
LiM-HDL: HDL-Based Synthesis for In-Memory
Computing

Saman Froehlich Rolf Drechsler
Group of Computer Architecture, University of Bremen, Germany and Cyber-Physical Systems, DFKI GmbH, Germany

froehlich@uni-bremen.de drechsler@uni-bremen.de

Abstract—HDLs are widely used in EDA for abstract specifi-
cation and synthesis of logic circuits. Despite the popularity and
the many benefits of HDL-based synthesis, it has not yet been
performed for in-memory computing. Hence, there is a need to
design a particular HDL which supplies efficient and compatible
descriptions.

In this paper, we enable HDL-based synthesis for the Pro-
grammable Logic-in-Memory (PLiM) computer architecture. We
present LiM-HDL - a Verilog-based HDL - which allows for the
detailed description of programs for in-memory computation.
Having the description given in LiM-HDL, we propose a synthesis
scheme which translates the description into PLiM programs, i.e.
a sequence of resistive majority operations. This includes lexical
and syntax analysis as well as preprocessing, custom levelization
and a compiler.

In our experiments, we show the benefits of LiM-HDL
compared to classical Verilog-based synthesis. We show in a
case-study that LiM-HDL can be used to implement programs
with respect to constraints of specific applications such as edge
computing in IoT, for which the PLiM computer is of particular
interest and where low area is a key requirement. In our case-
study, we show that we can reduce the number of ReRAM devices
needed for the computation of an encryption module by 69%.

I. INTRODUCTION

As the integration of Internet of Things (IoT) in today’s
society is progressing, there is a shift from computation in
data centers to edge devices [1]. More and more edge devices
are used, which are at the same time of decreasing size and
very restricted in terms of area, computation capabilities and
admissible power consumption [2].

Most of today’s computer systems are based on the von
Neumann computer architecture. This architecture suffers from
the von Neumann bottleneck which describes the limited
transfer rate of the data from the memory to the CPU [3].

Recently, Resistive Random Access Memory (ReRAM), a
resistance based storage device, is emerging. ReRAM is es-
pecially appealing due to its inherent in-memory computation
capabilities. ReRAM allows for the computation of univer-
sal functions and thus, ReRAM can compute any Boolean
function. ReRAMs low power consumption, scalability and
fast switching capabilities make it an excellent candidate for
a technological foundation for edge devices and IoT [4], [5].

In order to overcome the von Neumann bottleneck, an archi-
tecture for the Programmable Logic-in-Memory (PLiM) com-
puter has been proposed [6]. In addition to the control logic,
the core of the PLiM computer architecture are the ReRAM
arrays, which are used as storage and computational unit.
Consequently, the PLiM computer architecture does not suffer

This work was supported by the German Research Foundation (DFG) within
the Project PLiM (DR 287/35-1).

from the von Neumann bottleneck. Additionally, the PLiM
computer architecture is of particular interest for IoT and edge
devices, as the resulting architecture operates at low power [6].
In [7], the PLiM computer architecture has been improved to
support computation of multiple operations in parallel.

Today, state-of-the-art synthesis is performed using Hard-
ware Description Languages (HDLs) such as Verilog and
VHDL. These languages allow for the definition of hardware
modules which use resources of conventional computational
devices such as registers etc. However, these languages feature
no specific properties of the PLiM computer architecture,
which are especially efficient for the computation of specific
logic operations such as MAJ, AND and OR. Existing HDLs
are used to define structures such as gates, multiplexers and
flip-flops while a program for the PLiM computer is executed
on a crossbar array and consists of a sequence of signals
applied to the rows and columns without changing the way
the devices are wired.

In this paper we propose Logic-in-Memory (LiM)-HDL,
a HDL tailored for in-memory computing and the PLiM
computer architecture. LiM-HDL is a Verilog-based definition
language and features operations which can be efficiently
synthesized in ReRAM. As LiM-HDL is Verilog-based, most
of its syntax is very similar to that of conventional Verilog, al-
lowing for easy translation of an existing code basis. Together
with a compiler which optimizes the final implementation,
LiM-HDL allows to synthesize hardware very efficiently into
programs for the PLiM computer architecture. Additionally,
LiM-HDL can be combined with conventional Verilog to allow
for easy integration into existing systems and a low initial
hurdle to entry.

In addition to LiM-HDL, we propose a synthesis scheme,
which can be used to compile LiM-HDL. The synthesis
scheme features preprocessing, levelization and a compiler for
the LiM-HDL code. Finally, we propose the syntax for the final
PLiM program, which can be executed on the PLiM computer
architecture.

II. PRELIMINARIES

A. Storing Values

ReRAM devices are ordered in crossbar arrays, which
consist of multiple bitlines and wordlines. Each device is
connected to one bitline and one wordline. By applying the
voltage V/2 to the corresponding bitline and the voltage −V/2
to the corresponding wordline, the device which is connected
to that bitline and that wordline can be put into a high
resistance state. Similarly, by applying −V/2 to the bitline

and V/2 to the wordline, the device can be put into a low
resistance state. The voltages V/2 and −V/2 and the low
resistance and high resistance state can be interpreted a logic 1
and logic 0, respectively.

B. Resistive Majority Operation RM3

Each ReRAM device can be interpreted as a two-terminal
device with the terminals P (the wordline operand) and Q (the
bitline operand) and the internal resistance state Z (the host
operand). If P is set to 1 (i.e., V/2) and Q is set to 0
(i.e., −V/2), the resistance state Z is set to 1 (i.e., a low
resistance state). Correspondingly, if P is set to 0 and Q
is set to 1, the resistance state Z is set to 0. In all other
combinations ((P = 0, Q = 0),(P = 1, Q = 1)), Z remains
unchanged. This behavior can be mapped to the majority
operation MAJ(P, Q̄, Z) = PQ̄ + PZ + Q̄Z, which is
commonly defined as the RM3 operation RM3(P,Q,Z) =
MAJ(P, Q̄, Z).

III. RELATED WORK

In this section, related work is introduced. As we are the
first to propose a HDL tailored for in-memory computing, we
focus on other compilation strategies in this section.

The authors of [8] present a Majority-Inverter-
Graph (MIG)-based compiler for the PLiM computer
architecture. The authors use rewriting techniques and a
translation algorithm for the optimization of MIGs. However,
as the PLiM computer architecture introduced in [8] only
supports single instructions, this work does not utilize
parallelization and focuses on a different architecure.

In [7], the authors propose the AIG-based compiler Com-
PRIMe for the PLiM computer architecture. ComPRIMe sup-
ports parallel computation within regular ReRAM crossbar
arrays. First, a given AIG is levelized. Each level is then
computed in parallel by exploiting the fact that computation
of operations can be parallelized if each operation shares the
same wordline operand.

IV. LIM-HDL

In this section, we describe the syntax of our proposed LiM-
HDL in detail. Besides RTL descriptions, LiM-HDL also gives
support for descriptions at behavioral level. The described
syntax can be integrated into lexers and parsers to parse files
written in LiM-HDL.

As LiM-HDL is fully integrable into existing Verilog code
and the syntax is very similar, the compiler has to be instructed
to interpret code portions as LiM-HDL. In order to do this,
code blocks can be framed by the instructions

LiMHDLbegin
LiMHDLend

A. Logic Operations

For the description of arbitrary hardware, it is imperative
to allow for basic logic operations. Since the RM3 operation
is native to ReRAM, other logic operations are translated into
equivalent RM3 expressions. LiM-HDL supports the following

operations, where the parameter WL is the wordline operand,
the parameter BL is the bitline operand and the parameter H
is the host operand:

• RM3: As the RM3 operation is native to ReRAM, it is
essential to an HDL for in-memory computing. Any RM3

operation is directly translated into a single instruction.
The syntax is defined as:
a s s i g n o u t = RM3(WL, BL , H)

• &: As proposed in [7], the & operation can be directly
translated into an RM3 operation. The syntax is defined
as:
a s s i g n o u t = BL&H
The & operation is translated into RM3(0, B̄L,H)

• |: Similar to &, the | operation can be directly translated
into an RM3 operation. The syntax is defined as:
a s s i g n o u t = BL |H
The | operation is translated into RM3(1, B̄L,H)

• ∼: As inversions are computed implicitly, the ∼ operation
is not translated into a RM3 operation. However, it is still
admissable to use within LiM-HDL:
a s s i g n o u t = ˜OP

• :̂ The XOR operation ˆ can not be translated into a single
RM3 operation, but needs three RM3 operations to be
computed. The LiM-HDL syntax is defined as:
a s s i g n o u t = OP1 ˆ OP2
As this operation can not be translated into a single RM3

operation, it is translated into:
RM3(1,RM3(0, OP1, OP2),RM3(0, OP2, OP1))

We choose this representation since it maps to AND
and OR operations and allows for parallel execution with
other AND and OR instructions.

In addition, shift operations are supported. However, in LiM-
HDL they are not directly translated into operations as they
have a semantic meaning, i.e. as to connect which operand to
which operation in the final graph.

B. Behavior Level Modeling

LiM-HDL offers support for modeling at behavioral level.
PLiM programs consist of a sequence of signals applied to
the rows and columns of crossbars. Thus, in LiM-HDL only
blocking assignments are supported. However, LiM-HDL does
feature full support for-loops and conditional statements. In
this section, we detail the supported statements.

To allow for easy integration, the syntax is equivalent to that
of Verilog. Thus, behavior level modeling is indicated by al-
ways blocks, which can be used within LiM-HDL. LiM-HDL
supports the three loop instructions for-loops, while-loops and
repeat-until-loops. Besides Loops, LiM-HDL also features the
conditional if-statements and switch-case-statements. Again,
the same syntax as for Verilog is adapted.

Example 1. An example is given in Listing 1. Here, we have
defined a full Ripple-Carry Adder (RCA). As we can use
always blocks with for-loops we can easily create the full-
adder tree, which is characteristic for RCAs. The output of
a full-adder is computed by two XOR operations. However,
using the substitution proposed in [9], it can be shortened as
in Line 15 resulting in only three RM3 operations. Further, we
have optimized the computation of the carry bits in Line 16.

Note that such an optimization would not be possible without
the expressiveness of LiM-HDL.

Listing 1. 8-Bit RCA

1 module Adder (IN1 , IN2 , c in , o u t) ;
2 parameter wid th = 8 ;
3 input [width −1:0] IN1 ;
4 input [width −1:0] IN2 ;
5 input c i n ;
6 output reg [wid th : 0] o u t ;
7 reg [wid th : 0] c ;
8 i n t e g e r i ;
9 LiMHDLbegin

10 always @ (IN1 or IN2)
11 begin
12 c [0] = c i n ;
13 f o r (i =0 ; i<wid th ; i = i +1)
14 begin
15 o u t [i]= RM3(RM3(IN2 [i] , IN1 [i] , c [i]) , IN2 [i] , RM3(IN2 [i] , c [i] , IN1 [i])) ;
16 c [i +1]= RM3(IN2 [i] , ˜ IN1 [i] , c [i]) ;
17 end
18 o u t [wid th]= c [i] ;
19 end
20 LiMHDLend
21 endmodule

To allow for easy implementation of more complex mod-
ules, we have implemented the + and − operations in LiM-
HDL to be substituted by the RCA given in Listing 1. Thus,
the code shown in Listing 2 generates the same PLiM program
as that of Listing 1, if we set the carry input cin to 0.

Listing 2. 8-Bit RCA using the + operator

1 module Adder (IN1 , IN2 , o u t) ;
2 parameter wid th = 8 ;
3 input [width −1:0] IN1 ;
4 input [width −1:0] IN2 ;
5 output reg [wid th : 0] o u t ;
6 LiMHDLbegin
7 o u t =IN1+IN2 ;
8 LiMHDLend
9 endmodule

C. Generate Statements

For easy assembly of complex hardware using hardware
components as building blocks, LiM-HDL supports gener-
ate statements. Here, also the same loops and conditional-
statements as in the behavioral level modeling are supported.

V. SYNTHESIS OF LIM-HDL-BASED CIRCUITS

After implementing LiM-HDL into the lexer and parser,
it can be transformed into an abstract syntax tree and sub-
sequently into an RTL graph representation [10]. This RTL
graph representation consists of cells, which represent the
different operations in the program. In this section, we present
a synthesis scheme which can be used to preprocess the RTL
graph and synthesize it into a PLiM program. Our synthesis
scheme is based on [7], however, while [7] is limited to AIGs,
we propose a generalization which is capable of processing
arbitrary RM3-based RTL graphs. Figure 1 shows the flow of
our proposed scheme. It can be divided into a preprocessing
step, a levelization step and the final compilation.

A. Preprocessing

Before levelizing and compiling the RTL graph to a PLiM
program, we perform three preprocessing steps:

1) Mapping to permitted cells: Before compilation, some
cells need to be replaced, removed or optimized in order to
allow for the compiler to transform the RTL graph into a PLiM
program. As we aim to compile AND, NOT and RM3-based
graphs, other cells such as XOR, OR and the + operation,

Mapping to
Permitted

Cells

Exact:
Branch & Bound

Heuristic:
Monte Carlo Tree Search

(MCTS)

Topological
Sorting

Removal of
Implicit

Cells
Large Designs

Small and
Medium Designs

PLiM Program

Fig. 1. Proposed Synthesis Scheme

which may have been introduced due to the use of Verilog
or behavioral level descriptions, need to be replaced. First,
the + and − operations are replaced by their corresponding
RM3-based representation (see Section IV-B). Further, all cells
which do not represent the AND, NOT or RM3 operations are
replaced and optimized to AIG.

2) Topological Sorting: In order to compute the cells in the
right order, the cells are sorted topologically. This step ensures
that all inputs needed for a cell are already computed when
performing compilation.

3) Removal of Implicit Cells: Some cells are obsolete
for in-memory computing. Synthesis tools generate sequen-
tial elements, however, as the basic concept of in-memory
computing is not timing reliant, elements which are used for
synchronization can be ignored. Additionally, as our synthesis
algorithm computes inversions implicitly, NOT operations can
be removed from the design. Instead of NOT operations, each
cell stores if it needs its inputs to be inverted or not. As
inversions are computed implicitly, the corresponding values
can be loaded from the memory or computed where needed
and applied in the final PLiM program.

B. Levelization

Levelization is an important step for parallel computation
in in-memory computing, as a small number of levels reduces
the delay and also impacts the area of the final PLiM program.
The RTL graph is levelized in such a way, that all cells which
can be computed, if the previous level is computed, are placed
on one level. This is sufficient, if no further restrictions are
given and thus used in the synthesis scheme of [7], as all cells
share the same wordline operand.

However, as only cells which share the same wordline
operand can be computed in parallel, the complexity of the
problem increases for our synthesis scheme. Note that this
constraint is also not taken into account by existinig leveliza-
tion schemes for MIGs and AIGs. To meet these constraints,
we propose two approaches. The first approach gives an
exact levelization based on Branch & Bound (B&B) (i.e. a
levelization with the least number of levels - note that multiple
levelizations with the same number of levels may exist), while
the second approach is a heuristic levelization based on the
Monte Carlo Tree Search (MCTS) algorithm.

In the following, we call a cell computable, if all its inputs
are either computed in a previous level or are constant or a
primary input.

1) Exact Levelization using Branch & Bound: The first
approach for the levelization is an exact algorithm: We use a

B&B algorithm to find the best levelization. As this approach
can be parallelized in multiple threads, it is very efficient.

The B&B algorithm performs an exploration of the search
space in a depth-first manner. During the exploration, con-
secutively better upper bounds for the final result are calcu-
lated, while lower bounds for the current search branch are
determined. If the lower bound of the current search branch
is exceeding the upper bound for the final result, the current
branch can be cut, i.e. the current branch is no further explored.

First, when performing the B&B algorithm, one possible
levelization is computed by choosing a valid computation
order at random. Consecutively, we compute new levels by
adding computable cells which share a wordline operand with
the other cells on the new level. This way, we can add levels
to the levelization until no cells remain. Finally, the number
of levels of this levelization is used as upper bound and is
improved on during the execution of the B&B algorithm.
Whenever a better levelization is found, its number of levels
is used as new upper bound.

After the computation of this upper bound, the search
space is explored. As lower bound for the final number
of levels in the current branch, we can use the number of
already computed levels plus the number of different wordline
operands for each cell which has not yet been added to the
levels, as this is the minimum number of total levels the final
levelization will have.

2) Heuristic Levelization using Monte Carlo Tree Search:
For more complex designs, we propose to use MCTS [11], [12]
as a heuristic method.

Unlike B&B, instead of exploring the search space in a
depth-first manner, MCTS explores different possible next
levels and picks the most promising one. MCTS can be divided
into four steps, which are repeatedly executed until all cells are
assigned to a level. The state contains the current levelization
(i.e., cells which have already been assigned to a level and
their respective level) and cells, which are not yet assigned.

1) Selection: From the current state select a possible next
levelization, which has not yet been explored.

2) Expansion: If this levelization is only intermediate, i.e.,
it does not include all cells, create one or more possible
next levels and select one of them.

3) Simulation: Compute a random levelization starting from
the selected levelization, which includes all cells.

4) Backpropagation: Use the random levelization to update
the score for the intermediate levelizations on the path
from the current state to the selected levelization.

These four steps are repeated until a time limit is reached.
Subsequently, the most promising next level is added to the
current state.

C. Compiler

After preprocessing and levelization, the final RTL graph
only consists of AND and RM3 operations, for which is stored
which inputs are to be inverted. As the AND operation of two
inputs a and b can be represented as RM3(0,∼ a, b), we only
need to describe how to synthesize RM3-based graphs.

1) Enabling Parllelism: In order for two cells to be com-
puted in parallel, the following conditions have to be met:

1) All child cells of both cells must have already been
computed.

2) The cells must share a wordline operand.
3) The cells have to be placed on the same wordline.

The first and second condition are already met due to the
topological sorting and the levelization.

However, the third condition needs to be met by the
compiler. For the compiler, it is imperative to not override
devices that contain information which may be needed for
future computations. Thus it needs to keep track of whether
the information stored in a devices is still needed.

The number of free devices in a word is called a hole and
we use a parameter called hole size h to determine if a hole
can an be used for new computations or not. This increases
the parallelization of the computation: If the parameter hole
size h is too small, levels of the levelized RTL graph will be
distributed among multiple wordlines which will ultimately
lead to a reduction in the parallelization of the computation
of the graph. However, if the hole size h is too large the
compilation may be inefficient and the number of devices
needed will grow.

2) Synthesis Scheme: Our compiler synthesizes the RM3-
based graph level by level into a final PLiM program. In
order to compute cells in parallel, first their host operands are
loaded into the devices. As we use inversion for initialization,
it is beneficial if the host operands are inverted. In addition,
as these values need to be read from the ReRAM array, it
is also beneficial, if all host operands reside on the same
wordline. Thus, during compilation, we split the levels into
groups, where each group consists of the cells for which the
host operands reside on the same wordline. Subsequently, we
try to fill the holes with these groups. Finally, the wordline
operand and bitline operands are applied to the corresponding
wordline and the bitlines.

D. Syntax for Parallel Computing

We now define the output format of the compiler, i.e., the
format of the final PLiM program which is to be executed on
the PLiM computer.

As the inputs to the PLiM program need to be
placed somewhere on ReRAM array, the first lines of
the program show where the inputs are expected to
be placed. If the inputs should be placed anywhere
else, either the program has to be changed or the
inputs have to be copied to the respective devices first.

Listing 3. Example Input Placement

0 4 a 5 b 6 c

Listing 3 shows an example, where we expect the inputs
a, b and c to be placed on the devices 4, 5 and 6 of the
first wordline. The first number denotes the number of the
wordline, followed by a list of device numbers and their
corresponding content.

Every instruction consists of the wordline number, the
address of the wordline operand and a list of addresses of
bitline numbers and bitline operands. Note that like in the
original PLiM computer architecture [6], each single device
needs to have a unique address. If an operand is constant,
the values TRUE or FALSE are given in the instruction.

Listing 4. Example Instruction

0 0 xe 0 0 x1b0 1 0 x9c 2 FALSE 3 TRUE 8 0 x9a

An example is given in Listing 4. Here, the content of the
device with the address 0xe is applied as wordline operand
to the wordline 0. In addition, the contents of the devices
0x1b0, 0x9c and 0x9a are applied to the bitlines 0, 1 and 8,
respectively. If an input is constant, it can be directly applied
to the wordlines and bitlines. Here, this is done for the second
and third bitline.

Finally, the last lines of the PLiM program show the
addresses of the primary outputs. This allows to locate
the outputs without having to analyze the whole program.

Listing 5. Example Output Placement

o u t [0] : 0x15
o u t [1] : 0x11
o u t [2] : 0x10

Listing 5 shows an example where the output values out[0],
out[1] and out[2] are placed at the addresses 0x15, 0x11 and
0x10, respectively.

VI. EXPERIMENTAL RESULTS

In this section, we describe the experiments performed to
evaluate the benefits of LiM-HDL, in addition to being an
easy to use HDL. All experiments have been executed on
an Intel R© Xeon R© CPU E5-2630 v3 @ 2.40GHz with 64GB
memory running Linux (Fedora release 30). We have assumed
a wordsize of 16 and used 12 for the parameter holesize h.
Note that, as we focus on the reduction of the area, we have
merged the number of reads and computations into delay in
our results for clarity. However, the usage of LiM-HDL often
influences the number of computations more than the number
of reads (often by a factor of about 2). In addition, it should
be noted that the AIGs are heavily optimized by Yosys, while
no complex optimization procedures have been implemented
for the RM3-based graphs used in LiM-HDL, yet.

A. Implementation Details

We have implemented an extended version of the Yosys
synthesis tool [10]. Here, we have implemented a pass called
PLiMmap into Yosys V0.9+3696 to perform the first step of
the preprocessing. As future work may introduce optimizations
for the mapped RTL graph, we perform the last two steps
and the levelization only during the compilation command
write PLiM, which also performs the final compilation. All ex-
periments were performed using the Yosys command sequence
proc, flatten, opt, PLiMmap, opt, write PLiM . Note that
the command PLiMmap performs mapping to AIG, if LiM-
HDL is not used.

TABLE I
RESULTS FOR ARITHMETIC CIRCUITS

AIG [7] LiM-HDL Reduction
Name Area Delay Area Delay Area Delay
RCA 16 352 446 167 332 52.6% 25.6%
RCA 64 1376 1763 672 1328 51.2% 24.7%
RCA 512 10784 14058 5312 10624 50.7% 24.4%
RCA 1024 21536 28107 10592 21248 50.8% 24.4%
MUL 16 3136 2401 1120 6384 64.3% -165.9%
MUL 32 11808 8714 4288 26341 63.7% -202.3%
MUL 64 44640 33860 16736 106828 62.5% -215.5%

B. Arithmetic Circuits

In order to evaluate the advantages offered by LiM-HDL,
we have implemented a RCA. Using this RCA and shift
operations, we have further implemented a multiplier in LiM-
HDL and compared it to its AIG counterpart, where the
main difference is the implementation of the + operator. For
compilation of the AIGs, we use the state-of-the art method
presented in [7]. We use the B&B algorithm for levelization.

The results can be seen in Table I. The first column shows
the name of the circuit, the second and third column show the
number of used devices and delay (the total number of compu-
tations and reads) for the AIG implementation compiled with
the methodology presented in [7]. The fourth and fifth column
show the number of used devices and delay for our LiM-HDL-
based implementation. The last two columns show the reduc-
tion of the number of used devices and delay of the LiM-HDL-
based implementation compared to the AIG-based imple-
mentation. Here, positive numbers denote a reduction, while
negative numbers indicate an increase. The first four rows
show the results for a RCA with 16bit/64bit/512bit/1024bit
wide inputs, respectivly. The next three rows show the results
for the multipliers with 16bit/32bit/64bit wide inputs. All
experiments have been performed within 90 seconds.

It can be seen, that for the adders our efficient implementa-
tion allows to significantly reduce the number of used devices
by up to 52.6% and the delay by up to 25.6%. This is due to the
use of RM3 operations and the corresponding optimizations in
the LiM-HDL implementation detailed in Section IV.

For the multiplier we can see that the reduction in used
devices is even larger than that of the adder with up to
64.3%. However, this time the delay is increased by up to
215.5%. This is caused by the parallelization scheme: As
the implementation of [7] is AIG-based, it allows for the
parallel computation of all instructions given that their inputs
are already computed, since they all share the same wordline
operand.

C. Case Study: Using LiM-HDL to Implement PRESENT

In this section, we conduct a case study to test LiM-HDL
for its applicability in a real-world scenario with focus on edge
devices. As [6] suggests, the PRESENT block cipher [13]
is a meaningful application for in-memory computing and
specially the PLiM computer architecture. In addition, as
the PRESENT block cipher is light weight, it is especially
designed for deployment on tiny devices [13] and for com-

TABLE II
RESULTS FOR ENCYPTION MODULE

AIG [7] LiM-HDL Reduction
Name Area Delay Area Delay Area Delay
AddRoundKey 384 92 384 116 0.0% -26.1%
sBoxLayer 624 524 496 1196 20.5% -128.2%
pLayer 64 4 64 4 0.0% 0.0%
KeyUpdate 192 105 176 100 8.3% 4.8%
Key Copy 80 5 80 5 0.0% 0.0%
Cipher Copy 64 4 64 4 0.0% 0.0%

Encryp. Module 29696 29445 9200 56837 69.0% -93.0%

putation on the edge. Thus, we present the results for the
implementation of the encryption module using LiM-HDL.

1) Background: The PRESENT block cipher has a block
length of 64 bits and supports keys with a length of 80 and 128
bit. As in [6], we focus on the 80-bit key length in this paper.
The PRESENT cipher uses 31 rounds for the encryption of
the STATE, where each round consists of an XOR operation
to introduce round keys, a non-linear substitution layer and
a linear permutation layer. Due to page limitations, we can
not give a description of the modules here. However, detailed
information on the PRESENT block cipher can be found
in [13].

2) Implementation: As LiM-HDL is a HDL, unlike [6],
we don’t need to implement every operation applied to the
ReRAM array in detail, but can make use of the ample
possibilities, LiM-HDL has to offer:

First, we implement the operations AddRoundKey,
sBoxLayer and pLayer. For AddRoundKey, we can use the
XOR operation and since pLayer is a permutation, this can be
easily implemented as well. However, the sBoxLayer requires
a sophisticated approach as it makes up for a large portion
of the total area [13]. For an efficient AIG implementation,
we use the algorithm of Quine and McCluskey to find
a good minimal polynomial for each output of the used
S-box operation. For a good LiM-HDL representation, we
first transform these minimal polynomials to an MIG using
CirKit [14] and subsequently implement this MIG in terms
of RM3 operations in LiM-HDL.

We have used B&B for the levelization of the Key Copy,
Cipher Copy, AddroundKey, pLayer and KeyUpdate proce-
dures. However, due to their complexity, we have used MCTS
to levelize the sBoxLayer and the final encryption module.
Here, we set the time limit to one second. As MCTS is a
heuristic, we have run it three times for both the sBoxLayer
and the encryption module and choose the best result out of
these three runs.

3) Results: The results can be seen in Table II. The first six
rows show the results for the different parts of the encryption
module, while the last row shows the results for the complete
implementation of the encryption module in a PLiM program.
Note that, while not shown here, both approaches significantly
outperform the results of [6].

Since Key Copy and Cipher Copy are copy operations, the
complexity in terms of area and delay is equivalent for both
synthesis algorithms. As the pLayer performs permutations,
again, the complexity remains equivalent. However, our ap-
proach provides significant reductions in terms of area for the

sBoxLayer and the Key Update procedure. Specially, the size
of sBoxLayer, which occupies a large portion of the overall
area of the encryption module, can be reduced by 20.5%.
This results in a reduction of 69% of the area for the final
implementation of the complete encryption module, due to a
more efficient final levelization, as can be seen in the last row
of the table. Note that this comes at the cost of increased
delay, however, we assume that the area is more critical for
encryption on edge devices.

VII. CONCLUSION

In this paper we have introduced the language LiM-HDL.
LiM-HDL can be used to describe PLiM-programs in HDL
code. Additionally, we have defined the syntax of PLiM-
programs which includes instructions for the parallelized
PLiM computer architecture presented in [7]. We have pre-
sented a methodology to compile the proposed LiM-HDL into
PLiM-programs including a preprocessing step and we have
designed custom levelization algorithms.

In our experiments, we have shown that using LiM-HDL,
we can write programs which need significantly less devices
and thus area compared to the state-of-the art. For arithmetic
circuits, we could reduce the area by up to 64.3% and in our
case-study, we have shown that we can reduce the size of
an encryption module of the block cipher PRESENT by up
to 69%. This is of importance for edge devices for IoT, which
play an important role in today’s society and where low area
is a key requirement.

REFERENCES
[1] E. A. Lee, B. Hartmann, J. Kubiatowicz, T. Simunic Rosing, J. Wawrzynek, D. Wessel,

J. Rabaey, K. Pister, A. Sangiovanni-Vincentelli, S. A. Seshia, D. Blaauw, P. Dutta, K. Fu,
C. Guestrin, B. Taskar, R. Jafari, D. Jones, V. Kumar, R. Mangharam, G. J. Pappas, R. M.
Murray, and A. Rowe, “The swarm at the edge of the cloud,” IEEE Design Test, vol. 31,
no. 3, pp. 8–20, 2014.

[2] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and challenges,”
IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637–646, 2016.

[3] S. A. McKee, “Reflections on the memory wall,” in Proceedings of the 1st Conference on
Computing Frontiers, ser. CF ’04, 2004, pp. 162–167.

[4] C.-X. Xue, J.-M. Hung, H.-Y. Kao, Y.-H. Huang, S.-P. Huang, F.-C. Chang, P. Chen,
T.-W. Liu, C.-J. Jhang, C.-I. Su, W.-S. Khwa, C.-C. Lo, R.-S. Liu, C.-C. Hsieh, K.-T.
Tang, Y.-D. Chih, T.-Y. J. Chang, and M.-F. Chang, “16.1 a 22nm 4mb 8b-precision reram
computing-in-memory macro with 11.91 to 195.7tops/w for tiny ai edge devices,” in 2021
IEEE International Solid- State Circuits Conference (ISSCC), vol. 64, 2021, pp. 245–247.

[5] T. Mikawa, R. Yasuhara, K. Katayama, K. Kouno, T. Ono, R. Mochida, Y. Hayata,
M. Nakayama, H. Suwa, Y. Gohou, and T. Kakiage, “Neuromorphic computing based on
analog reram as low power solution for edge application,” in 2019 IEEE 11th International
Memory Workshop (IMW), 2019, pp. 1–4.

[6] P. Gaillardon, L. Amarú, A. Siemon, E. Linn, R. Waser, A. Chattopadhyay, and G. De
Micheli, “The programmable logic-in-memory (plim) computer,” in Design, Automation
and Test in Europe, 2016, pp. 427–432.

[7] S. Frerix, S. Shirinzadeh, S. Froehlich, and R. Drechsler, “Comprime: A compiler for par-
allel and scalable reram-based in-memory computing,” in 2019 IEEE/ACM International
Symposium on Nanoscale Architectures (NANOARCH), 2019, pp. 1–6.

[8] M. Soeken, S. Shirinzadeh, P. Gaillardon, L. G. Amarú, R. Drechsler, and G. De Micheli,
“An mig-based compiler for programmable logic-in-memory architectures,” in Design
Automation Conf., 2016, pp. 1–6.

[9] M. Soeken, P. Gaillardon, and G. De Micheli, “Rm3 based logic synthesis (special session
paper),” in IEEE International Symposium on Circuits and Systems, 2017, pp. 1–4.

[10] C. Wolf, “Yosys - yosys open synthesis suite.” [Online]. Available: http://www.clifford.
at/yosys/about.html

[11] R. Coulom, “Efficient selectivity and backup operators in monte-carlo tree search,” ser.
CG’06. Berlin, Heidelberg: Springer-Verlag, 2006, p. 72–83.

[12] T. Pepels and M. H. M. Winands, “Enhancements for monte-carlo tree search in ms pac-
man,” in 2012 IEEE Conference on Computational Intelligence and Games (CIG), 2012,
pp. 265–272.

[13] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. Robshaw,
Y. Seurin, and C. Vikkelsoe, “Present: An ultra-lightweight block cipher,” in Proceedings
of the 9th International Workshop on Cryptographic Hardware and Embedded Systems,
ser. CHES ’07. Berlin, Heidelberg: Springer-Verlag, 2007, p. 450–466.

[14] M. Soeken, “Cirkit.” [Online]. Available: https://github.com/msoeken/cirkit

http://www.clifford.at/yosys/about.html
http://www.clifford.at/yosys/about.html
https://github.com/msoeken/cirkit

	Introduction
	Preliminaries
	Storing Values
	Resistive Majority Operation RM3

	Related Work
	LiM-HDL
	Logic Operations
	Behavior Level Modeling
	Generate Statements

	Synthesis of LiM-HDL-based Circuits
	Preprocessing
	Mapping to permitted cells
	Topological Sorting
	Removal of Implicit Cells

	Levelization
	Exact Levelization using Branch & Bound
	Heuristic Levelization using Monte Carlo Tree Search

	Compiler
	Enabling Parllelism
	Synthesis Scheme

	Syntax for Parallel Computing

	Experimental Results
	Implementation Details
	Arithmetic Circuits
	Case Study: Using LiM-HDL to Implement PRESENT
	Background
	Implementation
	Results

	Conclusion
	References-0.2cm

