patient, the respective entropy 
values do not amount to expressive decision nodes.  

However, we were specifically interested in the decision node labeled prospect of success, 
as the location of this decision and the corresponding nodes in the trees is an identifiable 
difference between the two decision processes. Based on our assumption that the prospect of 
success of treatment, which is assessed early on in Germany, is equivalent to the criterion of 
hopelessness and proportionality, which is assessed after the ICU treatment has already 
commenced for the Austrian patient, the anticipated entropy values correspond to the same 
entropy of H = .24. Again, these values are identical, because we assume a survival chance of 
96% for both countries, as it is the reported survival rate of COVID-19 in both countries [15]. 
The information gain, however, of the prospect of success node amounts to IG = .76 in the 
German system, compared to the Austrian system of IG = .75.  

 
 



 

Evaluation 

The rule-based algorithmic evaluation of our data of 100 patients revealed, that the Austrian 
system initially treats more patients in ICU, more specifically 56% in comparison to 39% in the 
German system. This ratio is not representative, however, of the mandatory re-evaluation which 
is featured in both triage processes and more visible in the labeled transition systems.  

Bisimulation 

The LTS of triage in Germany and Austria offer valuable cues as to how the decision process is 
executed and can be described and analyzed formally. Figure 2 compares the LTS side by side 
and indicates their domain, actions, and transition relations. For the sake of clarity and brevity, 
we indicated transitions abbreviated, e.g., from R1 to R6, instead of “No Necessity assessed” as 
it would be formally described, we simply indicated “No Necessity”.    
Not only does the LTS comparison demonstrate that the Austrian triage ultimately has less states 
until it arrives at a final decision over ICU treatment or no ICU treatment, the formal description 
of the LTS is a further indicator for the similarity of the systems. As we examine the binary 
relation between the two systems, we pair processes with the same transition relations:  

 
R = { (R1, Q1), (R3, Q2), (R4, Q3), (R6, Q5) }.  (4) 

Fig. 1. German (left) and Austrian (right) triage decision tree, entropy value per decision node 



Given that not all states in the German system have equals in the Austrian system, the bisimilarity 
of the systems cannot be proven and therefore indicate that the systems do not behave in the 
same way. 

4 Discussion 

The importance of interpretable models, that promote transparency and explainability cannot be 
emphasized too much. Our method of surrogate modeling as decision trees and labeled transition 
systems, as well as evaluating on synthetic data, has not only enabled us to identify the different 
approaches between the triage processes in Germany and Austria, but also given us the 
possibility to explain any given final decision by traversing through the models. Therefore, by 
modeling in comparison, we achieve transparent and explainable decision-making as it is 
promoted by machine ethics [1,3].  
 At first sight, the systems seem to align in their design, as they assess patients on similar 
criteria. With the data evaluated based on the decision trees, however, we see that the smallest 
differences in the processes have a substantial effect on the number of patients treated and thus 
possibly on the number of lives saved. The decision trees have provided a comprehensible model 
to enable further evaluation, as we expected and was touched on in [4]. The most striking 
observation to emerge from the evaluation of information gain, is the difference between the 
values for the prospect of success decision node. Even though the numeric difference between 
the German and Austrian node is marginally small, it indicates that the informational value of 
the node is in fact different, and this difference is due to its position in the decision process, i.e., 
the rank of the decision.  
 Even though a bisimulation of neural networks has not yet been successful [5], we were able 
to considerably benefit from modeling the rule-based triage systems as labeled transition systems 
to reproduce the finding of differences from the decision trees. As the binary relation is 
incomplete, the evaluation confirms that the decision processes are not equal, and furthermore, 
that this inequality can be attributed to an inequality in the patient’s health assessment and the 
order of the decisions made in both countries. The model borrowed from bisimulation has 

Fig. 2. LTS of triage in Germany (left) and Austria (right) 



provided us with the ability to formally describe with states and transition relations are 
represented in both decision processes.  
 Although we gained considerable insight from modeling the processes, the link to ethical 
principles, especially to the overarching principles of explainability and transparency of 
(algorithmic) decisions, were made by us. Neither the German nor Austrian guideline mentions 
these principles as essential to decisions in triage. Furthermore, despite the insight, we are not 
qualified to make statements regarding fairness of the decision process, even though the German 
triage guideline acknowledges this ethical value [10]. Synthetic data is simply not suitable to 
evaluate this metric on.   

5 Conclusion 

We have outlined a comparative method of evaluating decision-making by modeling the decision 
processes in form of labeled transition systems, as well as decision trees and the corresponding 
metrics of entropy and information gain, to promote the transparency and explainability of 
decisions within the triage process. For our case study of triage processes in Germany and 
Austria, we found that differences in the non-functional properties the decision process adheres 
to, i.e., in broader terms the ethical implications of the triage system, has consequences for the 
behavior of the system and these consequences can be measured. In the context of triage, the 
measurable difference of courses of action ultimately equates to lives saved or lost.  
 For decision-making in triage, we conclude that a formal modelling allows for the analysis 
and precise comparison of systems. This can be applied to systems of different countries, or two 
competing systems within one country. Our findings assert that a careful engineering of the 
decision process, whether with implicitly or explicitly translating ethical principles into 
decisions, can lead to more efficient decision-making. Besides efficiency, with modeling of the 
design we access insight about comparability and weaknesses of systems, and measurable 
metrics can lead to a better understanding of the outcome of specific decisions. In combination, 
formal modelling, i.e., decision trees and bisimulation, lead to transparency and explainability 
of the decisions made.   
 Our method could advance many other decision processes conducted by AI or machine 
learning in healthcare. Decision-making softwares, whether they include an AI or rule-based 
algorithm similar to what we employed and SmED appears to be, behave according to underlying 
ethical principles. As we have concluded from the triage guidelines in our use case, the link 
between these principles and the properties of the system they are embedded into, are not always 
functional, i.e., direct and apparent. Yet, the insight gained from the models and their 
corresponding metrics provides an excellent resource to ensure ethical decision-making. Future 
work evaluating its models algorithmically on benchmark data should, however, aim to collect 
or obtain organic data, which was beyond of the scope of this research.  

References 

1. Anderson, M., Anderson, S. L.: Machine ethics: Creating an ethical intelligent agent. AI 
magazine 28(4), 15-26 (2007). doi.org/10.1609/aimag.v28i4.2065. 

2. Jobin, A., Ienca, M., Vayena, E.: The global landscape of AI ethics guidelines. Nature 
Machine Intelligence 1, 389–399 (2019). https://doi.org/10.1038/s42256-019-0088-2. 

3. Garcia-Gasulla, D., Cortés, A., Alvarez-Napagao, S., Cortés, U.: Signs for Ethical AI: A 
Route Towards Transparency. arXiv:2009.13871. (2020). 

https://doi.org/10.1038/s42256-019-0088-2


4. Schaaf, N., Huber, M.F., Maucher, J.: Enhancing Decision Tree based Interpretation of 
Deep Neural Networks through L1-Orthogonal Regularization. arXiv:1904.05394. 
(2019). 

5. Donnarumma, F., Aniello, M., Prevete, R.: Dynamic network functional comparison via 
approximate-bisimulation. Control and Cybernetics 44(1): 99-127 (2015). 

6. Jones, L.D., Golan, D., Hanna, S.A., Ramachandran, M.: Artificial intelligence, machine 
learning and the evolution of healthcare: A bright future or cause for concern? Bone & 
Joint Research. 7, 223–225 (2018).  

7. Graf von Stillfried, D., Czihal, T., Meer, A.: Sachstandsbericht: Strukturierte 
medizinische Ersteinschätzung in Deutschland (SmED). Notfall Rettungsmed. 22, 578–
588 (2019). https://doi.org/10.1007/s10049-019-0627-8. 

8. Abstracts zu Vorträgen und Postern der 14. Jahrestagung der Deutschen Gesellschaft 
Interdisziplinäre Notfall- und Akutmedizin: 14.–16. November 2019, Bremen. Notfall 
Rettungsmed. 22, 1–17 (2019). https://doi.org/10.1007/s10049-019-00645-y. 

9. Iserson, K. V., Moskop, J. C. Triage in medicine, Part I: Concept, History, and Types. 
Annals of Emergency Medicine 49(3): 275-281 (2007).  

10. Marckmann, G., Neitzke, G., Schildmann, J., Michalsen, A., Dutzmann, J., Hartog, C., 
Jöbges, S., Knochel, K., Michels, G., Pin, M., Riessen, R., Rogge, A., Taupitz, J., 
Janssens, U.: Entscheidungen über die Zuteilung intensivmedizinischer Ressourcen im 
Kontext der COVID-19-Pandemie: Klinisch-ethische Empfehlungen der DIVI, der 
DGINA, der DGAI, der DGIIN, der DGNI, der DGP, der DGP und der AEM. 
Medizinische Klinik – Intensivmedizin und Notfallmedizin 115(6): 477-485 (2020). 
https://doi.org/10.1007/s00063-020-00708-w. 

11. ARGE Ethik ÖGARI, Allokation intensivmedizinischer Ressourcen aus Anlass der 
Covid-19-Pandemie. Klinisch-ethische Empfehlungen für Beginn, Durchführung und 
Beendigung von Intensivtherapie bei Covid-19-PatientInnen. Vienna: ÖGARI, 
http://www.oegari.at/web_files/cms_daten/, last accessed: 2021/08/24. 

12. Sangiorgi, D.: Introduction to Bisimulation and Coinduction. Cambridge University 
Press, Cambridge (2011). https://doi.org/10.1017/CBO9780511777110. 

13. Shannon, C.E.: A Mathematical Theory of Communication. The Bell system technical 
journal 27(3): 379-434 (1948). 

14. Kent, J.T.: Information gain and a general measure of correlation. Biometrika 70(1): 163-
173 (1983). 

15. Dong, E., Du, H., Gardner, L.: An interactive web-based dashboard to track COVID-19 
in real time. Lancet Inf Dis. 20(5): 533-534. doi: 10.1016/S1473-3099(20)30120-1, 
accessed: 2021/03/07. 

https://doi.org/10.1007/s10049-019-0627-8
https://doi.org/10.1007/s10049-019-00645-y
https://doi.org/10.1007/s00063-020-00708-w
https://doi.org/10.1017/CBO9780511777110

