
Metamorphic Testing for Processor Verification:
A RISC-V Case Study at the Instruction Level

Frank Riese1 Vladimir Herdt1,2 Daniel Große1,3 Rolf Drechsler1,2

1Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany
2Institute of Computer Science, University of Bremen, 28359 Bremen, Germany

3Institute for Complex Systems, Johannes Kepler University Linz, Austria
Frank.Riese@dfki.de, vherdt@uni-bremen.de, daniel.grosse@jku.at, drechsler@uni-bremen.de

Abstract—Metamorphic Testing (MT) has been shown to be a
very effective technique in the Software (SW) domain. MT does
not require a reference model to compare against for testing
but instead relies on Metamorphic Relations (MR) to derive the
expected result from relationships between several calls to the
function under test. An example of an MR is the expectation
that the sum of an arbitrary list of integers remain unchanged
regardless of it being sorted or reversed. Thus, a key requirement
for applying MT effectively is availability of MRs specific to the
domain at hand.

In this paper, we propose MT to the domain of processor
verification. As a case study, we consider the RISC-V Instruction
Set Architecture (ISA) and provide MRs tailored for RISC-V.
For evaluation purposes, we propose an efficient on-the-fly MT
framework that integrates the MRs with an Instruction Set
Simulator (ISS). We measure the quality of those MRs by the
number of mutations they kill, also referred to as mutation
analysis. Our experiments demonstrate the effectiveness of the
MRs to kill all mutations, which confirms our research question
that MT is also a suitable technique for the domain of processor
verification.

I. INTRODUCTION

Metamorphic Testing (MT) is an approach to testing that has,
on many occasions, been shown to have the capacity for revealing
many faults other testing techniques had not. Those faults are
not limited to simplistic or purely academic systems but have
been making a growing industrial impact on flagship products of
reputable companies, such as Google Maps and Bing [1]. Segura
et al. cite many examples, including: “data engineering, simulation
and modeling, compilers, machine learning programs, autonomous
cars and drones, and cyber-security” [2]. In Le et al. a remarkable
147 confirmed bugs have been found by its authors, through the use
of MT, for the GCC and LLVM suites of compilers, two pieces of
software that are notable for the breadth of their use and significant
in how fundamental their proper functioning is to the production of
other software [3]. Zhou et al. cite a vivid example in which they
had located and reported the bug in a system for self-driving cars
responsible for the fatal accident involving a pedestrian, infamously
world-wide the first such case – eight days before the tragic event
[4]. Since 2016, there is now an international workshop dedicated
to the topic of MT, Segura et al. have elevated MT to being referred
to as a “fully-fledged testing paradigm” [2] and the number of
publications covered in a notable survey paper roughly clock in at a
respectable 150 publications [5].

The remarkable success of MT has motivated us to explore
application of MT to the domain of processor verification, an area

This work was supported in part by the German Federal Ministry of
Education and Research (BMBF) within the project VerSys under contract no.
01IW19001 and within the project Scale4Edge under contract no. 16ME0127.
978-1-6654-2614-5/21/$31.00 ©2021 IEEE

in that MT has found comparatively little application thus far.
To this end, we test the Instruction Set Architecture (ISA) of a
concrete, modern processor architecture through the use of MT
and present the results of experimental evaluations that demonstrate
the effectiveness of our approach. We have chosen RISC-V as our
target, an open and freely available standard that is showing a rapid
rate of adoption and great promise for future use.

Defining part of MT is the use of a Metamorphic Relation
(MR), so called because they relate inputs and outputs of multiple
executions of the same System Under Test (SUT) to each other
to determine if a Metamorphic Test Case (MTC) has passed, as
opposed to comparing a singular response from the SUT against
a test oracle. By MTC we mean the concrete implementation of a
test case that uses the abstract relation of an MR as part of its pass
criteria. An example of such a relation is that the value of the sine
function repeats every 2π so that we can assert sin(x) = sin(x+2π),
an MR, without having to know what the actual value, a test oracle,
of either one is. This is a huge advantage over other test techniques
and the literature frequently describes this as a way by which to
avoid the “oracle problem” [6] [7]. One consequence of this, and
further motivation for us, is that we can reduce the frequent reliance
on reference models for processor verification, which represent an
instance of such a test oracle.

Among our main contributions are a set of such MRs, tailored to
the RISC-V ISA on the basis of its specifications [8] [9], and their
implementation into MTCs. We cover the majority of instructions
from the RV32I ISA, a mandatory set that constitutes the core of
the RISC-V ISA.

In order to assess the quality of our MRs, we follow up with
an experimental evaluation. For this we use mutation analysis,
a powerful evaluation approach that finds frequent application in
combination with MT [5]. This means that we inject point changes,
so-called mutations, into an SUT to produce variations, so-called
mutants, that deviate from expected behavior. The goal of a test
set is to identify as many of those mutants as possible, the ratio of
which is called the mutation score. These mutations are usually gen-
erated by picking replacements from sets called mutation classes.
Here, too, we have found that the area of application has a bearing
on which classes make sense, so we have customized our mutation
classes to RISC-V.

Therefore, we introduce an MT framework that executes our
test cases, efficiently injects hundreds of mutations into a RISC-V
Instruction Set Simulator (ISS), and collects a variety of metrics
about performance of our MTCs. We reach a perfect mutation score
of 100%, meaning that of our roughly 400 mutations none survive.
From this we conclude that our approach can be effectively used
to apply MT to processor verification. All relevant source code
has been made available under https://github.com/agra-uni-bremen/
riscv-metamorphic-testing.

Unmodified
ISS

RISC-V
Specification

Domain
Knowledge

randomize
parameters

memory access

register read

apply next
mutation

add beq Other Instructions

+

select random MTC

yes, process
next mutation

no, try another
random MTC

mutation killed?

RISC-V Instructions and Corresponding MRs, MTCs

Mutations

define
relations

generate
mutations

Mutated
ISS

Instruction Mutations

Randomized
MTC

Mutation Framework Executes MTCs

Selected MTC

...

1

2

3

4

RISC-V Specification

Metamorphic Relation

Mutation

Automated Execution

Manual Step

add MTCs beq MTCs Other MTCs

beq MRsadd MRs Other MRs

Figure 1: Overview of our proposed MT approach

II. RELATED WORK

We already discussed applications of MT in various software
verification related domains as part of our introduction. In the
hardware verification domain, on the other hand, the number of
proposed MT approaches is much more limited thus far. We are only
aware of [10] and [11], which leverage MT to verify the behavior
of radio frequency amplifiers and test for hardware fault tolerance,
respectively.

Regarding verification for RISC-V specifically, there exist a
number of test generation approaches that leverage constraints [12],
fuzzing [13] and other randomization techniques [14], as well as
formal approaches such as the OneSpin 360 DV RISC-V verifi-
cation app [15] and riscv-formal [16]. However, they require the
availability of a reference model or property set which acts as a test
oracle.

We are not aware of any approach that proposes MT for RISC-V
or processor verification in general. We demonstrate for the first
time that MT is a viable alternative in this domain.

III. METAMORPHIC TESTING WITH RISC-V CASE STUDY

In this section we present our proposed MT approach tailored for
RISC-V. We start with an overview.

A. Overview
Figure 1 provides an overview of our approach. There, four major

stages of the method by which we have proceeded are marked
with 1 to 4 . In 1 , we consult the RISC-V specification and
use our knowledge of the hardware domain to derive relations
and mutations. In 2 , MRs are defined on a per-instruction basis.
In 3 , mutations are defined, to be then injected into the ISS.
In 4 , our framework executes MTCs and keeps track of killed
mutations. These mutations are injected into the ISS, one at a
time. MTCs are selected one by one and executed with randomized
parameters. Randomization is used because it is possible for a
mutation to exhibit altered behavior in only a small subset of
cases, and it is infeasible to test all possible combinations of test
parameters. Mutations have control over a wide variety of behavior,
such as modifying memory access or register reads. Our framework

Table I: Instructions covered

Instruction Group Instructions

Arithmetic add, addi, sub
Relational slt, sltu, slti, sltiu
Bit Logic xori, ori, andi, xor, or, and
Bit Shift sll, srl, sra, slli, srli, srai

Memory Access sb, sh, sw, lb, lh, lw, lbu, lhu
Jump/Control jal, jalr, lui, auipc

Branching beq, bne, blt, bge, bltu, bgeu

keeps track of killed and surviving mutations to calculate the final
mutation score.

In the ISS we provide several features that are helpful in im-
plementing MTCs. One is that instructions are placed into a queue
and executed in the order being queued, regardless of jumps or
branches. This differs from the usual way flow control would work
in code, where instructions after branches or jumps are possibly
skipped and where execution continues depends on the addresses at
which instructions are located. We are going to dive into details
of this aspect in Section III-C, when we demonstrate concrete
implementations of a select set of MTCs.

Table I details the instructions we have covered, broken down
into groups of semantically similar operations. These comprise 37
of the 40 instructions of the RV32I base instruction set; we have
chosen this subset both to manage scope of this work but also be-
cause it represents the most basic set of unprivileged computational,
load, store, and control-flow instructions that is the foundation for
all conforming RISC-V implementations [8]1.

In Section III-B, we will continue with presenting a selection
of our MRs for these instructions. We then provide implemen-
tation details on the corresponding MTCs (Section III-C). Next,
we detail our framework that executes MTCs to kill mutations
(Section III-D). Finally, we go into greater detail on those mutations
(Section III-E).

1We have omitted the 1) fence and 2) ecall, ebreak instructions
since 1) is typically implemented as a no-op at the ISS level and 2) might
require privileged access, which we do not consider in this work.

B. MRs for RISC-V
For illustration purposes, we have chosen the following subset of

MTCs, at least one from each semantic grouping in Table I. For each
one, we are first going to describe the MR used on a general level
of abstraction, followed by the MR expressed in a formula based
on predicate logic. An expression such as and(rs3, or(rs1,
rs2)) means that the RISC-V or instruction is called with two
arguments and the result from the destination register is passed into
another call of the and instruction, using temporary registers if
needed.

Section III-C will show how several of these are instantiated into
implementations of concrete MTCs that can be executed by our
framework.

Some of these relations, such as those for the bitwise operations
or and and below, do not strictly use multiple invocations of the
same instruction but multiple calls to related instructions. They are
metamorphic in the sense that these instructions are implemented
in the same ISS, often with code shared between these instructions,
so we have chosen to include relations like these.

Each of the following MR definitions consists of three parts:
the name, a description and a mathematical representation. The
name encodes the instruction group of Table I and a short identifier
separated by a colon.
Arithmetic: Associativity As with arithmetic addition, the order
in which several additions are executed is irrelevant to the result of
add or addi. Any valid placement of parentheses in the expression
(a+ b)+ c = a+(b+ c) yields the same result. This should also
hold true in cases of overflow.

add(add(a,b),c) = add(a,add(b,c))

Arithmetic: Commutativity As with arithmetic addition, the order
of operands is irrelevant to the result of add and addi. An
implementation of this relation can later be found in Listing 1.

add(a,b) = add(b,a)

Relational: Asymmetry When exchanging operands of an asym-
metric operator, only one of the two expressions can be true. This
means that, if a relation R relates a to b it does not relate b to a. An
example is the less-than operator <, as only one of a < b and b < a
can be true. As slt (set less than) represents a less-than test, we
can apply it to this instruction.

slt(a,b) =⇒ ¬slt(a,b)
Arithmetic: Triangle Inequality For sltiuwe base the MR on its
relational asymmetry. The less-than-or-equal operator ≤ is neither
asymmetric nor symmetric. This operator is antisymmetric, which
means that its result with operands reversed can only be true in both
cases when the operands are equal: both a ≤ b and b ≤ a is true iff
a = b. However, the same applies to the ≥ operator. A mutation that
exchanges those two operators therefore cannot be killed through
asymmetry alone.
Therefore, we introduce the triangle inequality as an MR. For two
numbers a and b, either of which can be negative or positive,
the inequality |a|+ |b| ≥ |a+ b| must hold, where |x| denotes the
absolute value of an number x. We demonstrate in Section III-D
how this MR is using two invocations of add to kill a mutation
of bge, which performs a greater-than-or-equal test to determine
whether to carry out a jump. An implementation is later shown in
Listing 2.

add(|a|, |b|)≥ |add(a,b)|
Bit Logic: De Morgan’s Law Using De Morgan’s laws, one can
represent bitwise and using inversions and bitwise or.

and(a,b) = ∼(or(∼a,∼b))

Bit Shift: Additivity of Shift: Similar to addition, shifting bits left
or right has an additive effect on the total amount of shift, as long
as the total number of bit shifts does not exceed the type’s width in
bits. For example, if one shifts the bits of an integer a to the left by
one position twice, that has the same effect as shifting them left by
two positions once. In the following, this is generalized to bit shifts
by s.

sll(a,s+1) = slli(sll(a,s),1)

Memory Access: Composition of Half-Words from Bytes Load-
ing a half-word from a memory location is the same as loading the
two bytes that constitute the half-word from its two adjacent mem-
ory locations addr and addr+1 in two separate load instructions of
one byte each, using load byte unsigned (lbu). An implementation
is later shown in Listing 3.

lh(addr) = lbu(addr)|(lbu(addr+1)<< 8)

Jump/Control: Cancellation of Opposite Jumps Jump instruc-
tions can use both positive and negative relative offsets. The first
will jump forward, the second backward. If one jumps forward by
n instructions (offset x) and then backward by n instruction (offset
-x), we expect the net effect on the program counter (pc) of the
two jumps to cancel out. An implementation of this relation is later
shown in Listing 4.

pc1 := pc;jal(x);jal(−x);pc2 := pc =⇒ pc1 = pc2

Branching: Mutual Exclusivity of Branch Types The two
branching instructions bne (branch not equal) and beq (branch
equal) are opposites of each other in so far that the branch condition
of one can only be true if the branch condition of the other is false.

bne(a,b) =⇒ ¬beq(a,b)
C. MTC Implementation

The following listings show the implementations of four of the
MRs into MTCs that we have introduced in Section III-B and felt
were particularly illustrative. We will start with a short introduction
of our test framework and then proceed to explain each code listing.

1) Preliminaries of Metamorphic Framework: Both our ISS
and the MTCs are written in C++. We have simplified the code
presented by omitting most implementation details of our MT
framework and focus on the MTCs. An important characteristic of
our ISS is that the instructions being called, such as iss.add(),
are always executed in the order they are called in C++, regardless
of jumps or branches. This allows us to implement an MTC for a
code flow instruction like jal in a manner that is a much more
direct translation of an MR. For example, in Listing 4 we can
execute two consecutive calls to jal without the need for jump
labels or having to lay out instructions in memory at addresses that
depend on the jump offsets passed to jal. If one were to implement
the same MTC in assembler, this aspect would complicate the code
substantially and make it harder to vary the offset to jal for testing.
Similarly, if one wanted to test a scenario in which a jal instruction
jumps to a second jal, which then jumps back to the first jal,
one would produce an infinite loop in conventional assembler and
thereby a non-terminating MTC.

2) Implementation of MTCs: In the following listings, we
adopt the following conventions. The method check represents
an assertion of the MTC. The first time any assertion evaluates to
false during execution, the MTC fails and is aborted. If all executed
assertions evaluate to true and the MTC runs to its completion the
MTC passes. The listings are written in C++ and iss is assumed to
be an instance of a class representing our ISS. That class provides
attributes to query execution state of the ISS and methods through
which instructions can be queued for execution. Instructions cur-
rently queued are executed and dequeued whenever the method run

is called, in the order the methods for each instruction had been
called, until the queue is empty. For example iss.li(rd1, x)
means that the RISC-V li instruction is queued and that it will
store the value x into register rd1 when executed. In this case, x
is what is called an immediate, i.e. a literal value that is passed to
instruction without the use of a register. Per convention, instructions
that end in i have immediates as final parameters. iss[idx]
denotes the value of the register with index idx.

Our framework randomizes register numbers and immediate
values, so it is implied in the code listings shown that these can
take on any value from the type’s domain during execution, unless
additional constraints on these are stated. The order these instruc-
tion methods take parameters follows the convention of destination
registers being the first parameters, with source registers and other
parameters following. The listings implement the equations intro-
duced in Section III-B of the respective MR, in the same order. Each
listing is followed by a short explanation of the code.

Listing 1 Commutativity of addition

1 iss.li(rs1, a);
2 iss.li(rs2, b);
3 iss.add(rd1, rs1, rs2);
4 iss.add(rd2, rs2, rs1);
5 iss.run();
6 check(iss[rd1] == iss[rd2]);

In Listing 1, commutativity of the add instruction is tested by
passing it the same arguments, in different order, and checking that
the results written to registers rd1 and rd2 are the same in both
cases.

Listing 2 Triangle inequality

1 iss.li(rs1, abs(a));
2 addi(rs1, rs1, abs(b));
3 iss.li(rs2, abs(a + b));
4 iss.jal(rd1, 0); // save pc before.
5 iss.bge(rs1, rs2, off);
6 iss.jal(rd2, 0); // save pc after.
7 iss.run();
8 check(iss[rd2] == iss[rd1] + off);

The code in Listing 2 tests, if the bge instruction obeys the
triangle inequality introduced in Section III-B. For this, the addition
formula of the absolute values explained there is performed on the
test parameters a and b. The register rs1 stores the result of the left
side and the register rs2 that of the right side. As the purpose of
this test is to check whether the bge instruction branches when that
relation is satisfied, we must implement a way to see if a jump has
been performed. That can be done by saving the program counter
before the branch, into rd1, and after the branch, into rd2, and
then checking how much the values of the saved program counters
differ. When a branch has jumped, we expect the program counter
to increment by the amount passed as the offset. When the branch
has not jumped, we expect execution to proceed with the next
instruction. As the program counter increments by four on every
instruction, we assume the offset to be greater than four to be able
to distinguish these two cases.

Listing 3 Two byte loads can replace a half word load

1 iss.li(rs2, val);
2 iss.li(rs1, addr);
3 iss.sh(rs2, rs1, 0);
4 iss.li(rs1, addr);
5 iss.lbu(rd1, rs1, 0);
6 iss.li(rs2, addr + 1);
7 iss.lbu(rd2, rs2, 0);
8 iss.lh(rd3, rs1, 0);
9 iss.run();

10 int half = (((iss[rd2]&0xff)<<8) | (iss[rd1]&0xff));
11 check(iss[rd3] == half && half == val);

In Listing 3, a half-word is stored at memory location addr with
the store-half instruction sh. It is then read back in two pieces of
a byte each with lbu. When one combines the two bytes back
into one half-word, with the bit expression passed to check, the
expectation is that the resulting value is the same as the one initially
written with sh.

Listing 4 Negated offset jumps equal, reverse distance

1 iss.jal(rd1, 0); // save pc before
2 iss.jal(x0, off);
3 iss.jal(x0, -off);
4 iss.jal(rd2, 0); // save pc after
5 iss.run();
6 check(iss[rd1] == iss[rd2]);

Listing 4 shows how the following MR for the jal instruction
can be implemented particularly elegantly. A jump by off and one
by -off is performed. In RISC-V, with a pair of two consecutive
jumps the first would skip execution over the second jump, so this
relation could not be implemented in this manner. With our test
framework and our ISS, we can perform two such consecutive
jumps and observe that the program counter is incremented by
the first jump by the same amount that it is decremented by the
second jump. Therefore, we test that the program counter before
these jumps, stored in rd1, is the same as after these jumps,
stored in rd2. The parameter x0 designates the register hardwired
to zero, which means that we discard the value returned by the
jump instruction, as we are only interested in the resulting program
counter.

D. MT Framework at the Instruction Level
In this section we explain how a concrete mutation is killed by an

MTC in our MT framework. Listing 5 shows the simplified code of
a mutation of the bge instruction. The method apply contains the
mutated implementation of the instruction that is called by the ISS
whenever it encounters an instance of bge in an MTC and changes
the unmodified, correct behavior of the instruction in the ISS to
produce a mutant. This mutated version is substituted for the correct
version, as long as the mutation is enabled. When the mutation is
not enabled by the MT framework, the unmodified, presumably
correct version of the ISS is executed. The mutation framework
passes the register indices rs1, rs2, and the jump offset off into
the apply method so that the mutant can base its behavior on those
parameters. A mutation can modify other aspects of the ISS, such
as the program counter pc, as shown on Line 4. On Line 3, the
≥ operator (correct behavior) has been replaced by the ≤ operator
(mutated behavior). That replacement is an example of a mutation
and the modified version is a mutant.

Listing 5 Mutation of the bge instruction

1 class BgeMutation : OperationMutation {
2 void apply(rs1, rs2, off) {
3 if (rs1 <= rs2) // Correct: rs1 >= rs2.
4 iss.pc = iss.last_pc + off;
5 }};

In order for a mutant to be killed, some MTC must eventually
detect that the behavior observed while a mutation is enabled
differs from the expected behavior. Whether a change in behavior
is detected depends primarily on the MR that is implemented by an
MTC. There can be several MRs for an instruction but not every
MR can be used in an MTC to kill every possible mutation of
that instruction. For example, for an instruction like bge, which
is supposed to branch iff a ≥ b, one could test that the behavior
of bge is consistent with relational antisymmetry. Antisymmetry
means that iff a ≥ b and b ≥ a hold a and b must be equal. One
can apply this to bge by checking that a and b are equal iff both

bge(a,b) and bge(b,a) branch. This is a useful MR that, as
part of an MTC, succeeds in killing many possible mutations, but
that MTC alone fails to discover a mutation of bge that replaces ≥
with ≤, because both operators are antisymmetric. To distinguish
the two, one needs a relation that applies to ≤ but not to ≥. One such
relation is the triangle inequality |a|+ |b|≥ |a+b|. Listing 2 shows
an MTC using this relation and the following shows a concrete
example in which this is useful for killing a mutation.

During execution, the MT framework randomizes values of test
parameters such as instruction arguments, source and destination
registers, and others. This is done each time an MTC is executed
so that different invocations produce a different set of arguments.
It may take many executions of an MTC until a randomized
assignment is chosen that ultimately kills a mutation. For example,
consider the assignment of a = 1 and b = 2 in the above relation,
which would result in the evaluation of |1|+ |2| ≤ |1+ 2| in the
mutation, instead of |1|+ |2| ≥ |1+ 2| in the correct version. Both
are true and therefore this particular assignment fails to kill the
mutation. Only choosing a positive and negative value, both unequal
to zero, catches the mutation: |−1|+ |2| �≤ |2−1|. A mutation can
produce behavior that deviates from the unmodified behavior for
only a small subset of possible arguments.

Continuing the example, assign a = −1 and b = 2 in Listing 2.
While the MT framework executes the MTC, it will substitute the
mutation of bge on Line 5 and pass our assignments of a and b
to the mutant. This means that on Line 3 of the apply method
the expression of the if-branch condition now evaluates to false,
which results in the bge instruction not jumping. Consequently, the
assertion on Line 8 fails the MTC. Because the MTC fails, the MT
framework considers the current mutation killed, disables it, and
enables the next mutation.

E. Mutation Classes Tailored for RISC-V

Table II details the mutations we have used, broken down by
mutation classes. When an operator in one of these classes is found
in code, mutations are generated by replacing the original operator
with each of the other operators of the same class, with each such
replacement producing a mutant. For example, encountering < will
generate mutants in which that operator is replaced with <, ≥, ≤,
= or �=.

We have chosen these kinds of mutations with view of the
operations and expressions that are common in the instructions
being tested. In other instances, mutation classes different from ours
might be more suitable. For example, many of the mutation classes
presented in Jia et al. [17], such as array accesses, do not apply in
our case, while replacing immediate types, as shown in Table II,
represents a clear opportunity for mutation in the case of RISC-V.

IV. EVALUATION

We have implemented our proposed MT approach for processor
verification using RISC-V as a case study. As foundation for our
framework we leverage the ISS from the open source RISC-V
VP available at GitHub [18]. We extended the ISS accordingly
to enable execution of MTCs as described in Section III. In total
we defined 95 MRs with corresponding implemented MTCs. For
evaluation purposes we utilized the 390 mutations as described
in Section III-E.

In the following, we first provide more details on the experiment
setting and present general results (Section IV-A), then we discuss
the most effective MTCs in more detail (Section IV-B). A full list of
MTCs will be available as part of our open source implementation
on GitHub (link will follow in the final version).

Table II: Mutation classes

Mutation Group Operators Count

Arithmetic +, − 20
Bit Logic ˆ, &, | 14
Bit Shifts <<, >> 6
Relational >, <, ≥, ≤, =, �= 50

Immediates B, I, J, U, S 96
Source / Destination

Registers
rs1, rs2 / rd 162

Current / Previous
Program Counter

pc / last_pc 10

Memory Load (u)byte, (u)half, word 20
Memory Store byte, half, word 6

Sign Conversion uint32_t, int32_t 6

Total 390

A. Experiment Setup and General Results
Important aspects of our MT framework, such as selection of

MTC, test parameters and execution order, are randomized. For our
experiments, we use the commonly employed practice of initial-
izing the pseudo-random number generator of the C++ standard
library by setting a seed based on system time. We have then
evaluated the results of executing the full suite of mutations and
MTCs ten times. In the following, we present typical execution
results and quantify their variability.

All of the 390 mutations are caught by our MTCs, yielding a
mutation score of 100%. We achieved a 100% branch coverage of
the instructions we covered, as measured by Gcov. The number of
mutations killed, per MTC, had a mean of 4.1 (stdev = 4.3) and a
median of 3. We observed that 17 MTCs did not kill any mutations.
Those MTCs were found to be redundant in combination with the
other MTCs, but running them in isolation revealed that they, too,
kill a number of mutations. On average, it took 3807 iterations to
kill each mutation (stdev = 38470), with a median of 27 iterations.
This shows a great degree of variability in the number of MTC
executions it takes and thus the difficulty of killing a mutation.

To contain the scope of this work, we did not assess functional
coverage of specification requirements or compare coverage to
other testing techniques.

Total runtime of the MT framework with all mutations and MTCs
was about 35 seconds, on an Intel® Core™ i7-10510U@1.80GHz
system. Execution has been observed to take significantly longer
in cases when mutations exist that are not killed by any MTC.
However, this was only observable during the iterative process of
implementing our MTCs, when there were surviving mutations,
not in the final evaluation. In the case of no surviving mutations,
the total runtime scales approximately linearly with the number of
mutations.

The result demonstrate that MT is a suitable technique for pro-
cessor verification. In the following, we present the most effective
MTCs in more detail.

B. Details on most Effective MTCs
As there are too many MTCs to cover all of them here, we have

ranked them by the number of mutations killed and present the eight
highest ranking MTCs from a run (Figure 2). Each bar designates
the number of killed mutations and is labeled with the name of the
MTC, with the number of mutations repeated to the left. We then
go over these MTCs by presenting the underlying MR in the same
manner we did in Section III-B, each followed by an equation of
propositional logic summarizing the relation, except for the ones
we have already covered there.

28 Branching: Mutual Exclusivity (all types)

15 Memory: LW from LHU

13 Bit Logic: AND from ORI

13 Bit Logic: AND from OR

11 Memory: LHU from LBU

10 Memory: Load Extra

10 Relational: SLTIU Asymmetry

10 Relational: BGEU Antisymmetry

0 5 10 15 20 25 30
Number of killed mutations

Figure 2: Top 8 Mutation Killers

In Figure 2 we can see that the MTC testing for mutual exclusiv-
ity of branches kills the most mutations in that test run, with a total
of 28. In our evaluation, we have found that the effectiveness of that
particular MTC is in large part due to the number of instructions
covered, as it relates five different instructions.

Branching: Mutual Exclusivity (all types) The results of branch-
ing instructions, given the same operands, are mutually exclusive.
This is similar to the complementary behavior between beq and
bne shown in Section III-B, but this one relates all available branch
types. This relation states that, if both beq and bge branch for a
given set of operands, then none of bne, blt, nor bltu will.

beq∨bge =⇒ ¬(bne∨blt∨bltu)

Memory: Load Extra Storing a value to a memory location at off-
set m will leave the data in adjacent memory locations unchanged.
Therefore, we expect that one can read back values x1 and x2 with
lb from the surrounding addresses that had been written there with
sb previously.

sb(m−1,x1); sb(m+1,x2); sb(m,x3)
=⇒ (lb(m−1) = x1)∧ (lb(m+1) = x2)

Bit Logic: AND from OR/I A bitwise or can be expressed with
bitwise and using De Morgan’s law, as shown in Section III-B.
One version covers instruction with register operands, the other the
versions taking immediate operands.
Memory: LW from LHU / LHU from LBU An invocation of
lh can be constructed from combining the results of two lbu
instructions, from adjacent memory locations, as shown in Sec-
tion III-B. Similarly, two invocations of lhu can be used to replace
one instance of lw, by shifting the upper half-word to the left and
combining it with the lower half-word.

lw(off) = (lhu(off+2)<< 16) | lhu(off)
lhu(off) = (lbu(off+1)<< 8) | lbu(off)

Memory: Load Extra Loading from memory after storing a value
in that location sets extraneous bits of the target register to zero.
The other bits match the originally written value.

sb(x,off) =⇒ (lbu(off) & 0xff) = x

Relational: SLTIU Asymmetry As in Section III-B, expresses the
asymmetry of the < relation implemented by the sltiu instruc-
tion.
Relational: BGEU Antisymmetry This relation is based on the
same type of antisymmetry explained in Section III-B. When ex-
changing the operands of two invocations of bgeu, both instances
can only branch if the operands a and b are equal. That is the only
case in which both a ≥ b and b ≥ a can be true.

bgeu(a,b)∧bgeu(b,a) =⇒ a= b

It can be observed that these presented MRs cover a large set
of different instruction groups, including memory, branching and
computational operations.

V. CONCLUSION AND FUTURE WORK

In this paper we proposed MT for processor verification using
RISC-V as a case study. Therefore, we came-up with a novel
set of MRs and implemented corresponding MTCs tailored for
RISC-V. Our experimental mutation-based analysis, using an ef-
ficient on-the-fly MT framework at the instruction-level, demon-
strated the effectiveness of the MRs to kill all mutations, which
shows that MT is a viable technique for the domain of processor
verification. Based on our MR’s generality and the universality of
the instruction set chosen, we expect our MRs to be of use for many
other processors. Separate investigations will need to be undertaken
to show how MT can best complement other test approaches.

For future work we plan to:
• Leverage our MRs for processor verification at the register-

transfer level.
• Explore application of MT for different ISAs or RISC-V

instruction set extensions.
• Investigate formal techniques to enable automated generation

of MRs.

REFERENCES

[1] Z. Q. Zhou, S. Xiang, and T. Y. Chen, “Metamorphic testing for software
quality assessment: A study of search engines,” vol. 42, no. 3, pp. 264–
284, 2015, publisher: IEEE.

[2] S. Segura and Z. Q. Zhou, “Metamorphic testing 20 years later: A hands-
on introduction,” in Proceedings of the 40th International Conference
on Software Engineering: Companion Proceeedings, 2018, pp. 538–539.

[3] V. Le, M. Afshari, and Z. Su, “Compiler validation via equivalence
modulo inputs,” vol. 49, no. 6, pp. 216–226, 2014, publisher: ACM
New York, NY, USA.

[4] Z. Q. Zhou and L. Sun, “Metamorphic testing of driverless cars,” vol. 62,
no. 3, pp. 61–67, 2019, publisher: ACM New York, NY, USA.

[5] S. Segura, G. Fraser, A. B. Sanchez, and A. Ruiz-Cortés, “A survey
on metamorphic testing,” vol. 42, no. 9, pp. 805–824, 2016, publisher:
IEEE.

[6] H. Liu, F.-C. Kuo, D. Towey, and T. Y. Chen, “How effectively does
metamorphic testing alleviate the oracle problem?” vol. 40, no. 1, pp.
4–22, 2013, publisher: IEEE.

[7] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The
oracle problem in software testing: A survey,” vol. 41, no. 5, pp. 507–
525, 2015-05.

[8] RISC-V Foundation, The RISC-V Instruction Set Manual; Volume I:
Unprivileged ISA, A. Waterman and K. Asanović, Eds., 2019.

[9] ——, The RISC-V Instruction Set Manual; Volume II: Privileged Archi-
tecture, A. Waterman and K. Asanović, Eds., 2019.

[10] M. Hassan, D. Große, and R. Drechsler, “System-level verification of
linear and non-linear behaviors of RF amplifiers using metamorphic
relations.” ASP-DAC, 2021, pp. 761–766.

[11] J. Liu, “Metamorphic testing and its application on hardware fault-
tolerance,” 2011, ECE Project Report at University of Wisconsin.

[12] “RISCV-DV,” https://github.com/google/riscv-dv.
[13] V. Herdt, D. Große, H. M. Le, and R. Drechsler, “Verifying instruction

set simulators using coverage-guided fuzzing,” in DATE, 2019, pp. 360–
365.

[14] “RISC-V torture test generator,” https://github.com/ucb-bar/
riscv-torture.

[15] “OneSpin 360 DV RISC-V Verification App,” https://www.onespin.com/
solutions/risc-v, 2020.

[16] “RISC-V formal verification framework,” https://github.com/
SymbioticEDA/riscv-formal.

[17] Y. Jia and M. Harman, “An analysis and survey of the development of
mutation testing,” vol. 37, no. 5, pp. 649–678, 2011-09.

[18] “RISC-V virtual prototype,” https://github.com/agra-uni-bremen/
riscv-vp.

