
Polynomial Formal Verification
of Approximate Functions
Martha Schnieber∗, Saman Froehlich∗, Rolf Drechsler∗†

∗Institute of Computer Science, University of Bremen, Bremen, Germany
†Cyber-Physical Systems, DFKI GmbH, Bremen, Germany

{schnieber, froehlich, drechsler}@uni-bremen.de

Abstract—During the development of digital circuits, their
functional correctness has to be ensured, for which formal veri-
fication methods have been developed. However, the verification
process using formal methods can have an exponential time and
space complexity, potentially leading to a failure due to time or
space constraints. Thus, in the past years, it has been shown
that multiple circuits are guaranteed to be verifiable efficiently
in polynomial time and space using specific formal methods.
However, the polynomial verifiability of approximate functions,
which are beneficial for applications with hardware or time
constraints, has not been focused by research yet.

In this paper, we present two methods for generating poly-
nomially verifiable circuits for an approximate function g, if g
approximates another function f such that they differ for a
polynomial amount of input assignments and a polynomially ver-
ifiable circuit for f exists. Using BDDs, we prove the polynomial
verifiability of both circuits for g with respect to the number
of inputs. Furthermore, for several error metrics, we explore
the correlation between the BDD sizes during the verification
process of both circuits and the error between f and g. Finally,
we experimentally evaluate the given upper bounds for the BDD
sizes during the verification process of both circuit architectures
for several approximate functions.

I. INTRODUCTION

Digital circuits play a significant role in modern systems, as
they are responsible for a numerous amount of calculations.
They can be found in a variety of applications, including
safety-critical systems like cars or medical equipment. Thus,
ensuring that the designed circuit correctly implements the
specified function is critical. However, as there exist an ex-
ponential amount of possible assignments to a circuit, testing
every assignment is not feasible.

Consequently, formal verification methods have been es-
tablished to prove the correctness of a circuit [1] [2]. This
can be done using several formal methods, such as SMT,
SAT, BDDs [3] or other kinds of decision diagrams such as
*BMDs [4]. Here, the circuit correctly implements the specifi-
cation if e.g. the BDDs for the circuit and the specification are
equal. Hence, the BDD for the circuit has to be constructed.

However, during the computation of the formal represen-
tation of the function realized by the circuit, the formal
representation can reach an exponential size and therefore, the
verification can fail due to time or space constraints [5]. Thus,
predicting the time and space complexity of the verification
process of specific circuits is critical, which is a challenge that
has not been heavily focused by research yet. Nonetheless,
in the past years, it has been shown for several circuits that
they can be verified efficiently in polynomial time and space.

This work was supported by the German Research Foundation (DFG)
within the Project PLiM (DR 287/35-1) and the Reinhart Koselleck Project
PolyVer (DR 287/36-1).

So far, research has only focused on proving the polynomial
verifiability for a fixed set of classes. Methods applicable to a
wide range of functions have not been published yet.

For some applications which have hardware or time restric-
tions, the exact output of a specific function is not required but
an approximate output is sufficient. For these applications, the
function can be approximated, resulting in a similar function
which computes a different output in some cases. In return,
the circuit for the approximate function is more area-efficient
or has a lower delay, which is benefitting if there exist area
or time restrictions [6] [7].

Several methods have been proposed for the development
process of such approximate circuits [8] [9]. However, no
research has yet focused on proving their polynomial veri-
fiability and thus, even if the exact circuit is polynomially
verifiable, the polynomial bounds are not guaranteed to hold
for the approximate circuit. Thus, in this paper, we present
two polynomially verifiable circuits for a function g with
respect to the number of inputs, if g is an approximation of
a function f , for which a polynomially verifiable circuit is
known and where the number of assignments for which g
and f differ scales polynomially with the number of inputs.
We present both synthesis strategies for the generation of
polynomially verifiable circuits for g and give upper bounds
for the size of the BDDs during the verification process of
these circuits. Furthermore, we give an upper bound for both
the time and space complexity of the verification process.
Thus, using the methods presented in this paper, circuits for
approximate functions can be developed which are guaranteed
to be polynomially verifiable. Furthermore, the maximum
BDD size during the verification process, as well as the
verification time and space can be estimated beforehand using
the given upper bounds.

As approximate functions are typically evaluated using error
metrics [10], we also explore the correlation of the error
between f and g and the BDD sizes during the verification
process of both circuits for four error metrics. The results can
be used to enhance the development process of approximate
circuits in such a way that the resulting circuits are guaranteed
to be verifiable in polynomial time and space with respect
to the number of inputs. In the experiments, we evaluate the
upper bounds for the BDD sizes during the verification, as
well as the proposed circuit architectures with respect to area
and depth.

II. PRELIMINARIES

A. Boolean Functions
Let f : {0, 1}n → {0, 1}m be a Boolean function with n

inputs and m outputs. Then, α = (α1, . . . , αn) ∈ {0, 1}n is

an assignment, which assigns a truth value to every input vari-
able. Furthermore, α(f) applies the assignment to f , meaning
every input variable xi is is assigned the truth value αi. For
each assignment α, there exists a minterm mα, which is a
conjunction of all input variables, where every variable is
either a positive or a negated literal [11].

B. Error Metrics
Several error metrics have been proposed to measure the dif-

ference between two functions and evaluate an approximation.
In this paper, we examine four error metrics, where f and g are
functions with n inputs and m outputs and α is an assignment.
All error metrics are given normalized, meaning they are
divided by the number of possible assignments [10] [12].

• Bit threshold: bt(f, g) =
∑
α

∑
i<m α(f)i 6=α(g)i

2n

• Error rate: er(f, g) =
∑
α α(f)6=α(g)

2n

• Average-case error: ace(f, g) =
∑
α |α(f)−α(g)|

2n

• Mean-squared error: mse(f, g) =
∑
α(α(f)−α(g))

2

2n

C. Binary Decision Diagrams
A Binary Decision Diagram (BDD) is a directed acyclic

graph that represents a Boolean function. A BDD has internal
nodes and terminal nodes, where the terminal nodes represent
the values 0 and 1.

In an Ordered Binary Decision Diagram (OBDD), each
level of the BDD consists of nodes for the same input variable,
where the order in which the variables appear is given by
the variable ordering (x1, x2, . . . , xn). Furthermore, a Reduced
Ordered Binary Decision Diagram (ROBDD) is ordered and
consists of a minimal amount of nodes in the context of a
given variable ordering, making it canonical [3].

We denote |f | as the size of the ROBDD of the function f
in the number of nodes. As every node in a level can have two
successors in the next level, a BDD can have an exponential
number of nodes.

Each internal node v represents an input variable xi and has
two output edges, one for xi = 0, which is called the low-edge
and one for xi = 1, which is called the high-edge. The low-
edge of v leads to the node low(v) and the high-edge leads to
the node high(v). Thus, the function f for a terminal node is
its respective value, meaning 0 or 1, whereas the function f
for an internal node v is recursively given by the Shannon
decomposition: f = xifxi=0 + xifxi=1.

D. ITE-Operator
The ITE-operator (If-Then-Else) is an operator on BDDs

which can be used for synthesis operations, e.g. for AND, OR
or XOR operations. It can be computed recursively:

ITE(f, g, h) = ITE(xi,ITE(fxi=1, gxi=1, hxi=1),

ITE(fxi=0, gxi=0, hxi=0))

where xi is the top variable of f , g and h. The complexity
of the ITE-operation is O(|f | · |g| · |h|) and it therefore has a
polynomial worst-case behaviour. Thus, the basic operations
like AND, OR and XOR can be carried out on BDDs in
polynomial time and space with respect to the BDD size [13].

III. RELATED WORK

Even though the topic of polynomial verification is rela-
tively new, in recent years, some papers have explored the
polynomial verifiability of specific circuits.

Firstly, much research has focused on the polynomial verifi-
ability of several adders. The author of [5] shows that the RCA,
the CSA and the CLA are all polynomially verifiable, whereas
the authors of [14] give specific bounds for the time com-
plexity of the verification process of the CSA. Furthermore,
in [15], the polynomial verifiability of some prefix adders is
shown, specifically of the Serial Prefix Adder, the Ladner-
Fischer Adder and the Kogge-Stone Adder.

Apart from adders, the polynomial verifiability of multipli-
ers has been researched as well in [16], where the authors show
that Wallace-tree like multipliers are polynomially verifiable.
Additionally, the authors of [17] have shown that the verifi-
cation process of integer arithmetic circuits has a polynomial
time and space complexity with respect to the circuit size.
Finally, it has been shown in [18] that a polyomially verifiable
circuit can be generated for every symmetric function.

Thus, the polynomial verifiability of several circuit classes
has already been shown. However, no research has yet focused
on the polynomial verifiability of approximate functions.

IV. POLYNOMIAL VERIFICATION

In this section, we show that if a circuit for a function f
can be verified in polynomial time and space in the number
of inputs and if g is an approximation of f , where the amount
of assignments for which the outputs of f and g differ scales
polynomially with the number of inputs n, we can specify two
methods for generating a circuit for g that are guaranteed to
be polynomially verifiable as well with respect to the number
of inputs. If the amount of assignments for which f and g
differ scales at most polynomially with n, we call the amount
of assignments for which the outputs differ polynomial. Here,
we focus mainly on functions with a single output. However,
for functions with multiple outputs, the results can be applied
to every output separately.

Let f be a function of n input variables and let α be an
assignment of the input variables. Then, mα is the minterm of
the assignment α. The output of f for a specific assignment α
can be complemented using the operation mα ⊕ f .

Theorem 1. The XOR operation mα ⊕ f results in a BDD
with at most |f |+ n nodes, where n is the number of inputs.

Proof. On BDDs, mα ⊕ f can be calculated using
ITE(mα, f , f). Let (x1, x2, . . . , xn) be the variable ordering,
where x1 is the topmost variable. Using the definition of the
ITE-operator, it holds that

ITE(mα, f , f) =x1 · ITE(mαx1=1, fx1=1, fx1=1)+

x1 · ITE(mαx1=0, fx1=0, fx1=0).

As mα is a conjunction of all input variables in either
positive or negated form, either mαx1=1 or mαx1=0 evaluates
to 0: mαx1=0 = 0 if α(x1) = 1, whereas mαx1=1 = 0
if α(x1) = 0.

Therefore, only one ITE-operation is left for which the next
level has to be calculated, where again one of the two minterms

x1

x2 x2

x3 x3 x3

x4 x4 x4 x4

1 0 1 0 1

(a) BDD for f

x1

x2 x2

x3 x3 x3 x3

x4 x4 x4 x4 x4

0 1 0 1 0 1

(b) BDD for g = mα ⊕ f

Fig. 1: BDD of a function with 4 inputs before and after complementing the output with mα = x1x2x3x4

evaluates to 0. This continues for every level, meaning in every
level, only one ITE-operator has to be evaluated.

As there is exactly one additional ITE-operator in each level
of the resulting BDD and as there exist at most n levels of
internal nodes, there are at most n internal nodes in which an
ITE-operation has to be evaluated, where n is the number of
inputs. All other internal nodes in the BDD also exist in the
BDD of f . Therefore, the ⊕-operation adds at most n internal
nodes to the BDD of f .

Note that the reduction of the resulting BDD can further
reduce the amount of nodes. In most cases, no terminal nodes
have to be added as they are already included in f . However,
if f is one of the constant functions 0 or 1, only one terminal
node is included in f and an additional terminal node has to
be added. For the remainder of this section, we calculate the
bounds for the case that f is not a constant function.

An example for the BDD of a function before and after
the ⊕-operation is given in Figure 1. Here, we have used
unreduced BDDs with multiple copies of the terminal nodes
for clarity. Furthermore, mα = x1x2x3x4, where the corre-
sponding path is marked in red. Figure 1(a) shows the BDD
of a symmetric function f , whereas Figure 1(b) shows the
BDD of mα ⊕ f .

The exact number of assignments δ for which f and g differ
can be computed with the satisfy-count operation on the BDD
for f ⊕ g, whereas the exact assignments can be computed
with the satisfy-all operation on the BDD for f ⊕ g, which
calculates its satisfying set [3]. Let δ with δ ≤ nc for some
constant c be the amount of assignments for which the outputs
of f and g differ, meaning the number of assignments for
which f and g differ scales at most polynomially with the
number of inputs. Using Theorem 1, we can conclude that the
BDD for g has a size of at most |g| ≤ |f |+nc ·n = |f |+nc+1.
If a circuit for f is polynomially verifiable in the number of
inputs, |f |, meaning the size of the BDD for f , is polynomial
and therefore, |g| is also polynomial in the number of inputs.

Using the results from Theorem 1, we can now specify two
circuit architectures for g that are polynomially verifiable, if
the outputs of f and g differ for a polynomial amount of
assignments and if a circuit for f is polynomially verifiable.

A. Polynomially Verifiable Multiplexer Circuit

Our first presented circuit architecture is the circuit which
results from replacing all nodes in the BDD for g with mul-
tiplexers, which we call the multiplexer circuit. Specifically,

0 1 0 1 0 1

x1

x2

x3

x4

x2

x3

x4

x3

x4

x3

x4 x4

g

1 0

0 1 1 0

0 1 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1 0

Fig. 2: Multiplexer circuit for Figure 1(b)

every node in the BDD is replaced by a multiplexer whose
inputs are the high and low edges of the respective BDD
node, whereas the select input is its input variable. This circuit
has already proven to be polynomially verifiable in [19].
However, we provide an approach which uses the ITE-operator
to represent the multiplexers and yields upper bounds for the
BDD sizes, as well as for the time and space complexity.

The multiplexer circuit which results from the BDD in
Figure 1(b) is shown in Figure 2. Every BDD node has been
replaced by a multiplexer with their respective high and low
edges as inputs and the input variables as select inputs.

As each multiplexer consists of 4 gates, the number of gates
in the multiplexer circuit for g is at most 4 · |g|. Furthermore,
the longest path in the circuit consists of at most n multiplexers
and each multiplexer has a depth of 3. However, the longest
path includes 3 gates for the first multiplexer and only two
gates for all other multiplexers and therefore, the depth of the
multiplexer circuit for g is at most 2 · n+ 1.

The variable ordering of the BDDs during the verification
of the multiplexer circuit is given by the order of the select
inputs in the circuit. Other variable orderings may lead to an
exponential verification complexity.

Theorem 2. The multiplexer circuit for g is polynomially
verifiable, if the circuit representation of f is polynomially
verifiable and if the output is complemented for a polynomial
amount δ of assignments.

Proof. Every multiplexer with inputs g′ and g′′ and se-
lect input xi can be represented by the ITE-operator:
ITE(xi, g

′, g′′). For the verification, we start by generating

x1 x2 x3 x4

g

f

Fig. 3: XOR circuit for Figure 1(b)

BDDs for every multiplexer in the first layer of the circuit,
where the inputs are 0 and 1. The resulting BDDs consist of
three nodes of which two are terminal nodes. Using the ITE-
operator, the BDDs for the multiplexers in the next layer are
constructed. Here, every constructed BDD is at most as large
as a subgraph of the BDD for g, where the root of the subgraph
is the node which is represented by the current multiplexer in
the multiplexer circuit. Therefore, the BDDs never exceed the
size of the BDD for g during the construction process, as all
intermediate results are subgraphs of the final BDD.

Thus, during the verification process of the multiplexer
circuit for a function g, the size of the BDD does not
exceed |g| during its generation. As |g| ≤ |f |+nc+1 for some
polynomial nc, the BDD sizes during the verification process
are always polynomial.

Furthermore, every operation ITE(xi, g
′, g′′) can be carried

out in time |xi| · |g′| · |g′′|, where g′ and g′′ are subgraphs
of the BDD for g. Therefore, this circuit can be verified in
time O(|g| · |g|2) = O(|g|3) ≤ O((|f | + nc+1)3) as |g| ITE
operations have to be conducted.

The space complexity of the verification process of the
multiplexer circuit is O(|g|2) ≤ O((|f | + nc+1)2), as there
are |g| intermediate results with a size of at most |g|.

B. Polynomially Verifiable XOR Circuit

The second polynomially verifiable circuit architecture
for g, which we call the XOR circuit, is based on the polyno-
mially verifiable circuit for the function f . Each minterm of
an assignment for which the output has to be complemented
is realized by a negation of all negated literals, followed by
a logarithmic tree of AND gates. Using a logarithmic tree of
XOR gates, all these minterms are then XORed together with
the output of the circuit for the function f .

The resulting XOR circuit for the function shown in Fig-
ure 1(b) is shown in Figure 3. The function f which is shown
in Figure 1(a) is realized with a polynomially verifiable circuit.
The input variables of the negated literals x2 and x3 in the
minterm x1x2x3x4 are negated with a NOT gate and then,
the minterm is realized using a tree of AND gates. Finally,
the minterm is XORed with f .

If the output has to be complemented for δ assignments,
the number of gates of the XOR circuit is at most G(f) +
n + nδ. The circuit for f is used, resulting in G(f) gates.
Furthermore, up to n NOT gates, (n− 1) · δ AND gates and

δ XOR gates are required. Note that the trees of AND gates
for multiple minterms can result in isomorphic subcircuits,
potentially resulting in fewer gates if the circuit is optimized.

As the circuit for f and the trees of AND gates for the
minterms can be computed in parallel, followed by the tree
of XOR gates, the depth of the XOR circuit is at most
max(D(f), dlog(n)e+ 1) + dlog(δ + 1)e.

For the verification of the XOR circuit, the variable ordering
of all BDDs is equal to the ordering which is used during
the polynomial verification of the circuit for f . Again, other
variable orderings may result in an exponential verification
complexity.

Theorem 3. The XOR circuit for g is polynomially verifiable,
if the circuit representation of f is polynomially verifiable and
if the output is complemented for a polynomial amount δ of
assignments.

Proof. As the circuit for f is polynomially verifiable, we
can construct the BDD for this part of the XOR circuit
in polynomial time and space. Furthermore, the outputs of
the AND trees can be constructed polynomially, as every
subfunction is a conjunction of literals where every literal is
either in positive or negated form and has a linear amount of
nodes. Thus, during the construction of the BDDs of the trees
of AND gates, the BDDs are never larger than n nodes, where
the BDDs contain at most one node for every variable.

From Theorem 1, we can conclude that every assignment
for which f and g differ adds at most n nodes to the
BDD. Therefore, the size of the BDD after each XOR gate
is polynomial. More accurately, if the maximum BDD size
during the verification process of the circuit for f is |f |max,
the maximum BDD size during the verification process of the
XOR circuit is |f |max + nδ, as the maximum BDD size
can either be the maximum BDD size during the verification
process of the circuit for f or the BDD size during the XOR
operations. As both δ and |f |max are polynomial, the BDDs
during the verification process have a polynomial size.

Let O(nd) be the time complexity of the verification process
of the circuit for f . Then, the overall time complexity for the
verification process is the sum of the verification time of the
circuit for f , as well as the computation time for the BDDs
of the NOT, AND and XOR gates. This results in an overall
time complexity of O(nd + n+ n3δ + δ · (|f |max + nδ)3) =
O(nd + δ · (|f |max + nδ)3), which is polynomial as well.

Similarly, if O(nd) is the space complexity of the ver-
ification process of the circuit for f , the space com-
plexity of the verification process of the XOR circuit is
O(nd+ nδ+ δ · (|f |max+ nδ)) = O(nd+δ · |f |max+nδ2),
which is again polynomial.

C. Error Metrics
Let f and g be two functions with n inputs and m outputs,

where a circuit for f is polynomially verifiable and the
maximum BDD size during the verification process of the
circuit for f is |f |max. For the four presented error metrics,
given the function f and an error bound, we determine the
maximum size of the BDD during the verification process of
the two circuits for g resulting from our proposed method.
Furthermore, given a specific polynomial nc, we determine

the error ε for which the BDD for g increases the BDD size
for f by at most nc nodes. Both results can be used to enhance
the development process of approximate circuits such that the
resulting circuits are polynomially verifiable. Note that we
compute the maximum BDD sizes for each output individually
and calculate the results for unnormalized errors. For all four
error metrics, the proofs and bounds are similar and therefore,
we exemplarily provide the proof for the bit threshold.

Let ε be the unnormalized bit threshold. Then, ε is the sum
of output bits that are complemented over all assignments.
Therefore, at most ε minterms have to be XORed with
the outputs of f in order to generate g. Thus, during the
verification process of the multiplexer circuit, up to ε minterms
have to be XORed with one output and therefore, the BDD
does not exceed the size |f |+nε, whereas the BDD size does
not exceed |f |max + nε during the verification process of the
XOR circuit. Thus, if ε scales polynomially with respect to
the number of inputs, the verification can be performed in
polynomial time and space.

Given a polynomial nc, we can determine a lower bound
for ε such that the BDD does not exceed the size |f | + nc

during the verification process of the multiplexer circuit
and |f |max + nc during the verification process of the XOR
circuit. As the BDD size during the verification process of the
multiplexer circuit does not exceed |f |+nε, we can conclude
that it does not exceed |f |+nc if ε ≥ nc−1. Furthermore, the
upper bound for the BDD size during the verification process
of the XOR circuit is |f |max + nε and therefore, it does not
exceed |f |max + nc if ε ≥ nc−1.

V. EXPERIMENTS

For the evaluation of the polynomial upper bounds, we
have implemented the verification for both presented circuit
architectures, meaning the multiplexer circuit and the XOR
circuit, using CUDD 3.0.0 [20]. We evaluate the area and delay
for both circuits, as well as the maximum BDD size during the
verification process of both circuits for 9 approximate func-
tions. Here, every evaluated function g is an approximation
of a function f . This approximation is generated by XORing
a function f with a function h, where f is a function for
which a polynomially verifiable circuit exists and where h
has a polynomial amount of minterms with respect to the
number of inputs. Thus, the amount of assignments for which
the outputs of f and g differ is polynomial in the number
of inputs. All functions for f , g and h have 16 inputs. We
evaluate all combinations of three different functions for f
and three different functions for h, resulting in 9 approximate
functions g. For functions f with multiple outputs, every
output is XORed with the respective function for h.

The first function f1 is the 0 function, which is trivially
polynomially verifiable. Furthermore, the second function f2
is the symmetric function S16(8 − 13), which means that
at least 8 inputs and at most 13 inputs have to be 1 for
this function to evaluate to 1, which is also polynomially
verifiable [18]. Finally, the last function f3 is the adder
function, which is realized with a CLA, which is polynomially
verifiable as well [5]. The CLA is implemented without a
carry-in and with two 8-bit inputs, resulting in 16 input and 9
output bits in total.

TABLE I: Results for the multiplexer circuits

f h δ Upper bound Max BDD Gates Depth

f1 h1 16 14 14 36 25
f1 h2 105 42 42 97 33
f1 h3 560 57 57 126 33
f2 h1 16 120 120 258 33
f2 h2 105 213 213 446 33
f2 h3 560 105 105 227 33
f3 h1 9 · 16 68 68 546 33
f3 h2 9 · 105 136 136 1145 33
f3 h3 9 · 560 158 158 1321 33

Average 101.44 101.44 466.89 32.11

TABLE II: Results for the XOR circuits

f h δ Upper bound Max BDD Gates Depth

f1 h1 16 258 21 86 8
f1 h2 105 1682 42 346 11
f1 h3 560 8962 68 1414 14
f2 h1 16 348 120 552 25
f2 h2 105 1772 213 782 28
f2 h3 560 9052 134 1846 31
f3 h1 9 · 16 282 73 183 10
f3 h2 9 · 105 1706 136 459 13
f3 h3 9 · 560 8986 169 1551 16

Average 3672 108.44 812.11 17.33

The first function h1 is the function which evaluates to 1,
if all variables after the log n-th variable are set to 1, which
has n minterms. The second function h2 evaluates to 1 for
the pattern where the first variables are set to 1, followed by
variables which are set to 0, followed by variables which are
set to 1. This function has less than n2 minterms. Finally, h3
has less than n3 minterms and is defined as the symmetric
function S16(3), meaning it evaluates to 1, if exactly 3 inputs
are 1.

A. Polynomially Verifiable Circuits
Table I and Table II show the results for all multiplexer

circuits and XOR circuits respectively. Both tables show the
values for δ, the computed upper bounds for the BDD sizes,
the maximum BDD sizes using the respective variable order-
ing, the number of gates and the depth of the respective circuit.

As can be seen in Table I, for all approximate functions g,
the maximum BDD sizes during the verification process of
the multiplexer circuits do not exceed the upper bound, since
the upper bound is the size of the BDD for g. Therefore, the
upper bound is sharp in all test cases. For the XOR circuit, the
maximum BDD sizes do not exceed the upper bound either.
However, here, the upper bound overestimates the maximum
BDD sizes, as can be seen in Table II. This overestimation
is due to the fact that, as shown in Theorem 1, XORing a
function with a minterm of an assignment increases the BDD
for that function by at most n nodes. In most cases however,
the BDD size is increased by less than n nodes. As the main
objective of the upper bound is that it is never exceeded and to
prove the polynomial verifiability of the circuit, the computed
upper bound is suitable even if it overestimates the results.

Furthermore, the maximum BDD size during the verification
process of the XOR circuit can be larger than the maximum
BDD size during the verification process of the respective
multiplexer circuit. This can be seen in the last row of both
tables, as the BDD size never exceeds the size of the final

TABLE III: Error metrics and upper bounds

f h Max MUX Max XOR bt Bound er Bound ace Bound mse Bound

f1 h1 14 21 16 258 16 258 16 258 16 258
f1 h2 42 42 105 1682 105 1682 105 1682 105 1682
f1 h3 57 68 560 8962 560 8962 560 8962 560 8962
f2 h1 120 120 16 348 16 348 16 348 16 348
f2 h2 213 213 105 1772 105 1772 105 1772 105 1772
f2 h3 105 134 560 9052 560 9052 560 9052 560 9052
f3 h1 68 73 144 2330 16 282 8048 128,794 4,048,304 64,772,890
f3 h2 136 136 945 15,146 105 1706 34,053 368,874 13,487,057 215,792,938
f3 h3 158 169 5040 80,666 560 8986 180,108 2,881,754 67,240,320 1,075,845,146

BDD during the verification process of the multiplexer circuit.
However, for some test examples, the maximum BDD size
is equal, e.g. in the second row of both tables. For these
examples, the BDD sizes during the verification process of the
XOR circuit do not exceed the size of the final BDD either,
resulting in an equal maximum BDD size for both circuits.

Comparing the area and delay of both circuits, it is apparent
that the XOR circuits require a higher amount of gates on
average, as all gates from the base circuit have to be imple-
mented, as well as NOT, AND and XOR gates. On average, the
multiplexer circuit has 466.89 gates, whereas the average XOR
circuit has 812.11 gates. However, the multiplexer circuits have
a higher depth, as the depth of the multiplexer is linear in
the amount of inputs, whereas the depth of the XOR circuit
can have a logarithmic complexity, if the circuit for f has a
logarithmic depth. This results in an average depth of 32.11
for the multiplexer circuits and 17.33 for the XOR circuits.
Thus, the multiplexer circuits are preferable if a more area-
efficient circuit is required, whereas the XOR circuits are more
suitable if a low delay is essential.

B. Error Metrics

In addition to the upper bounds for the BDD sizes during
the verification process of both circuits, we also evaluate the
upper bounds for the BDD sizes given the four presented error
metrics, meaning the bit threshold, error rate, average-case er-
ror and mean-squared error. The results are shown in Table III,
which shows the maximum BDD sizes during the verification
process of both circuits for all approximate functions g.
Furthermore, for all four error metrics, the computed bounds
for the BDD size, as given in Section IV-C, are shown as well.
All error metrics are given unnormalized, meaning they are
not divided by 2n. The computed upper bounds for the BDD
sizes are equal for both circuits, as |f | = |f |max for f1, f2
and f3. For all approximate functions and all error metrics,
the maximum BDD sizes during the verification process of
both circuit architectures are lower than the computed upper
bounds.

As can be seen in the first six rows, all error metrics have
the same value for each single-output function, as well as the
same resulting upper bound. However, for the functions with
multiple outputs, which are shown in the last three rows, the
error metrics and therefore the upper bounds differ. As can be
seen, the bit threshold, the average-case error and the mean-
squared error result in significantly larger bounds compared
to the error rate. Thus, for functions with multiple outputs,
the error rate provides the most accurate upper bound for the
maximum BDD size during the verification process.

VI. CONCLUSION

In this paper, we have shown that if a function with a
polynomially verifiable circuit is approximated such that a
polynomial amount of input assignments result in a different
output, there exist at least two polynomially verifiable circuits
for the resulting function, meaning their verification is guar-
anteed to run in polynomial time and space with respect to the
number of inputs. Polynomial upper bounds for the BDD sizes,
as well as the time and space complexity were given for the
verification process of both circuits. Additionally, as approxi-
mate functions are typically evaluated using error metrics, we
have given upper bounds for the BDD sizes given the error
between both functions. Using our results, the development of
approximate circuits can be enhanced such that the resulting
circuit is guaranteed to be polynomially verifiable and that the
maximum BDD size during the verification process, as well as
the verification time and space can be estimated beforehand.
Furthermore, we have experimentally evaluated the bounds for
the BDD sizes during the verification process.

REFERENCES
[1] E. Seligman, T. Schubert, and M. V. A. K. Kumar, Formal verification. Boston: Morgan

Kaufmann, 2015.
[2] R. Bryant, “Symbolic simulation-techniques and applications,” in DAC, 1990, pp. 517–

521.
[3] ——, “Graph-based algorithms for boolean function manipulation,” IEEE Transactions

on Computers, vol. C-35, no. 8, pp. 677–691, 1986.
[4] R. E. Bryant and Y.-A. Chen, “Verification of arithmetic circuits with binary moment

diagrams,” in DAC, 1995, pp. 535–541.
[5] R. Drechsler, “Polyadd: Polynomial formal verification of adder circuits,” in DDECS,

2021, pp. 99–104.
[6] J. Han and M. Orshansky, “Approximate computing: An emerging paradigm for energy-

efficient design,” in ETS, 2013, pp. 1–6.
[7] R. Venkatesan, A. Agarwal, K. Roy, and A. Raghunathan, “Macaco: Modeling and

analysis of circuits for approximate computing,” in ICCAD, 2011, pp. 667–673.
[8] R. Hrbacek, V. Mrazek, and Z. Vasicek, “Automatic design of approximate circuits by

means of multi-objective evolutionary algorithms,” in DTIS, 2016, pp. 1–6.
[9] S. Venkataramani, A. Sabne, V. Kozhikkottu, K. Roy, and A. Raghunathan, “Salsa:

Systematic logic synthesis of approximate circuits,” in DAC, 2012, pp. 796–801.
[10] V. Mrazek, R. Hrbacek, Z. Vasicek, and L. Sekanina, “Evoapprox8b: Library of ap-

proximate adders and multipliers for circuit design and benchmarking of approximation
methods,” in DATE, 2017, pp. 258–261.

[11] I. Wegener, The Complexity of Boolean Functions. John Wiley & Sons, 1987.
[12] S. Fröhlich, S. Shirinzadeh, and R. Drechsler, “Multiply-accumulate enhanced BDD-

based logic synthesis on RRAM crossbars,” in ISCAS, 2020, pp. 1–5.
[13] K. Brace, R. Rudell, and R. Bryant, “Efficient implementation of a BDD package,” in

DAC, 1990, pp. 40–45.
[14] A. Mahzoon and R. Drechsler, “Late breaking results: Polynomial formal verification of

fast adders,” in DAC, 2021, pp. 1376–1377.
[15] ——, “Polynomial formal verification of prefix adders,” in ATS, 2021, pp. 85–90.
[16] M. Keim, R. Drechsler, B. Becker, M. Martin, and P. Molitor, “Polynomial formal

verification of multipliers,” Formal Methods Syst. Des., vol. 22, no. 1, pp. 39–58, 2003.
[17] M. Barhoush, A. Mahzoon, and R. Drechsler, “Polynomial word-level verification of

arithmetic circuits,” in MEMOCODE, 2021, pp. 1–9.
[18] R. Drechsler and C. Dominik, “Edge verification: Ensuring correctness under resource

constraints,” in SBCCI, 2021, pp. 1–6.
[19] R. Drechsler, “Polynomial circuit verification using bdds,” in ICEECCOT, 2021, pp. 49–

52.
[20] “CUDD 3.0.0,” https://github.com/ivmai/cudd, accessed: 2021-10-15.

