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Abstract—Addition is the most basic arithmetic operation and
efficient adder realizations are crucial to performing arithmetic
operations in an efficient way. Synthesis of efficient adders has
been studied exhaustively for two-valued, Boolean logic and
asymptotically optimal constructions have been derived w.r.t.
time and space complexity. In contrast, for multiple-valued
logic typically simple, linear-time adder structures like Ripple
Carry Adders are employed and there have only been few
case studies on more efficient adders for small radices. In this
paper, we provide generic constructions of efficient adders with
asymptotically optimal time (and space) complexity that can be
used for arbitrary radices.

I. INTRODUCTION

Boolean logic and binary number representations are being
used in essentially all modern, CMOS-based processors, since
it is significantly easier if there are only two different logic
values to be represented, e.g. in terms of different voltage
levels. Performing binary arithmetic operations like addition
and multiplication in an efficient way is crucial for these
systems and there has been a large body of research on
efficient binary addition and multiplication circuits [1]-[5].

However, in the 1990s and 2000s there have also been pro-
posals to operate standard MOS technology in different ways
using four different logic values, i.e. realizing a quaternary
logic, mainly as to reduce the number of interconnects [6]—
[9]. In this context, there have been proposals for efficient
quaternary adders which make use of the fact that the addition
of two quaternary digits can be interpreted as the addition
of two two-bit binary numbers [8], [9]. This interpretation
allows for the rather straightforward generalization of the
constructions for the binary case—as long as the input and
intermediate carries are restricted to the values 0 and 1.

More recently, new computing technologies are explored
like carbon nanotube field-effect transistors (CNTFETSs) in
which a ternary, i.e. three-valued, logic can readily be em-
ployed by using a mixture of transistors and memristors [10]—
[12]. While most papers only consider 1-digit adders (so-
called half and full adders) and straightforward N-digit adder
constructions like ripple carry adders, in [11] the realization of
an arbitrary-width fast ternary adder' is discussed—with the
same restriction on the carry values as above.

Overall, the synthesis of efficient adders has only been
considered for small radices so far and only for restricted

IThe term ternary adder is sometimes also used for adders with three
summands, especially when Boolean logic is considered.

carries. However, there are applications (e.g. in efficient multi-
pliers) where the input carry is used as an (unrestricted) third
summand such that the restriction to two values would be
inappropriate.

In this paper, we provide generic constructions of fast adders
for multiple-valued logic (MVL) that generalize the binary
constructions for arbitrary radices. A key characteristic of
these adders is that they work regardless of whether the carries
are restricted to two values or not. Moreover, we show that the
constructions are also asymptotically optimal regarding time
(and space) complexity.

The remainder of the paper is structured as follows: Sec-
tion II provides basic definitions of multiple-valued adders and
complexity measures. In Section III we define a set of elemen-
tary MVL operators and prove some important properties and
relationships that are required for the synthesis of efficient
MVL adders that is discussed in detail in Sections IV and V.
Finally, we provide our conclusions in Section VL.

II. PRELIMINARIES

A. Multiple-Valued Adders

Let a,b,s € {0,...,p — 1}™ be p-valued numbers of n
digits with the interpretation as unsigned positive numbers

n—1
dp = [dn—1,...,dolp = Z dip’
i=0

and ¢,_1,c_1 €{0,...,p—1}.

The function that maps (a,b,c_1) — (¢p—1,s) such that
[¢n—1,8n—1--.So0]p = ap+b,+c_1 is called an n-digit adder.
Here, c_; is called input carry and c,,_; is called output carry.

Special cases are given by the Half Adder (HA), a 1-digit
adder without an input carry, i.e. c_; = 0, which realizes
the addition of two p-valued numbers, and the Full Adder
(FA), which is a 1-digit adder of two p-valued numbers and
an (unrestricted) input carry.

Concatenating multiple full adders allows for the realization
of a simple n-digit adder using the output carry of each Full
Adder as the input carry of the succeeding full adder as shown
in Fig. 1. This well-known construction is termed Ripple Carry
Adder (RCA).
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Fig. 1. Ripple Carry Adder

B. Time and Space Complexity

To quantify the complexity of adders we make use of their
realization as combinational p-valued circuits. These can be
formalized as directed, acyclic graphs G = (V, E) whose
vertex set consists of primary input nodes (for the operands’
digits a,—1,bn—1,-..,ag, by, c_1), primary output nodes (for
the result’s digits ¢,—1, Sp—1, - - -, So) and internal nodes with
at most two incoming edges representing primitive p-valued
logic gates with up to 2 inputs. Note that the primary inputs
are root nodes of the graph with no incoming edges and the
primary outputs are leaves of the graph with no outgoing
edges.

The cost (space complexity) of an adder is then defined
as the number of internal nodes, i.e. primitive p-valued logic
gates, and its depth (time complexity) is given by the maxi-
mum length of the shortest path between any primary in- and
output.

Thus, the cost of an RCA is linear in the number of input
digits since it requires n Full Adders (with constant cost):

cost(RCA) =n - cost(FA) =n-0(1) = O(n)

To determine the depth, we observe that both outputs of
a Full Adder depend on three inputs and it is clear that the
subgraph of G that computes a function depending on three
inputs requires at least two levels of primitive logic gates. In
fact, the computation can be expanded to a binary in-tree and
in general a binary in-tree with k leaves (here: primary inputs)
has at least depth [log, (k)] and contains at least k£ — 1 internal
nodes. The case for £ = 3 is shown in Fig. 2.

Thus, also the depth of a ripple carry adder is linear in the
number of input digits, since there is a shortest/critical path
that traverses all full adders via the carry in- and outputs.

Overall, the interpretation as binary in-trees implies that
an asymptotically optimal adder, for which the output carry
depends on all 2n + 1 primary inputs, has cost O(n) (like
the ripple carry adder), while the depth could potentially be
logarithmic in n in the optimal case.

III. MVL OPERATORS

In this section we define four operators for MVL and prove
a few properties and relationships required for the construction
of MVL adders with asymptotically optimal time (and space)
complexity.
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Fig. 2. Binary In-Tree for Full Adder

Definition 1. For a,b € {0,...,p — 1} we define binary
operators SUM, x, @, - as follows:
e SUM(a,b) = (a+0b) mod p
1 a+b>p
0 else
e a®b=max(a,b)
e a-b=max(0,a+b— (p—1))

e axb=

Remark 1. Note that SUM and x can be interpreted as the
sum and carry outputs of a p-valued half-adder; i.e.

HA(a,b) ;= (a x b,SUM(a,b))
a+b=p-(axb)+SUM(a,b) =[HA(a,b)]p.

and

Thus we say that a and b generate a carry if, and only if,
axb=1

It is immediately clear from these definitions that all opera-
tors are commutative and SUM as well as @ are associative.
Associativity also holds for - according to

Lemma 1. For a,b,c € {0,...,p — 1} it holds that
(a-b)y-c=a-(b-c)

Proof. We observe that 0 < b- ¢ < min(b,¢) < b,e <p—1
and a-b =0« a+b < p— 1. The proof is done by case
analysis.

e Case a - b = 0: this means that the left-hand side of the
equation evaluates to 0

0<(a-b)-¢c=0-¢<0
and the same also holds for the right-hand side since
a+(b-c)<a+b<p-1
o Casea-b>0:
- If(a-b)-c=0,thena+b+c < 2(p—1) or
equivalently a + b+ ¢ —2(p—1) < 0.
x If b-c =0, also the right hand side evaluates to 0

with the same argumentation as for case a-b = 0.
x If b-c > 0, we have for the right-hand side

a-(b-c)=max(0,a+b+c—2(p—1))=0

so both sides equal to O.



- If (a-b)-c> 0, we obtain

(@-b)-c>0&a+b+c>2(p—1)
=b+c>p-—1
<b-c>0
Thus, 0 < (a-b)-c =a+b+c—2(p—1) =a-(b-c).
Overall, the equality is proven for all possible cases. O

Though x is not associative, we can nonetheless prove a
useful property:

Lemma 2. For a <1 and b,c € {0,...,p — 1} it holds that

(axb)yxec=ax(b-c) ()
Proof. Both sides of the equation can only become 1 if a = 1
andb=c=p-—1. [

Remark 2. For a > 2, the equation does not hold, since for
b=p—1 and c = p — 2 the left-hand side becomes 0, while
the right-hand side evalutes to 1.

Moreover, a distributive law holds for & and x.

Lemma 3. For a,b,c € {0,...,p — 1} it holds that

(a®b)xc=(axc)®(bxc) (2)

Proof. The maximum of a and b generates a carry together
with c if, and only if, at least one of them generates a carry
with c. O

IV. SYNTHESIS OF MVL CONDITIONAL SUM ADDER

We begin our studies on efficient MVL adders by noting that
the Conditional Sum Adder (CoSA, [4])—a simple adder with
logarithmic depth, but super-linear cost—can be generalized in
a straightforward way from two-valued to p-valued logic. More
precisely, the basic idea of a CoSA is to split up the addition
of 2n bits into multiple additions of n bit (as shown in Fig. 3).
The lower n bits only need to be computed once, but the higher
n bits are computed multiple times in parallel, once for each
possible value of the input carry at bit n, i.e. the carry output
of the lower n bits. Note that in MVL adders, the internal carry
bits can not only assume values O and 1, but also 2, namely
if the input carry c_; is greater than or equal to 2 (since
a; +b; < 2p—2). Thus, we require three computations for the
higher n bits and once the correct value of the intermediate
carry has been computed, 3-to-1 multiplexer (MU X3) can be
used to select the outputs of the corresponding addition of the
higher n bits (the carry can assume only three different values
0,1, and 2).

To see that the depth of this adder is logarithmic in n, we
observe that

depth(CoSA,,) = depth(CoS A, 2) 4 depth(MU X3)
= depth(CoS Ay, )4) + 2 - depth(MU X3)

= depth(CoS A1) + logy(n) - depth(MU X3)

n/2 41 n/2 41
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Fig. 3. Conditional Sum Adder
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Fig. 4. Full Adder constructed from Half Adders and SUM operation

and CoSA; can be interpreted as a full adder (with constant
depth). More precisely, a full adder can be constructed from
two half adders and one SUM operation as shown in Fig. 4.

The following equations show that this indeed realizes a
1-digit adder as defined in Section II-A:

| SUM(Caln cabc)

| Cab, Cabe § 1

[co, 50]p = P - co + S0
=p- [(Cab + cabc) mod p] + So
=pP- (Cab + Cabc) + So

=P Cab + (p * Cabe + SO) | HA(Saba 071)
=p-Cop+ (Sab + 1)
= (p- Cab+ Sap) + C—1 | HA(a,b)

=(a+0b)+c_y

Regarding the super-linear cost, we observe that the cost
increases at least by factor 4 when n is doubled, since
cost(CoSAa,) = 4-cost(CoSA,)+ (n+1) - cost(MUX3).

V. SYNTHESIS OF MVL CARRY-LOOKAHEAD ADDER

The Carry Lookahead Adder (CLA) for MVL is a more
sophisticated adder that combines logarithmic depth and linear
cost. It can be obtained by generalizing the construction
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Fig. 5. Carry Lookahead Adder

for two-valued logic [1]. The basic idea of the construc-
tion is that it is sufficient to compute the carry bits c;
for all ¢, from which the output bits can be computed as
s; = SUM(SUM (a;,b;),ci—1). Here, a parallel prefix com-
putation based on the generation and propagation properties
for addition is employed to efficiently compute the carry bits
(shown as a block P, in Fig. 5).

Given the premise that all carries are restricted to two
values (0 and 1), the generalization of this construction to
arbitrary radices boils down to finding operations that work
like Boolean AND and OR on the two possible carry values
(e.g. generalized min and max operations), as also done in [11]
for p = 3. In contrast, the following construction also supports
the value 2 as intermediate carry which occurs if the input
carry c_; is greater than or equal to 2 (since a; +b; < 2p—2).
However, in order to simplify our considerations, we restrict
to an input carry c_; € {0, 1,2}. Larger input carries can be
supported by applying a Full Adder to digit 0. This yields
an output carry cg < 2 and allows to apply the proposed
CLA construction for the remaining digits. To distinguish the
different carry values, we will briefly denote them as 1-carry
and 2-carry, respectively.

A. Carry Generation and Propagation Properties

Generation and propagation properties for addition are de-
scribed by function families g = {g;; | 0 < < j < n} and
p=A{p;:i |0 <i<j<n}, respectively, where

e 9;i:{0,...,p—1}*" — {0,1} indicates whether bits 4
to j generate a carry,

e it {0,...,p—1}*" = {0,...,p—1} indicates whether
bits ¢ to j propagate a carry. More precisely p;; shall
assume

— value p — 1 if, and only if, both a 1-carry and a 2-
carry are propagated (which is consistent with the
definition in the binary case) and

— value p — 2 if, and only if, a 2-carry is propagated,
but is reduced to a 1-carry.

Using these functions, the carry bit ¢; can be computed as

cj =95 © (Pji - ci-1) 3)

In fact, ¢; = 1, if bits 4 to j

o generate a l-carry (they cannot generate a 2-carry),

e propagate a l-carry (i.e.,, pj; =p—1and ¢;_; = 1), or

« reduce an incoming 2-carry to a 1-carry (i.e., pj; = p—2
and ¢;_1 = 2).

In the latter two cases we have p; ;-c;—1 = 1. The only way for
having c¢; = 2 is, when a 2-carry is propagated, i.e. ¢;_1 = 2
and p;; = p — 1 which implies p;; - ¢;—1 = 2.

For the case ¢ = j, the functions are defined as follows:

pii = SUM (a;, b;) “4)
Gii = a; X b; (5)

For ¢ < j, we obtain for an arbitrary k£ with i < k < j:
9ji = 9ik+1 D (ki X Djk+1) (6)

Dji = Pk * Dj k+1 (N

Regarding the correctness of Eqn. (6), we note that the
operator @ corresponds to a logical OR, as g, . can only
assume the values O or 1. For the same reason, the term in the
parentheses evaluates to 1 if, and only if, pjr11 =p—1 and
gx,i = 1. Thus, a carry is generated if bits £+ 1 to j generate
a carry themselves or if bits ¢ to k generate a carry and bits
k + 1 to j propagate it.

Regarding the correctness of Eqn. (7), the expression on the
right-hand side evaluates to p—1 if, and only if, both operands
have value p—1. Thus, a carry is propagated in the entire range
if, and only if, both bit ranges propagate a carry. Value p — 2
is assumed if, and only if, one operand has value p—1 and the
other has value p — 2. That means that a 2-carry either passes
the range ¢ to j unaltered and then reduces to a 1-carry in the
remaining bits or the 2-carry reduces to a 1-carry in the range
1 to j and is then propagated over the remaining bits.

B. Parallel Prefix Computation

The general idea of parallel prefix computation is that
the computation of the products x; = y; o y;—1 0 ... 0 Yo
for 4 =0,...,2n —1 can be conducted in parallel for an
associative operator o using the following construction:

1) Compute y; = y2j41 0y2; for j =0,...,n— 1.

2) Compute ; = Yoy’ _10...0Yy = Y2;j4+10Y2j0...0Yo.

3) Output z; = x’(i_l)m for odd ¢ and z; = y; o x;/Q for

even 1.

The first step can be conducted in parallel for all j, the
third step can be conducted in parallel for all ¢, so the
depth of both steps is depth(o) and both steps require n
applications of o. The second step can be conducted by parallel



prefix computation with half the number of operands. So
depth(P,,) = (logz2(n) — 1) - depth(o) and

cost(P,) = 2n - cost(o) + cost(P,2)

1
= 2n - cost(o)(1 + 5) + cost(Py,)4)

1 1
=2n-cost(o)(1+ =+ - +..

511 .) + cost(Ps)

< 4n - cost(o)

In order to exploit parallel prefix computation for the CLA,
we note that according to Eqn. (3) the carry bits ¢; can be
computed from the input carry c_; as

¢ =0i,0®D (Pio-c-1) (8

In order to compute the g; o and p; o in an efficient way,
we require an associative operator o that satisfies

(gi,O;pi,O) = (gi,i7pi,i) © © (91,1,1?1,1) o (go,o,po,o)

Thus, according to Eqn. (6) and (7) the operator o shall be
defined as follows

(92,p2) © (91,p1) = (92 ® (91 X p2),p2 - P1) 9

We will now prove that this definition indeed yields an
associative operator under certain conditions.

Theorem 1. The operator o is associative if, and only if, it
is applied on pairs of 2-valued and p-valued functions over

{0,...,p— 112"

Proof of Theorem 1. Let g1, g2, g3 and p1, pa, p3 be p-valued
functions over {0,...,p — 1}?". We observe that

((92;102) © (91,1?1))
93,13) © (92 ® (g1 X p2),p2 - P1)

(937173)

(

(93 @ [(92 @ (91 X p2)) X p3],p3 - (P2 - 1))
(

(

93 D (92 X p3) ® ((91 X p2) X p3),p3 - (P2 - p1))
93 ® (92 X p3) © [g1 % (p2 - p3)],p3 - (P2 - 1))

using Eqn. (2) and (1) to come from the third to the fourth
and the fifth line, respectively. Note that according to Lemma
2 and Remark 2 the step from the fourth to the fifth line is
only valid if g; <1, i.e. if g1 is a 2-valued function.

On the other hand we obtain

((93,]93) © (92,172)) o (g1,p1)

= (93 ® (92 X p3),p3 - p2) © (g1,p1)

(l93 @ (g2 x p3)] @ [91 % (p3 - 2)], (P3 - P2) - P1)
= (g3 ® (g2 X p3) ® [91 x (p2 - p3)], (p3 - p2) - 1)

using associativity of @ and commutativity of - to come
from the third to the fourth line. Since - is associative,
the resulting terms in the second component are equivalent.
Overall, associativity is proven for o under the condition that
g1 is a 2-valued function. O

Since all generation functions from g are 2-valued functions,
the operator o as defined above is associative in our setting
and can be used for parallel prefix computation.

The cost of the CLA is linear in n, since the cost of parallel
prefix computation is linear and it furthermore requires

1) asingle SUM or x operation, respectively, to compute
the g;; and p; ; (c.f. Eqn. (4) and (5)),
2) two operations are required to compute the carry bits
(c.f. Eqn. (8)) and
3) one more SUM is required to obtain the sum bits
S; = SUM(SUM(CLZ, ) C;i—1 ) = SUM(pi7i,Ci_1).
The depth is logarithmic in n, since the parallel prefix com-
putation can be done in logarithmic time and the surrounding
logic has constant depth of 4.

VI. CONCLUSIONS

In this work, we considered the synthesis of efficient adders
for multiple-valued logic. In contrast to previous work, we
provided two generic constructions that work for arbitrary
radices and input carry values. While the generalized Con-
ditional Sum Adder achieves asymptotically optimal time
complexity (logarithmic in the number of input digits), i
has super-linear and, hence, sub-optimal cost. The second,
more sophisticated construction which is a generalized Carry
Lookahead Adder achieves both, asymptotically optimal time
and space complexity.
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