
Polynomial Formal Verification
of Approximate Adders

Martha Schnieber∗ Saman Froehlich∗ Rolf Drechsler∗†
∗Institute of Computer Science, University of Bremen, Bremen, Germany

†Cyber-Physical Systems, DFKI GmbH, Bremen, Germany
{schnieber, froehlich, drechsler}@uni-bremen.de

Abstract—To ensure the functional correctness of digital cir-
cuits, formal verification methods have been established, where
the circuits are proven to implement the correct function. Several
methods exist for the execution of the verification process.
However, the verification process can have an exponential time or
space complexity, causing the verification to fail. While exponen-
tial in general, recently it has been proven that the verification
complexity of several circuits is polynomially bounded.

In this paper, we prove the polynomial verifiability of several
state-of-the-art approximate adders using BDDs. These approx-
imate adders include handcrafted approximate adders, which
consist of several subadders, as well as automatically generated
approximate adders, where regular adders can be arbitrarily
altered by removing gates and changing the type of gates. Thus,
this paper provides insight into the possible methods for the
design of approximate adders, such that the approximate adders
remain polynomially verifiable. Here, we give upper bounds for
the BDD sizes during the verification process, as well as for the
time and space complexity. The upper bounds for the BDD sizes
are then experimentally evaluated.

I. INTRODUCTION

As digital circuits are a prominent part of modern systems,
including safety-critical applications such as airplanes, their
functional correctness has to be ensured. Here, it is checked
whether the circuit correctly implements the specification. To
ensure the correctness, formal verification methods have been
established, such as the verification using SAT solvers or
decision diagrams like BDDs [1]. Using BDDs, the BDD of
the specification and the BDD of the implemented circuit are
constructed and compared during the verification process.

However, the construction of the formal representation of
the circuit can have an exponential time and space com-
plexity, as the formal representation constructed during the
verification process can have an exponential size [2], causing
the verification to fail due to time or space constraints.
Therefore, recent research has focused on the complexity of
several verification processes, more specifically the polynomial
verification of circuits. Here, it has been discovered that the
verification time and space of several specific circuits scale
polynomially. Examples of polynomially verifiable circuits
include several adders, such as the Ripple Carry Adder (RCA),
the Conditional Sum Adder (CSA), the Carry Look Ahead
Adder (CLA) and multiple Prefix Adders (see [3] [4] [5]).

The presented methods for polynomial verification focus on
exact functions, however, for some error-tolerant applications,

This work was supported by the German Research Foundation (DFG)
within the Project PLiM (DR 287/35-1) and the Reinhart Koselleck Project
PolyVer (DR 287/36-1).

approximate circuits are sufficient, e.g. for media processing or
data mining. Here, the circuit approximates the exact function
in some cases, while having a lower delay or being more
area-efficient [6] [7]. Many approximation techniques exist for
several functions, including the adder function. To evaluate
the error of an approximation, it can be verified using formal
methods such as BDDs or SAT [8]. However, even if the exact
circuit is polynomially verifiable, it is not clear whether the
bounds still hold for the approximate circuit.

The polynomial verifiability of several adders has already
been proven [3] [4] [5], but the polynomial verifiability of
approximate adders has not been researched yet. Therefore, in
this paper, we prove that the verification process using BDDs
of several state-of-the-art approximate adders is guaranteed to
have a polynomial time and space complexity, where we give
polynomial upper bounds for the BDD sizes during the verifi-
cation process, as well as for the time and space complexity.
Here, we prove the polynomial verifiability for several hand-
crafted approximate adders, which divide the adder into subad-
ders, including the approximate adders ACAI [9], ACAII [10],
GeAr [11], ETAII [12] and GDA [13]. Furthermore, we
prove the polynomial verifiability of automatically generated
approximate adders, where a set of gates from conventional
exact adders is altered [14] [15]. Here, the approximate adders
are polynomially verifiable if arbitrary gates are deleted and
the type of arbitrary gates is changed, where the RCA, the
CSA and the CLA are considered as exact adders. Therefore,
the verification process of each approximate adder that results
from any approximation technique, which deletes gates and
changes the type of gates in the beforementioned exact adders,
is guaranteed to run efficiently in polynomial time and space.
The results also show that a regular RCA, CSA and CLA can
be verified polynomially even if they contain bugs, where the
bugs can consist of deleted and changed gates. To evaluate the
upper bounds given in this paper, we experimentally evaluate
the upper bounds for the BDD sizes during the verification
process, as the overall time and space complexities heavily
depend on the BDD sizes.

II. PRELIMINARIES

A. Adder Function

The adder function adds an incoming carry bit c−1 and
two input numbers a and b with n bits respectively. Thus,
it has 2n + 1 input bits: (an−1, . . . , a0, bn−1, . . . , b0, c−1).
Its output is the sum of a, b and c−1, which has n + 1

an−1 bn−1

cn−1 sn−1

a1 b1

s1

a0 b0

s0

c−1c0c1cn−2
FA FA FA. . .

Fig. 1: Ripple Carry Adder
ah bh

1 0

al bl

c−1

sh sl

CSA CSA CSA

1 0

n/2+1 n/2+1 n/2

n/2n/2 n/2 n/2

Fig. 2: Conditional Sum Adder

bits: (cn−1, sn−1, . . . , s0). Here, cn−1 is the carry output bit
and sn−1, . . . , s0 are the sum bits. The sum and carry bits can
be calculated as follows:

ci = aibi + aici−1 + bici−1

si = ai ⊕ bi ⊕ ci−1

Thus, the carry bit ci, as well as the sum bit si can be
calculated using ai, bi and ci−1.

B. Adders

Several state-of-the-art adder architectures exist, of which
we present the three most prominent ones in this section,
where two are based on Full Adders (FAs). An FA has three
inputs ai, bi and ci−1 and two outputs si and ci, which
represent the calculated sum of the three inputs. Here, ci−1
is the carry-in signal and ci is the carry-out signal [16].

1) Ripple Carry Adder: The Ripple Carry Adder (RCA)
consists of n FAs, which are connected through a carry chain.
The general structure of a RCA is shown in Figure 1: The i-th
FA has the inputs ai,bi and ci−1 and the computed carry-out ci
is passed on to the next FA. Furthermore, the i-th FA also
computes the sum bit si [16] [17].

2) Conditional Sum Adder: The Conditional Sum
Adder (CSA) is defined recursively as shown in Figure 2. The
lower halfs of the inputs are added by a CSA, whereas the
higher halfs of the inputs are added by two CSAs in parallel:
One CSA has its input carry bit set to 1 whereas the other
CSA has its input carry bit set to 0. The higher half of the
sum is then determined using a multiplexer and the carry-out

an−1 bn−1 a1 b1 a0 b0 c−1

sn−1 s1 s0cn−1

. . .

. . .

. . .

Pn

gn-1,n-1 pn-1,n-1 g1,1 p1,1 g0,0 p0,0

gn-1,0 pn-1,0 g1,0 p1,0 g0,0 p0,0

cn-2 c1 c0

Fig. 3: Carry Look Ahead Adder

of the lower half of the sum. In the last recursive step, the
CSAs are 1-bit adders, which are realized as FAs. Thus, a
CSA with inputs of bitwidth n consists of one layer of FAs
and dlog ne layers of multiplexers [16] [17].

3) Carry Look Ahead Adder: The Carry Look Ahead
Adder (CLA) first computes all carry bits using a prefix
computation. To compute the carry bits, two functions are cal-
culated: the propagate function p and the generate function g.
If 0 ≤ i ≤ k < j < n, p and g are defined as follows:

pi,i = ai ⊕ bi

gi,i = ai · bi
pj,i = pj,k+1 · pk,i
gj,i = gj,k+1 + pj,k+i · gk,i

The carry bit ci and the sum bit si can then be computed with

ci = gi,0 + pi,0 · c−1
si = ai ⊕ bi ⊕ ci−1

The structure of the CLA is shown in Figure 3, where
the intermediate results are marked in blue. First, all gi,i
and pi,i are computed and then, using the prefix computation,
all gi,0 and pi,0 are computed, from which the carry bits and
subsequently the sum bits are computed [16] [17].

C. Approximate Adders

Approximate Computing (AC) is often applied if the exact
output of a function is not required, but an approximate
output is sufficient, which is beneficial in applications with
e.g. hardware or time restrictions [6]. Approximate adders
calculate the sum of two numbers with the possibility of some
output bits being approximated.

A common method for constructing approximate adders
is the division of the adder into several subadders and the
cutting of the carry chain between these subadders in order to
reduce the depth and therefore the runtime. There exist several

state-of-the-art approximate adders which utilize the described
method, e.g. the approximate adders ACAI [9], ACAII [10],
GeAr [11], ETAII [12] and GDA [13].

Another possibility for the reduction of area or delay is the
alteration of regular adders by removing or changing the type
of gates. Here, an algorithm is used to determine a set of gates
which are to be altered such that the area or delay is reduced
while ensuring a low error [14] [15]. If a gate is removed, the
output of this gate is replaced by one of its inputs. If the type
of a gate is altered, it is changed from e.g. an AND gate to
an OR gate. This alteration can be done with every type of
regular adder, e.g. the RCA, CSA or CLA.

D. Binary Decision Diagrams

A Binary Decision Diagram (BDD) is a directed acyclic
graph representing a Boolean function, which consists of
internal nodes as well as terminal nodes. Each internal node
is associated with an input variable xi and has two output
edges. Furthermore, the terminal nodes represent the constant
functions 0 and 1.

In an Ordered Binary Decision Diagram (OBDD), the
variables appear in the same order for every path in the BDD,
where we call the nodes for a variable xi the i-th level of
the BDD. The order of the variables is given by the variable
ordering (x1, x2, . . . , xn). In addition to being ordered, a
Reduced Ordered Binary Decision Diagram (ROBDD) con-
sists of a minimal amount of nodes and is canonical for a
given variable ordering [1]. A Quasi Reduced Ordered Binary
Decision Diagram (QROBDD) is canonical as well, given a
variable ordering. Here, the BDD is not fully reduced, as the
outgoing edges of each node in the i-th level of the BDD lead
to nodes in the (i+ 1)-th level [18].

We denote |f | as the size of the ROBDD of the function f
with respect to the number of nodes.

Important operations on BDDs include the compose opera-
tion, which replaces a variable xi in a BDD for a function f
with the function g, which we denote as f |xi=g . This operation
has a complexity of O(|f |2 · |g|) [1].

III. RELATED WORK

In the past years, the polynomial verifiability of several
circuits has been proven, including several state-of-the-art
adders. The RCA, CSA and CLA have been proven to be
polynomially verifiable using BDDs in [3], while the authors
of [4] give specific polynomial bounds for the verification time
of the CSA. Furthermore, some prefix adders were proven to
be polynomially verifiable in [5], including the Serial Prefix
Adder, the Ladner-Fischer Adder and the Kogge-Stone Adder.

Additionally, it has been shown that Wallace-tree like mul-
tipliers are polynomially verifiable using *BMDs [19] and
that integer arithmetic circuits are polynomially verifiable with
respect to the circuit size [20]. Furthermore, the verification
of tree-like circuits and circuits derived from BDDs have
shown to be polynomially bounded [21], as well as circuits
for symmetric functions [22].

Thus, the polynomial verifiability of several circuits has
been shown. However, the verification complexity of approx-
imate adders has not been researched yet.

IV. POLYNOMIAL VERIFICATION

In this section, we show the polynomial verifiability of
several state-of-the-art approximate adders, including several
handcrafted approximate adder architectures that divide the
adder into subadders, specifically the approximate adders
ACAI, ACAII, GeAr, ETAII and GDA. Furthermore, we ex-
amine approximate adders which are generated automatically.

A. Handcrafted Approximate Adders

We inspect the verification complexity with respect to the
bitwidth of the inputs for two kinds of handcrafted approx-
imate adders. Firstly, for several handcrafted approximate
adders, all outputs are merely computed by one subadder, e.g.
for the approximate adders ACAI, ACAII and GeAr.

Theorem 1. Handcrafted approximate adders are polynomi-
ally verifiable with respect to the bitwidth of the inputs, if each
output is computed by one subadder, resulting in at most n
subadders, where n is the bitwidth of the inputs a and b.

Proof. As each output is computed by one subadder, the max-
imum BDD size during the verification of these approximate
adders is the maximum BDD size during the verification of
each subadder, which we call |SA|max.

Let the subadders with inputs of bitwidth w be realized with
an adder that is verifiable in time O(wd) for some constant d.
Then, the verification of each subadder has to be carried out.
As the approximate adder consists of at most n subadders,
where n is the bitwidth of the inputs to the approximate adder,
the resulting time complexity is O(n · wd).

Furthermore, if the subadders are verifiable in a space
complexity of O(wd), the space complexity is bounded
by O(n · wd) as well.

Furthermore, in some approximate adders, each output is
computed by at most two subadders which are connected
through a carry chain, e.g. for the ETAII and GDA approxi-
mate adders. Here, the carry generator computes a carry signal,
which is the carry-in signal of the sum generator, which then
computes the outputs.

Theorem 2. Handcrafted approximate adders are polynomi-
ally verifiable with respect to the bitwidth of the inputs, if
each output is computed by two subadders, which have disjoint
input variables and are connected through a carry chain.

Proof. For all outputs which only depend on one subadder, the
results from Theorem 1 can be applied. For all outputs which
depend on two subadders, meaning a carry generator and a
sum generator, the subadders can first be verified individually,
where the carry-in of the sum generator is set to a variable c
and is represented by the topmost node in the BDD. Then,
the BDDs for the outputs can be computed using the compose
operator on the BDDs, where the variable c is replaced with the
BDD for the carry signal, computed by the carry generator. As

the BDDs generated from the carry and sum generators have
disjoint variables, the resulting BDD after the application of
the compose operator consists of the BDD computed for the
sum generator, where the node for the variable c is replaced
with the BDD computed for the carry generator. Let |SG|max

be the maximum BDD size during the verification process of
the sum generator and let |CG|max be the maximum BDD size
during the verification process of the carry generator. Then,
the maximum BDD size during the verification process of the
approximate adder is bounded by |SG|max + |CG|max − 3,
where 3 is substracted because of the replaced carry-in node
and the terminal nodes of the carry generator.

Let |SG| and |CG| be the BDD sizes of the sum gen-
erator and carry generator respectively, before the applica-
tion of the compose operator. Each compose operation re-
quires |SG|2· |CG| steps. As |SG| and |CG| are sum and carry
bits and therefore linear [3], each compose operation has a
time complexity of O(n3). Let the sum generators with inputs
of bitwidth w1 be realized with an adder that is verifiable in
time O(wd1

1) for some constant d1 and let the carry generators
with inputs of bitwidth w2 be realized with an adder that
is verifiable in time O(wd2

2) for some constant d2. Then,
the time complexity for the verification of the approximate
adder is bounded by O(n · wd1

1 + n · wd2
2 + n4), as at

most n carry generators and sum generators have to be verified
respectively, followed by at most n compose operations with
a time complexity of O(n3).

Furthermore, let the sum generators with inputs of
bitwidth w1 be realized with an adder that is verifiable in
a space complexity of O(wd1

1) and let the carry generators
with inputs of bitwidth w2 be realized with an adder that is
verifiable in a space complexity of O(wd2

2). Then, the space
complexity is bounded by O(n·wd1

1 +n·wd2
2 +n4) as well.

B. Altered Ripple Carry Adder

As the regular RCA is polynomially verifiable [3], we show
the polynomial verifiability of a circuit which results from a
RCA which is approximated by the alteration of gates, such as
in [14] [15]. Here the altered RCA is polynomially verifiable
with respect to the bitwidth of the inputs a and b if an arbitrary
amount of gates is removed and the type of an arbitrary amount
of gates is changed, regardless of the type it is changed into.
Note that we first analyze the amount of internal nodes of the
BDD and add the terminal nodes at the very end.

Theorem 3. The BDD for each output of an FA with 3
variables as inputs has at most 5 internal nodes after the
deletion or change of an arbitrary amount of gates.

Proof. As the FA has three inputs and the deletion or change
of gates cannot increase the amount of inputs, an alteration of
the FA by deleting or changing the type of one or multiple
gates can only lead to an unreduced BDD with at most 7
internal nodes for the sum bit and the carry bit respectively.
The lowest level of an unreduced BDD with 3 inputs has at
most 4 nodes, however, the reduction of the BDD reduces the
possible number of nodes in the lowest level to 2. Thus, a
reduced BDD with 3 inputs and therefore also the BDD for

each output of an altered FA, has at most 5 internal nodes:
one in the top level, two in the second level and two in the
third level.

Using Theorem 3, the polynomial verifiability of the altered
RCA, as well as upper bounds for the BDD sizes, the time
complexity and the space complexity can be shown.

Theorem 4. An altered RCA is polynomially verifiable with
respect to the bitwidth n.

Proof. As shown in Theorem 3, despite the alteration of the
FAs, the BDDs of the altered FAs have a constant size of
at most 5 internal nodes. From the BDDs of the altered
FAs, the BDD for the whole altered RCA can be constructed
using the compose operator: Let fi be the function of the
carry output bit of the i-th FA with the inputs ci−1, ai, bi
which outputs the carry bit ci and let fi+1 be the function
of either the carry or sum output bit of the (i + 1)-th FA
with the inputs ci, ai+1, bi+1. The BDD for the combination
of both FAs can then be computed with the compose operator:
fi+1|ci=fi .

As the variables of both FAs are disjoint, the variable for ci
in the BDD of fi+1 is simply replaced by the BDD of fi and
the resulting BDD has a size of |fi|+ |fi+1| − 1.

We start the composition with fi = f0 and fi+1 = f1,
meaning the first two FAs. Then, the resulting BDD is com-
posed into the BDD for the third FA, followed by the fourth,
etc., until all FAs are combined. Here, the compose operator
is applied n − 1 times until all FAs are combined. If an FA
is fully deleted, it is skipped and not combined with the other
FAs. Therefore, each BDD of si and ci for every i has a
maximum of 4(i+ 1) + 1 internal nodes, as all nodes for the
carry inputs except the very first one, meaning the carry-in of
the whole adder, are replaced during the composition process
and every pair of ai and bi therefore adds at most 4 nodes to
the BDD. Thus, the final BDD has at most 4n + 1 internal
nodes, resulting in 4n+3 nodes including the terminal nodes.

The time complexity for the verification of the altered RCA
is O(n + n · n) = O(n2), as the BDDs for n altered FAs
with a constant size have to be computed and the compose
operator has to be carried out a linear amount of times, once
for every carry and sum bit. Here, each compose operator
requires at most |fi+1|2 · |fi| = O(n) steps, as fi+1 is
always an altered FA, which has a constant size as shown
in Theorem 3, whereas |fi| is always linear. Thus, the time
complexity is O(n+ n · n) = O(n2).

For every carry and sum bit, only a constant BDD for an
FA and a linear BDD for the previously computed carry-bits
have to be kept in the memory during the verification process,
resulting in a space complexity of O(n2).

C. Altered Conditional Sum Adder

Like the RCA, the CSA has proven to be polynomially veri-
fiable [3] [4]. Since the CSA consists of FAs and multiplexers,
we show that it is polynomially verifiable if arbitrary gates in
the FAs and in the multiplexers are deleted or changed. For the
proof, we only use the structure of the CSA and not the specific

y00

y01 y01

y02 y02

xy10 xy10

xy11 xy11 xy11 xy11

xy12 xy12 xy12 xy12 xy12 xy12 xy12 xy12

xy13 xy13 xy13 xy13 xy13 xy13 xy13 xy13 xy13 xy13 xy13 xy13 xy13 xy13 xy13 xy13

Fig. 4: Example BDD after the application of Theorem 5

gates and therefore, we prove the polynomial verifiability after
arbitrary alterations. Again, we first focus on the internal nodes
and add the terminal nodes at the end. Before the proof of the
polynomial verifiability of the altered CSA, we first introduce
a necessary theorem.

Theorem 5. Let a QROBDD have 2i + 1 input variables
(y0, x1, y1, . . . , xi, yi), where the sum of all nodes for every
xj is u. Furthermore, let every input variable be replaced
with a function with at most three input variables such that
the input variables of the functions which replace y0 and each
pair (xj , yj) are disjoint, meaning the input variables of the
functions which replace a pair (xj , yj) are disjoint from all
other input variables. Let û be the number of internal nodes in
the QROBDD for the function which replaces y0. Additionally,
let each pair (xj , yj) be replaced by functions such that both
functions together have a total of at most 4 input variables.
Then, the resulting QROBDD has at most û + 15u internal
nodes.

Proof. During the composition of the top variable y0, the
respective node of the BDD is replaced by the QROBDD for
the function which the variable is composed with, as its input
variables are disjoint from all other input variables. Thus, the
topmost node of the BDD is replaced with û nodes.

Now let (xj , yj) with 1 ≤ j ≤ i be a pair of input variables
which are to be replaced. As is given, the pair (xj , yj) has
a total of at most 4 input variables. Furthermore, they do
not share any input variables with any other pair xj′ , yj′
with 1 ≤ j′ ≤ i and thus, the composition process does
not affect any other parts of the BDD.

First, we compose xj with its respective function. Here,
the nodes for xj are simply replaced by the BDDs for the
respective function, as their input variables are not yet present
in the current BDD. Afterwards, we compose yj with its
respective function. As it may share several input variables
with the function of xj , the nodes cannot be simply replaced
with the BDDs for the respective function, as the variables
may already be included in the BDD and a simple replacement

would result in multiple BDD levels with the same variable.
However, as the pair (xj , yj) has a total of at most 4 input
variables, each node for xj becomes the root of at most a full
binary tree with 4 inputs, which has 15 nodes. As the input
BDD is a QROBDD, each node for yj is the direct child of a
node for xj and therefore, the binary trees contain each node
for yj after the composition process. Furthermore, the variable
ordering of the 4 input variables can be chosen freely, as every
ordering results in at most a full binary tree.

Thus, the BDD has a maximum of û+ 15u internal nodes
during and after all compositions, as the top node of the BDD
is replaced with û nodes and each pair (xj , yj) is replaced
with at most 15uj nodes, where uj is the number of nodes in
the BDD level for the variable xj . The resulting BDD can be
reduced to a QROBDD, as y0 is replaced by a QROBDD and
the full binary trees can be reduced to QROBDDs.

Figure 4 shows an example for a BDD after the com-
position of all variables. y0 is replaced with a function on
the variables (y00 , y01 , y02) which has a QROBDD with 5
internal nodes, resulting in û = 5. The pair x1, y1 is replaced
by functions with the input variables (xy10 , xy11 , xy12 , xy13).
Here, the exact functions with which x1 and y1 are composed,
as well as the terminal nodes, are omitted for clarity and to
highlight the binary tree structure. As can be seen, the two
nodes which were originally the nodes for x1 are now the root
of full binary trees with 4 inputs (xy10 , xy11 , xy12 , xy13), both
of which are marked with red edges. Thus, the total size of the
BDD, excluding the terminal nodes, is û+15u = 5+15·2 = 35
and the BDD can be reduced to a QROBDD.

We now show that the altered CSA is polynomially verifi-
able by showing that Theorem 5 can be applied multiple times
for the verification and that the resulting BDDs are always
polynomial.

Theorem 6. An altered CSA is polynomially verifiable with
respect to the bitwidth n.

Proof. A CSA consists of a layer of FAs and dlog ne layers

of multiplexers. We now show that the outputs of the t-th
multiplexer have a BDD with at most a polynomial amount
of nodes, despite any alterations. Furthermore, we show that
this bound is not exceeded during the computation.

Firstly, there are 2n−1 FAs, one for (a0, b0) with a carry-in
variable and two for every 0 < i < n. As it has three inputs,
the BDD for the first altered FA with the carry-in variable has
a size of at most 5 internal nodes, as shown in Theorem 3. As
the carry-in is a constant for all other altered FAs, the BDD
for both the sum bit and the carry bit of each altered FA has
only two variables and therefore at most 3 internal nodes.

For the first layer of multiplexers, we compute the BDD
for each output with the input variables set to the select bit
and the two respective inputs of the multiplexer. As it has
three input variables, its QROBDD has a size of at most 7
internal nodes with 2 nodes in the second level. Afterwards, we
compose the inputs with their respective functions, meaning
with the outputs of the layer of FAs. The select bit can be
composed with the output of an FA with at most 3 inputs,
whereas both inputs to the multiplexer are the outputs of an
FA, one of them having their carry-in set to 1 and the other
having their carry-in set to 0. As both of these FAs have the
same inputs (aj , bj), together both variables in the BDD are
replaced by a total of 2 variables. Thus, Theorem 5 can be
applied, where û = 7 and where u0 = 2 is the value of u
before the application and conclude, that the QROBDD of
each multiplexer output has a size of at most 7+15 ·u0 = 37
internal nodes which is not exceeded during the computation.
Including the terminal nodes, this evaluates to a maximum
BDD size of 7 + 15 · u0 + 2 = 39.

For the outputs of the t-th layer of multiplexers, the BDD
can be generated similarly. Again, the QROBDD for the
multiplexer with its variables set to the select bit and the two
inputs is computed first, which has at most 7 internal nodes
with 2 nodes in its second level. As specified in the archi-
tecture of the CSA, the select bit results from a multiplexer
in the (t − 1)-th layer with the inputs (ci, cj|ci=1, cj|ci=0),
one of the other inputs results from a multiplexer with the
inputs (ck|cj=0, sl|ck=1, sl|ck=0) and the final input results
from a multiplexer with the inputs (ck|cj=1, sl|ck=1, sl|ck=0).
Thus, the inputs of the select bit are disjoint from all other
inputs and the other two inputs have a total of 4 variables.
Thus, Theorem 5 can be applied and the intermediate result
has 7 + 15 · u0 = 37 internal nodes, where the variable
ordering (ci, cj|ci=1, cj|ci=0, ck|cj=0, ck|cj=1, sl|ck=1, sl|ck=0)
can be chosen. Afterwards, the resulting BDD is reduced
to a QROBDD. Now, Theorem 5 can be applied again
with u1 = 2 + u0 · 5, where u1 is the value of u after
one application of Theorem 5, as the composition of the select
input has added a pair of variables where the first variable of
this pair has 2 nodes and furthermore, every binary tree of 15
nodes has two pairs of variables of which the top ones have 1
node and 4 nodes respectively. Theorem 5 is applied until the
last layer of multiplexers is reached and the outputs of the FAs
are composed. Here, ut′ = 2+ut′−1 ·5 is the value of u after t′

applications of Theorem 5. For the outputs of the t-th layer
of multiplexers, Theorem 5 has to be applied t times until the

full BDDs are computed. The final BDD size including the
terminal nodes is polynomial and is not exceeded during the
computation process:

7 + 15 · ut−1 + 2

=9 + 15 · (2 + 2 · 5 + 2 · 52 · · ·+ 2 · 5t−1)
≤9 + 30 · t · 5t−1

Here, 7 + 15 · ut−1 is the number of internal nodes
of the BDD after the last application of Theorem 5,
whereas ut−1 = (2 + 2 · 5 + 2 · 52 · · · + 2 · 5t−1) is the
result for u after the t−1 previous applications of Theorem 5.
Furthermore, the two terminal nodes are added.

As the altered CSA has dlog ne layers of multiplexers, we
can conclude that all altered final sum and carry bits have a
BDD with at most a polynomial amount of nodes:

9 + 30 · dlog ne · 5dlogne−1

≤9 + 30 · dlog ne · 2logn·3

=9 + 30 · dlog ne · n3

Thus, an upper bound for the BDD size during the verifi-
cation process of the altered CSA is 9 + 30 · dlog ne · n3.

The time complexity of the verification process can be
calculated as follows: The BDDs for a linear amount of
FAs and a linear amount of multiplexers per multiplexer
layer have to be generated, where each of these BDDs
has a constant size, resulting in a time complexity
of O(n · log n · n) = O(log n · n2) for this step.
Furthermore, the BDDs for a linear amount of outputs
have to be generated. For every multiplexer layer, a linear
amount of variables have to be replaced using the compose
operator. Thus, a total of O(n · log n · n) = O(log n · n2)
compose operations have to be conducted. Using the
compose operator, each composition requires at most
(9+ 30· dlog ne · n3)· (9+ 30· dlog ne· n3)· 7 = O(log2 n· n6)
steps. Thus, the overall time complexity of the verification is
O(log n · n2 + log n · n2 · log2 n · n6) = O(log3 n · n8).

The space complexity of the verification process is equal
to the complexity of the compose operators and is there-
fore O(log2 n ·n6), as the compose operations have the largest
upper bound for the space complexity during the verification
process of the altered CSA.

D. Altered Carry Look Ahead Adder

The regular CLA is polynomially verifiable as shown in [3].
We now show that it is still polynomially verifiable if an arbi-
trary amount of gates is deleted or changed with the constraint
that the computation of each carry bit has a logarithmic depth
in the CLA. The proof again relies merely on the structure of
the CLA and uses Theorem 5.

Theorem 7. An altered CLA is polynomially verifiable with
respect to the bitwidth n if the calculation of each ci,0 has a
logarithmic depth.

Proof. For an unaltered CLA, the carry bits are computed
as follows: ci = gi,0 + (pi,0 · c−1). Thus, we compute the
QROBDD for each ci with the input variables (c−1, pi,0, gi,0),

which consists of at most 7 internal nodes. Here, pi,0 consists
of two variables, as it is defined as pi,0 = pi,k+1 ·pk,0 for the
unaltered CLA, whereas gi,0 consists of 3 variables, as it is de-
fined as gi,0 = gi,k+1+ (pi,k+1· gk,0). Thus, pi,0 and gi,0 have
a total of 4 variables and therefore, Theorem 5 can be applied
for the composition of pi,0 and gi,0, where u0 = 2 and û = 1,
as the variable c−1 does not have to be replaced. This results
in a QROBDD with a maximum of 1+15 ·u0 internal nodes,
where the variable ordering (c−1, pk,0, gk,0, pi,k+1, gi,k+1) is
chosen. In this variable ordering, each pair again depends on a
total of 4 variables and each pair has disjoint variables. Thus,
Theorem 5 can be applied again with u1 = u0 · 5.

The application of Theorem 5 can be repeated until the
inputs to the BDD are pj,j and gj,j for j ≤ i. Then, all
these inputs can be composed using Theorem 5, resulting
in the BDD for ci. Here, ut′ = ut′−1 · 5 is the value of u
after t′ applications of Theorem 5. Let t be the number of
applications of Theorem 5 which are needed until the BDD
for ci is computed. Then, the final BDD has a size of

1 + 15 · ut−1 + 2

=3 + 15 · 2 · 5t−1

=3 + 30 · 5t−1

Here, 1 + 15 · ut−1 is the final application of Theorem 5,
where ut−1 = 2 · 5t−1. Furthermore, the two terminal nodes
are added.

The exact amount of applications needed for the calculation
depends on the value of k. However, typically the CLA has a
logarithmic depth and a logarithmic amount of applications are
needed, until the BDD has the inputs pj,j and gj,j for j ≤ i,
resulting in dlog ne + 1 applications of Theorem 5 and a
maximum BDD size of

3 + 30 · 5dlogne+1−1

≤3 + 150 · 23·logn

=3 + 150 · n3

In the unaltered CLA, the sum outputs are computed
with si = ai⊕bi⊕ci−1. The BDD for the altered ai⊕bi⊕ci−1
has at most 5 internal nodes if ci−1 is a variable, as it only
has 3 inputs. Since the variables are disjoint, the BDD for the
altered ci−1 can simply replace the variable and therefore, the
final BDD, including the two terminal nodes, has a size of at
most 4+ 3+ 150 · n3 = 7+ 150 · n3, which is not exceeded
during the verification process.

The time complexity for the verification process of the
altered CLA can be calculated as follows: Each ci has to
be generated, as well as each si. For each ci, a logarithmic
amount of applications of Theorem 5 are needed, where a
linear amount of compositions have to be conducted for each
application. Here, each of these compositions requires a total
of at most (7 + 150 · n3) · (7 + 150 · n3) · 5 = O(n6)
steps. Thus, the computation of all ci requires a total of at
most O(n · log n · n · n6) = O(log n · n8) steps. Finally,
for the computation of each si, one composition is required
with a time complexity of 5 · 5 · (5 + 150 · n3) = O(n3),
resulting in a time complexity of O(n ·n3) = O(n4) for all si.

Overall, the verification process of the altered CLA has a time
complexity of O(log n · n8 + n4) = O(log n · n8).

Again, the compose operations have the highest space
complexity during the verification process of the altered CLA
and therefore, the space complexity of the verification process
is O(n6).

V. EXPERIMENTS

To evaluate the upper bounds for the verification process
of the approximate adders given in Section IV, we have
implemented the computation of the BDDs for all presented
approximate adders in CUDD 3.0.0 [23]. Here, we evaluate the
upper bounds for the sizes of the BDDs during the verification
process, as the time and space complexity heavily depend on
the BDD sizes.

A. Handcrafted Approximate Adders

For the approximate adders ACAI, ACAII, GeAr, ETAII and
GDA, we evaluate two examples per approximate adder. As
bitwidth we use n = 16 and we use two different exemplary
values for the other parameters. For details on the parameters,
see [9] [10] [11] [12] [13]. Here, the subadders of ACAI,
ACAII and GeAr are realized with RCAs, as well as the sum
generators of ETAII and GDA, whereas the carry generators
of ETAII and GDA are realized with CLAs. We have imple-
mented these approximate adders without an incoming carry
bit, as they are defined as such.

For the evaluation of the computed upper bounds, the
maximum sizes of the BDDs during the verification process
of all subadders are needed. For a RCA with n inputs, the
maximum BDD size is 3n+4 [3] with an incoming carry-bit,
which is reduced to 3n + 2 without an incoming carry-bit.
Furthermore, CLAs are used as carry generators in the ETAII
and GDA architectures. Without an incoming carry bit, the
BDDs during the calculation of the carry bit have a maximum
size of 3n+ 1 for n inputs [3].

Table I shows the results for the ACAI, ACAII, GeAr,
ETAII and GDA. Here, the respective parameters for the
adders are given, as well as the respective calculated upper
bounds and the maximum BDD sizes during the verifica-
tion process. The upper bound is computed using the max-
imum BDD sizes during the verification of the RCA and
CLA. E.g., for the ETAII, the upper bound is computed
as |SG|max+ |CG|max− 3 = (3 n

m +4)+(3 n
m +1)−3 and

TABLE I: Calculated upper bound and maximum BDD size
for handcrafted approximate adders

Adder Parameters Upper Bound Maximum BDD Size
ACAI n=16, q=4 14 14
ACAI n=16, q=8 26 26
ACAII n=16, k=2 14 14
ACAII n=16, k=4 26 26
GeAr n=16, r=2, p=4 20 20
GeAr n=16, r=6, p=4 32 32
ETAII n=16, m=4 26 26
ETAII n=16, m=2 50 50
GDA n=16, m=4, p=4 26 26
GDA n=16, m=4, p=8 38 38

TABLE II: Upper bound and maximum BDD size for automatically generated approximate adders with n = 16

Adder Upper Bound Maximum BDD size
of unaltered adders

Maximum BDD size of approximate adders
Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

RCA 67 52 52 51 55 55 53 54
CSA 491,529 52 81 79 88 108 85 90
CLA 614,407 52 75 87 152 222 148 189

is therefore 26 for n = 16,m = 4 and 50 for n = 16,m = 2.
From our results, it is apparent that the calculated upper bound
coincides with the actual maximum BDD size for all test cases
and all shown handcrafted approximate adders.

B. Automatically Generated Approximate Adders

For the evaluation of the upper bounds for the automati-
cally generated approximate adders, we have implemented the
regular adders RCA, CSA and CLA with 16-bit inputs and
we delete and change the type of random gates. If the type is
changed, it is changed into either an AND gate, an OR gate,
an XOR gate, a NAND gate, a NOR gate or an XNOR gate.
For the RCA, CSA and CLA, we evaluate the results for 600
approximate adders respectively, wich are divided into 6 cases:

1) 5% of gates are deleted
2) 10% of gates are deleted
3) 5% of gates are changed
4) 10% of gates are changed
5) 5% of gates are deleted and 5% of gates are changed
6) 10% of gates are deleted and 10% of gates are changed

For each case, 100 test cases are generated automatically,
resulting in 600 test cases in total.

Table II shows the results for the automatically generated
approximate adders where the RCA, CSA and CLA are
approximated. For each adder, the calculated upper bound for
the BDD size is shown, as well as the maximum BDD sizes
during the verification process of the unaltered adder and the
maximum BDD sizes during the verification process of the 100
approximate adders for each of the six cases. Here, Cases 1
and 2 represent approximate adders where gates are merely
deleted, whereas gates are merely changed in the Cases 3
and 4. Finally, in the Cases 5 and 6, gates are both deleted
and changed. It is apparent that the calculated upper bounds
are not exceeded by any example.

For the RCA, the upper bound evaluates to 4n + 3 = 67,
whereas it evaluates to 9 + 30 · log 16 · 163 = 491, 529 for
the CSA and to 7 + 150 · 163 = 614, 407 for the CLA. As
can be seen, for the RCA, the upper bound overestimates
the maximum BDD sizes during the verification process of
all examples only slightly with the overall maximum BDD
size being 55, whereas the upper bounds for the CSA and
CLA overestimate the BDD sizes more significantly with the
overall maximum BDD sizes being 108 and 222 respectively.
This is due to the repeated application of Theorem 5, where
the intermediate BDDs resulting from its application are not
reduced in the calculation of the upper bound.

Furthermore, it can be seen that the mere deletion of gates
can increase the BDD sizes during the verification process, but
the change of gates increases the BDD sizes more significantly.
In general, Case 4 results in the largest BDDs, which is the
case where the type of 10% of gates is changed.

VI. CONCLUSION

In this paper, we have proven that the verification process of
several approximate adders is guaranteed to have a polynomial
time and space complexity with respect to the bitwidth of
the inputs. These polynomially verifiable approximate adders
include approximate adders that consist of several subadders,
such as ACAI or ETAII, as well as approximate adders where
the regular adders RCA, CSA and CLA are altered by the
deletion or change of gates. For all these approximate adders,
we have given polynomial upper bounds for the BDD sizes
during the verification process, as well as for the time and
space complexity.

In addition to the proof of the polynomial bounds given in
this paper, we have experimentally evaluated these bounds. We
have specifically evaluated the bounds for the BDD sizes dur-
ing the verification process, as the time and space complexity
heavily depend on them. In our experimental evaluation, we
have exemplarily shown the correctness of our given bounds,
as no test case has exceeded them.

REFERENCES
[1] R. E. Bryant, “Graph-based algorithms for Boolean function manipulation,” IEEE Trans.

Computers, vol. 35, no. 8, pp. 677–691, 1986.
[2] R. Bryant, “On the complexity of VLSI implementations and graph representations of

Boolean functions with application to integer multiplication,” IEEE Transactions on
Computers, vol. 40, no. 2, pp. 205–213, 1991.

[3] R. Drechsler, “Polyadd: Polynomial formal verification of adder circuits,” in DDECS.
IEEE, 2021, pp. 99–104.

[4] A. Mahzoon and R. Drechsler, “Late breaking results: Polynomial formal verification of
fast adders,” in DAC, 2021, pp. 1376–1377.

[5] ——, “Polynomial formal verification of prefix adders,” in ATS, 2021, pp. 85–90.
[6] J. Han and M. Orshansky, “Approximate computing: An emerging paradigm for energy-

efficient design,” in ETS, 2013, pp. 1–6.
[7] R. Venkatesan, A. Agarwal, K. Roy, and A. Raghunathan, “MACACO: Modeling and

analysis of circuits for approximate computing,” in ICCAD, 2011, pp. 667–673.
[8] M. Češka, J. Matyáš, V. Mrazek, L. Sekanina, Z. Vasicek, and T. Vojnar, “ADAC:

Automated design of approximate circuits,” in Computer Aided Verification. Cham:
Springer International Publishing, 2018, pp. 612–620.

[9] A. K. Verma, P. Brisk, and P. Ienne, “Variable latency speculative addition: A new
paradigm for arithmetic circuit design,” in DATE, 2008, pp. 1250–1255.

[10] A. B. Kahng and S. Kang, “Accuracy-configurable adder for approximate arithmetic
designs,” in DAC, 2012, pp. 820–825.

[11] M. Shafique, W. Ahmad, R. Hafiz, and J. Henkel, “A low latency generic accuracy
configurable adder,” in DAC, 2015, pp. 1–6.

[12] N. Zhu, W. L. Goh, G. Wang, and K. S. Yeo, “Enhanced low-power high-speed adder for
error-tolerant application,” in ISOCC, 2010, pp. 323–327.

[13] R. Ye, T. Wang, F. Yuan, R. Kumar, and Q. Xu, “On reconfiguration-oriented approximate
adder design and its application,” in ICCAD, 2013, pp. 48–54.

[14] S. Froehlich, D. Große, and R. Drechsler, “Approximate hardware generation using
symbolic computer algebra employing Groebner basis,” in DATE, 2018, pp. 889–892.

[15] R. Hrbacek, V. Mrazek, and Z. Vasicek, “Automatic design of approximate circuits by
means of multi-objective evolutionary algorithms,” in DTIS, 2016, pp. 1–6.

[16] R. Zimmermann, “Binary adder architectures for cell-based VLSI and their synthesis,”
Ph.D. dissertation, Swiss Federal Institute of Technology, 1997.

[17] I. Koren, Computer Arithmetic Algorithms, 2nd ed. A.K. Peters, Ltd., 2002.
[18] N. Ishiura, “Synthesis of multilevel logic circuits from binary decision diagrams,” IEICE

Transactions on Information and Systems, vol. 76, pp. 1085–1092, 1993.
[19] M. Keim, R. Drechsler, B. Becker, M. Martin, and P. Molitor, “Polynomial formal

verification of multipliers,” Formal Methods Syst. Des., vol. 22, no. 1, pp. 39–58, 2003.
[20] M. Barhoush, A. Mahzoon, and R. Drechsler, “Polynomial word-level verification of

arithmetic circuits,” in MEMOCODE, 2021, pp. 1–9.
[21] R. Drechsler, “Polynomial circuit verification using bdds,” in ICEECCOT, 2021, pp. 49–

52.
[22] R. Drechsler and C. Dominik, “Edge verification: Ensuring correctness under resource

constraints,” in SBCCI, 2021, pp. 1–6.
[23] “CUDD 3.0.0,” https://github.com/ivmai/cudd.

