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Abstract—Over the last years, the structure sizes of integrated
circuits have significantly been decreased. This allows for the
development of small, powerful, and energy-efficient circuits,
as required for the challenging application scenarios like given
in automotive or avionic systems. Nanometer scaled technology
nodes are more vulnerable against transient faults, for instance,
as induced by high radiation beams, potentially causing an
erroneous behavior of the system. Different types of approaches
have been proposed to increase the robustness of circuits against
these faults, particularly for safety-critical applications. Such
a countermeasure calculates, for instance, application-specific
knowledge yielding a highly efficient fault detection mechanism
that enhances the robustness significantly. Since these approaches
invoke formal techniques for an advanced state analysis, a high
computational effort is required, limiting the applicability for
large circuit designs. This work addresses these shortcomings
by combining an evolutionary algorithm with newly developed
multi-objective optimization operators, deliberately designed for
the state analysis of sequential circuits. The developed measures
are all seamlessly integrated into one dedicated hardware module.
By this, prototyping devices like field programmable gate arrays
can be orchestrated during the regular circuit design flow to
execute the proposed module to, in the end, benefit from an
enormous hardware-acceleration. The experimental evaluation
clearly proves that the presented method allows calculating
application-specific knowledge effectively. More precisely, the
run-time is reduced by more than 1,200X while retaining (or even
improving) the efficacy of the resulting on-chip fault detection
mechanism compared to state-of-the-art in terms of robustness
enhancement and introduced hardware overhead.

I. INTRODUCTION

During the last decade, a lot of research has been carried
out in the field of electronic design automation and the devel-
opment of nanometer-scaled technology nodes. The achieved
progress allows for the design of highly complex Integrated
Circuits (ICs) that are pervasive in nearly all aspects of daily
life. It can be noted that the number of sequential elements,
i.e., Flip Flops (FFs), in integrated circuits has been steadily
increasing. However, the vulnerability of FFs against transient
faults grows due to the nanometer-scaled feature sizes. A
transient fault at a FF potentially flips the stored logic value
for a short period of time if it is not logically, electrically, or
temporarily masked. This may affect the output values and cor-
rupts the IC’s functional behavior. In safety-critical systems,
these violations potentially lead to severe malfunctions and,
hence, can cause large collateral damage. Application fields
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like aeronautic systems are influenced by the environment and
exposed to high-energetic radiation, which implies that the
system is even more prone to transient faults [1], [2].

New mechanisms are required to decrease the vulnerability
of ICs against transient faults, i.e., by detecting and reacting
to an occurring fault. The robustness serves as an important
metric for this, derived from the number of non-robust FFs
being vulnerable to transient faults over all FF of the IC. For
increasing the robustness of a sequential circuit, the number of
vulnerable (non-robust) FFs needs to be decreased. Typically,
the circuit is extended by introducing redundant hardware [3]-
[6] or redundant time-delayed computation [7], [8] to harden
the corresponding FFs. Even though these techniques work
in principle, a significant hardware overhead or a measurable
effect on the resulting latency is introduced, leading to high
costs and reduced performance.

Due to the drawbacks of the existing approaches, an
application-specific approach has been proposed in [9], [10]
that determines application-specific knowledge to increase
the robustness of the circuit while introducing only a slight
hardware overhead compared to space-based approaches like
Triple Modular Redundancy (TMR) and impacting the timing
only negligibly. The application-specific knowledge is either
calculated by the random approach [9], resulting in very low
run-time, or by incorporating formal techniques to improve
the results further, as done in [10]. However, using formal
techniques yield an enormous run-time, which is infeasible
for large circuits.

This work proposes an Evolutionary Algorithm (EA) with
novel Multi-Objective Optimization (MOQ) operators, delib-
erately designed for the state analysis of sequential circuits
and seamlessly integrated into a hardware module. The pro-
posed MOO-EA is meant to be executed for determining the
application-specific knowledge using prototyping devices like
Field Programmable Gate Arrays (FPGAs) during the regular
circuit design flow. This knowledge is then fed back to the
software flow of [10] to, finally, emit the improved gate-level
netlist. MOO-EA increases the robustness without sacrificing
the scalability to larger circuits. Thus, the shortcomings of
existing techniques [9], [10] are mitigated. In particular, MOO-
EA significantly reduces the run-time up to 1,200X while
achieving comparable robustness enhancements.

The structure of this paper is as follows: Section II gives a
brief introduction to required fundamentals and related works.



The proposed MOO-EA is presented in Section III and the
experimental evaluation is presented in Section IV. Finally, a
conclusion and outlook to future works are given in Section V.

II. PRELIMINARIES

This section introduces EAs, sequential circuits, and the
transient fault model. Furthermore, the technique [9] is shortly
described that forms the basis of the proposed approach and,
hence, is strictly required for the comprehension.

A. Evolutionary Algorithms

The general idea of EAs is about simulating the natural
evolution process to solve an optimization problem. An EA
encodes a population of individuals containing solutions for
the optimization problem. An individual ¢ can be represented
as atriple i = (G, Z, F) with G; equals the genotype encoding
the solution of the optimization problem, Z; holds the addi-
tional information, for example, specific configurations for the
individual, and F; represents the fitness of 7. The genotype is
reflected by a set of genes, which are the substitutable atomic
parts concerning the chosen encoding.

Typically, EAs implement Genetic Operators (GOs) to
reproduce individuals, such as recombination and mutation, to
optimize the resulting genotype. The recombination operator
(cf. Equation (1)) recombines two or more genotypes to form
a new individual and the mutation operator (cf. Equation (2))
randomly changes the genotypes yielding new genes that im-
prove the genetic diversity. Hereby, genetic diversity is defined
by the diversity of the genotypes inside the population and
increases the probability of reaching a global optimum [11].

Recombination® : (G x Z)" — (G x Z), with r > 2
and rand. state ® (1)

Mutation® : (G x Z) — (G x Z), with rand. state ® (2)

EAs can incorporate additional side information about the
addressed domain to improve the behavior of the GOs. Ev-
ery individual ¢ is evaluated by a fitness function (i) to
assess the quality of the given solution. The individuals are
passed to a selection operator that removes individuals. The
truncation selection is a frequently used selection operator
removing individuals with the worst fitness values. Finally,
the remaining population is reproduced again to replace the
removed individuals if the termination condition, e.g., a certain
fitness value, is not met. Note that every reproduction cycle
of the EA is called generation.

B. Sequential Circuits and Transient Faults

A sequential circuit ¢ can be represented as a gate-level
representation and consists of Primary Inputs (Pls), Primary
Outputs (POs), combinational gates G, and sequential ele-
ments, such as FFs, ie., ¢ = (PI,PO,G,SE). Each FF
stores a logical value for one clock cycle and, therefore,
holds a specific FF state. All FF states considering one clock
cycle define the related circuit state. Due to the increasing
complexity of circuits, the feature size must be shrunk to

meet the requirements. The shrinking feature size leads to an
increased vulnerability of circuits against transient faults.

A transient fault is typically caused by single event upsets,
e.g., electrical noise, particle strikes, or other environmental
effects [1], [2]. Generally, a transient fault at a FF is modeled
as an unintended toggled FF state, which potentially leads
to an unspecified behavior of the circuit ¢. Particularly for
safety-critical applications, such a faulty behavior may lead to
large collateral damage. The robustness is formally given in
Definition 1.

Definition 1. Robustness

A FF ff1 is called robust if an occurring (single) transient
fault in ff1 does not affect the input/output behavior of the
circuit ¢. The robustness of ¢ considers the average robustness
of all FFs in ¢ and acts as a metric to evaluate the overall
vulnerability against the considered fault model.

Different approaches have been proposed to improve the
robustness — also known as hardening — of sequential circuits.
The robustness increasing methods applied to the Circuit-
under-Hardening (CuH) can roughly be categorized into
space-based [3]-[6], timing-based [7], [8], and application-
specific [12] approaches. Typically, such a hardening pro-
cess involves newly inserted on-chip Fault Detection Mecha-
nisms (FDMs) or Fault Correction Mechanism (FEM) that are
meant to observe the circuit’s behavior to, in the end, detect
(or correct) transient faults. In particular, when orchestrating
FDMs, a certain fault signal is raised to execute certain
precautions in case of transient faults.

C. Enhancing Robustness of Sequential Circuits
Application-specific Knowledge and Formal Methods

Using

The method proposed in [9] is an application-specific ap-
proach specialized for single transient faults while introducing
only a relatively small hardware overhead. The approach [9]
determines application-specific knowledge to improve the
circuit’s robustness by inserting highly effective FDMs by
heavily orchestrating formal techniques combined with binary
decision diagrams. Basically, the (functional) equivalence be-
tween groups of FFs is being evaluated and takes advantage
of redundancies that prevail in certain states of the circuit
during its functional operation. Thus, functional equivalent
FFs — in terms of their logical values — in specific states of
the circuit are determined and used to deduce Equivalence
Properties (EPs), as formally given in Definition 2.

Definition 2. Equivalence Property

Let F be the set of all FFs and F;,, C F an arbitrarily
subset. Furthermore, let S be the set of all reachable states
of the circuit and Sy, C S an arbitrarily subset. The value
of a FF ff € F in a state s € S is noted by ff(s). Then
EP(Stm, Fim) is satisfied, iff.

Vffn, ffm € Fum t ffa(8) == ffm(5),Vs € stm.

The EP specifies the behavior of the circuit partially with
respect to a set of covered states. Given an arbitrary set
of states Si,, and a set of FFs Fy,, C F satisfying the
EP(S¢m, Fim), the equivalence of all ff € Fy, for all
s € Sy, can be evaluated on-chip during the functional



operation. The evaluation is performed by a dedicated logic
block that consists of an activator and a comparator unit; for
more details, please consider [9].

Both units form the holistic FDM, which is seamlessly
integrated into the gate-level netlist of the design-under-
hardening. The circuit can be extended with multiple FDMs,
which are commonly contributing to the overall fault detection
of arbitrary transient faults in FFs. Internally, the activator
detects whether a circuit state currently prevails that satisfies
an EP. Note that all these states are pre-calculated during
the hardening phase for different sets of FFs using the state
collector concept, as described in detail in [9]. If such an EP
state is observed during the functional operation, the activator
is enabled. In parallel, the comparator checks whether the set
of FFs, for which a logical equivalence of their internal values
can be assumed, is the same or not. The fault signal can then
be derived as follows: If an EP state prevails and the set of FFs
is not equivalent, a transient error must have been occurred in
one FF of the considered set.

The effectiveness of the approach highly depends on the
sets Fy,, C F. In [9], the FF sets are selected randomly, i.e.,
random FF sets F}, C F of a predefined cardinality (partition
size) ps are calculated. If all FF sets of a specific cardinality
are checked, the cardinality of F}} is decremented. Definition
3 describes the decrement of cardinality in more detail. Note
that each set F}} , that holds at least one valid state s € S

satisfying an EP, can be used to generate a FDM.

Definition 3. Random approach cardinality decrement

Let FEY' < F2. Vo € N\{0} then all FE, C F},,
Va € N\{0, 1} are excluded from the search. However, in
case of Vs € S : =EP({s}, F}.,), the EP is calculated on a
subset F2, C F} only. The actual FFs to be removed from
F}. are calculated by a greedy-wise algorithm, which is done
iteratively until a subset satisfies the EP on at least one state

s € S or|FE. | <2 orno further FFs remain.

This approach leads to a low run-time, but the resulting
robustness can be improved. Thus, an SAT-based metric for
evaluation has been proposed in [10], allowing for calculating
more effective FFs. However, the orchestration of formal tech-
nique results in high run-time, strictly limiting the scalability.

III. EVOLUTIONARY APPROACH

This work proposes a specialized hardware-based EA to
determine application-specific knowledge of a sequential cir-
cuit allow for synthesizing highly effective FDMs, which
enable the detection of transient faults. More precisely, the
proposed approach significantly increases the robustness while
consuming only negligible run-time and introducing a slight
hardware-overhead. By this, the speed of the state-of-the-art
greedy-like technique [9] and the effectiveness of the SAT-
based technique [10] are combined. In the end, this allows
enhancing the robustness of larger circuit designs, which was
not possible earlier.

The overall data flow of the proposed system is given
in Figure 1. The system stimulates the PIs of the CuH
with pseudo-random inputs by an on-chip Random Pattern

Proposed system

Parameterization /Z, EA

State
readable
RPG CuH
Control of
the CuH
i i ; Hardening and
Simulation using
Questasim robustness Results
FF-Sets measurement

Figure 1: Dataflow of the proposed approach

Generator (RPG). Each time a new pattern has been assigned
to the PIs, the EA extracts the internal FF states of the
circuit in the following clock cycle. The state is then internally
used to evaluate the application-specific knowledge, which is
encoded in the individuals. Afterwards, the EA signalizes the
RPG to provide a new input pattern. This process is meant
to be executed on a prototyping device to benefit from a
massive hardware acceleration, which is substituted by using
a logic simulator in this work. Internally, the EA encodes
individuals ¢ € I as a population. The genotype G; of an
individual 7 consists of the application-specific knowledge,
being represented as a set of genes encoded as integer FF-
IDs. Therefore, each FF of the CuH is numbered with its ID.
The fitness F; acts as a metric considering the number of
states that satisfy the EP in one generation (for G;) and, hence,
approximates the robustness increase. Since there is no limited
generation size due to the RPG, the number of observed states
per generation is an additional parameter. Finally, the addi-
tional information Z; encodes various information to optimize
the genetic operators. In the following, the fitness function,
GOs, and the additional information of this specific EA are
explained in detail. The fitness function is essential for any
EA to assess the individuals’ quality. However, calculating the
robustness in each generation leads to an infeasible run-time.
If no exact fitness function can be performed with respect to
the time constraints, an approximative function can be applied,
for instance, by considering prediction intervals, as proposed
in [13]. An appropriate metric for the application-specific
knowledge is calculated by considering the EP. Consequently,
if an observed state s, EP({s},i.G) is satisfied, an individual
7 increases its fitness. Since genotypes of high cardinality cover
relatively more FF-IDs, the corresponding FDMs detect more
transient faults yielding higher robustness. More precisely,
each individual 7 is evaluated with respect to |G;|. The
resulting fitness function (i, s) for an individual 7 in a state
s, as stated in Equation 3.

Y(i,s) =L, G| ==1 (3)
0, else

The fitness of an individual ¢ is calculated by (i) =
Zfi1(¢(ia Sz)), Sz € S with S the observed states in a gen-
eration. The genotype’s maximum size needs to be predefined
since the population is saved in (hardware) registers. Addi-



tionally, the GOs are adapted to the problem. The mutation
performs operations that remove, add or replace one gene per
generation. If the maximal size of the genotype is reached,
remove or replace are applied. The recombination chooses two
parents, whereby individuals with higher fitness have a higher
probability of becoming a parent. The parents get recombined
by either inherit a gene from the child or not. If the number of
inherited genes reaches the genotype’s maximum size, further
inheritance is applied as a replacement. The selection operator
is realized as a truncation selection. Therefore, the population
is sorted by a hardware-based merge sort like [14] concerning
the fitness values. Afterward, half of the population holding
smaller fitness values is removed. The resulting steady-state
behavior converges significantly faster in average [15].

For further improving the GO’s performance, multiple ex-
tensions have been deliberately designed and implemented.
This allows for determining additional information ¢.F for
every individual ¢ that is being calculated and stored as
follows:

Collision information — describes how often FF-IDs of a
genotype violate the EP regarding observed states. A
Dominant Logical Value (DLV) is calculated to determine
the genes violating the EP. The DLV is the logical value
that prevails in most FFs represented by a genotype
concerning a specific state. For all genes representing FFs
that do not hold the current DLV, the collision value is
increased. This information is used to remove or replace
genes with higher collision values more likely during the
mutation and recombination.

State coverage information — reflects the number of FFs f
in a genotype G; — considering an observed state s — that
satisfy EP({s},G;), whereby Equation 4 holds.

3j: f € G, EP({s},G;) and
(IG;| > |Gi| 1 (|G| == |Gi| && F; > F)) (4

Individuals without such genotypes are removed if the
coverage information is used. Thus, the state coverage
information influences the selection operator while being
collected over a predefined number of generations (state
coverage memory). This ensures reflecting state coverage
information over multiple generations while removing
deprecated information that is no longer valid.

Gene coverage information — describes if an individual ¢
covers a gene g essentially, i.e., (g ¢ G;||F; < F;),Vj €
P holds. The gene coverage information is used to protect
the individuals that have essentially covered genes such
that they are not removed from the population. This
method maximizes the number of covered FFs by the
corresponding FDMs.

Subset fit-factor — is used to avoid multiple genotypes rep-
resenting redundant application-specific knowledge. A
genotype G; is redundant if it equals an existing geno-
type, or Pk with G; C G, C G such that Fj, > F}. The
Subset Fit Factor (SFF) indicates whether the subset G;
potentially becomes a subset G, with higher fitness than
F;. An optimal Gj_op¢ holds the same number of EP
satisfying states as (G;, and the maximum possible size
equals (|G| — 1). Gr—opt approximates the maximum

possible fitness of any k with G; C G C G;. The
maximum possible fitness is related with I, as follows:

SFF(Gy) = LEESIEPUs}G}R(Gs1-1) )

J

This value 7 is greater than 1 if the maximum possible
fitness of one or more superset G, — derived from G;
with G; C G, C G; — is higher than F;. Consequently,
if the subset fit-factor is used and the fit-factor is < 1,
the individual is removed from the population.

Validity — protects a subset G; from being removed if it
satisfies the EP in a state that was not covered by any
superset in previous generations before. This preserves
the knowledge of states satisfied by the individual G; but
not by any other superset. For the same reasons as the
state coverage information, the validity is collected over
a predefined number validity memory of generations.

During the execution of an EA, the population may be stuck
in a local optimum, which prevents any further optimizations.
Thus, a mechanism to ensure the exploration of new search
space is required. Typically, complex methods like speciation
technologies are used to evolve and protect different solu-
tions in parallel, as proposed in [16]. Due to the hardware-
based implementation, this work implemented a rather straight
childhood principle. Childhood constantly evolves into new
individuals with empty genotypes. These individuals are solely
affected by the mutation operation and remain protected from
any selection mechanisms of the population since, otherwise,
they would be removed due to the already developed existing
individuals. If an individual fails to improve its fitness for
a predefined number of consecutive generations (stagnation-
border), the individual is removed from childhood and added
to the population.

Since the FDM’s comparator unit observes the covered FFs
output value by introducing a new fanout, the capacity of the
corresponding signal gets slightly increases. This changes the
latency and may require deviating cell types used during the
layout synthesis, which is considered because each FF is meant
to be covered only once by a genotype. Consequently, the
genotypes of the calculated individuals have to be disjunctive.

Two different methods were implemented for controlling
the individuals’ number that covers a gene during the EA’s
execution, which are both described in the remainder.

Gene coverage without overlap — checks the gene coverage
for each gene of an individual. If for all genes g € i.G,
i.e., no individual i, with g € i,.G exists, and i,.F >
1.F, the individual ¢ covers it genes without overlaps
and is therefore essential. Only essential individuals ¢ are
considered for the FDM synthesis if this mechanism is
enabled.

Sequential calculation of FF-sets — sequentially calculates
FF-sets by dividing the overall evolution into sequences
of a user-defined number of generations. The best individ-
ual iy is stored for each sequence and the genes ipcs:.G
are removed from the EA for all successive sequences.

Subsequently, all covered genes are removed from each
genotype of the population while beginning with the geno-



type of the best individual. This principle ensures that all
application-specific knowledge is extracted from the popula-
tion. As the final step, the determined most beneficial sets of
FF are then fed back into the software hardening flow, yielding
the enhanced gate-level netlist.

IV. EXPERIMENTAL EVALUATION

This section describes the experimental evaluation of the
proposed MOO-EA and discusses the obtained results con-
cerning the robustness increase and run-time compared to the
random [9] and SAT-based [10] approach.

All experiments have been conducted on an Intel i7700k
with 32 GB system memory within a QuestaSim simulation
environment. The proposed technique is implemented as a
Simulink model, which is transformed to a register transfer
level using MATLAB 9.3 in combination MATLAB HDL-Coder
3.11. The same ITC’99 benchmark circuits of [9], [10] and
the identical simulation-based robustness assessment tool-flow
have been considered for a fair comparison. This tool-flow
determines the robustness by injecting a transient fault in the
CuH while comparing the signals at the POs only.

The proposed EA hardware is emitted as synthesizable
hardware description language and meant to be implemented
directly in hardware by using fast prototyping hardware like
FPGAs. After the EA’s execution, the calculated data are then
fed back into the hardening (software) flow that generates the
FDMs and, finally, emits the enhanced gate-level netlist of the
CuH. This netlist can then be directly passed through, like the
place & route.

The considered maximum of genes per genotype is set to
16 FFs, reflecting the chosen partition sizes of [9], [10]. The
population’s size is chosen concerning the number of FFs in
the CuH. The proposed approach can easily be applied to
an arbitrary circuit with any amount of FFs. The considered
circuits have up to 245 FFs, whereas the EA can produce
overlaps during execution and, hence, the population size is
set to 200 individuals. Further parameters to either determine
additional information or control the childhood operation
exist, which have been evaluated by various runs with step-
wise adjusted parameters, such as the sequence length. In
each generation, 128 states are observed from 128 randomly
generated stimuli. This parameter influences the resulting size
of the evolved genotypes and, hence, is chosen based on the
following observations. Smaller genotypes have fewer genes to
collide resulting in more EP satisfying states. However, larger
genotypes have higher fitness increases per EP satisfying state.
Thus, the results with fewer observed patterns tend to calculate
larger genotypes, and the genotypes’ size is shrinking when
considering more observed states per generation. Both variants
lead to FDMs yielding lower robustness values. Since the
recombination impacts the resulting child individual stronger
than the mutation, five recombined children per generation are
considered. The number of individuals developed in childhood
is set to five yielding a sufficiently sized population to optimize
the application-specific knowledge while probably overcoming
local optima. The stagnation-border of the childhood is set
to three, which has proven itself as an appropriate number
of generations to protect the children. Higher stagnation-
borders usually protect the children too long and, therefore,

TABLE I: Stage-I results

Approadh Values | g (%] | HWO [%] | HT [s]
EA 93.8 19.47 271
random 85.22 8.05 9.31
SAT-based 95.86 6.46 2,985.90

prevent the childhood from evolving new children. The state
coverage information and validity memory are both set to ten
generations.

Evaluation: The following values been obtained: the
robustness of the original circuit (orig. R), the robustness
of the enhanced circuit (R), and the Hardening Time (HT)
in terms of the EA execution time (HT/EA]). Note that the
hardening run-time includes all steps from the analysis to
the generation of the enhanced gate-level netlist of the CuH,
orchestration the newly inserting FDMs. The EA execution
time has been normalized from the simulation environment
with respect to the usual FPGAs’ functional clock frequency
of approx. 200Mhz.

Table I presents the average results of all conducted experi-
ments, including ten different configurations to perfectly adjust
the EA concerning different circuit’s characteristics. Consid-
ering the random- and SAT-based approach, the conducted
experiments consider partition sizes of 8 and 16. The results
clearly demonstrate that the achieved R values outperform the
results of the random approach [9]. In particular, the proposed
technique achieves outstanding results for circuit 674 - the
Hardware Overhead (HWO) of the EA is 19.47% higher than
any other approach.

In order to determine a baseline for the following evaluation,
a standard EA without any MOO-EA technique, has been
implemented. The considered configurations are as follows:

standard — the configuration for the baseline comparison; all
additional information, the childhood and both integrated
methods to ensure disjoint genotypes are deactivated.

mod-1 — this setting enables all additional information and
techniques except state coverage information and child-
hood. Furthermore, the gene coverage (without overlaps)
is activated to ensure the best individuals are disjoint.

mod-2 — this run equals mod-1, but instead of the gene
coverage without overlap, the sequential calculation of
FF-Sets is activated and set to 20 generations.

The benchmark circuits strongly vary in their structural
characteristics and, hence, it is unlikely to determine one
global configuration for the EA to cover all circuits best at
once. Thus, for a fair comparison against the previous works,
only the two most beneficial configurations are considered.
Consequently, the configuration with the most beneficial R
have been chosen for each circuit.

Figure 2 visualizes the R of the two most effective con-
figurations of the MOO-EA, the random and SAT-based
approaches, and the standard-EA (baseline). The standard-
EA achieves significantly lower robustness values than the
random approach for all circuits except b06. In contrast to
this, the newly proposed MOO-EA achieves better results
than the random approach in any circuit except the b07, in
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which a slight decrease occurs. H07 implements a counter
and, hence, has a deviating behavior compared to the others.
Thus, different configurations for the EA would be required.
Compared to the SAT-based approach, the MOO-EA achieves
better results for three of the circuits and equal results for b09.

The standard-EA generally introduces a small HWO com-
parable to the HWO of the random- and SAT-based approach
in most circuits, as visualized in Figure 3. The HWO of the
MOO-EA is slightly higher than the values of the standard-
EA. The main difference to the existing approaches can be
observed at the b/4, which is not processible by the SAT-
based approach due to infeasible run-time. The MOO-EA
allows determining of more partitions as done by the random
approach. In turn, the additionally observed partitions do not
further improve robustness since approx. 100% robustness —
concerning the robustness assessment technique — is already
achieved but measurably increases the resulting HWO.

Finally, Figure 4 presents the HT. The EA benefits from
its HW-based character allowing for a massive hardware
acceleration during the state space exploration of the CuH.
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Figure 4: Hardening time comparison

Multiple hundreds of generations are passed in milliseconds,
outperforming a similar offline EA-based approach by far.
The proposed approach only needs up to 0.05 seconds for
all of the considered circuits. The rest of the HT is caused
by the simulation-based robustness assessment tool-flow. The
smallest average HT is achieved by the standard-EA (except
for b12), followed by the optimized-EA. As indicated earlier,
the SAT-based approach exceeds the HT threshold of 100k
seconds. However, the newly proposed optimized-EA allows
processing b4 within minutes. More precisely, a speed-up
by 1,215X has been achieved for b/3 while an average
factor 251X is accomplished considering all benchmarks. This
circumstance clearly proves the superiority of the developed
optimized-EA over existing approaches.

V. CONCLUSIONS

This paper presented a hardware-based EA orchestrating
novel multi-objective optimization operators to significantly
increase the robustness of sequential circuits against transient
faults. In the end, the proposed approach achieved a robustness
increase nearly as good as the SAT-based technique’s result
while achieving a massive speed-up of up to 1,200X. The
proposed technique provides an effective way to conduct
application-specific knowledge and, hence, enabled for the
first time an increase of robustness comparable to the SAT-
based approach for larger ICs. Future work will focus on a
deeper analysis of the observed states to further optimize the
EA. Additionally, more pessimistic robustness measures will
be considered, for instance, regarding silent data corruptions,
and, hence, the benefit when using the proposed approach will
be even more significant.
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