
Polynomial Formal Verification of Floating Point
Adders

Jan Kleinekathöfer
University of Bremen, Germany

ja kl@uni-bremen.de

Alireza Mahzoon
University of Bremen, Germany

mahzoon@uni-bremen.de

Rolf Drechsler
University of Bremen/DFKI, Germany

drechsler@uni-bremen.de

Abstract—In this paper, we present our verifier that takes
advantage of Binary Decision Diagrams (BDDs) with case splitting
to fully verify a floating point adder. We demonstrate that the
traditional symbolic simulation using BDDs has an exponential
time complexity and fails for large floating point adders. However,
polynomial bounds can be ensured if our case splitting technique
is applied in the specific points of the circuit. The efficiency of
our verifier is demonstrated by experiments on an extensive set of
floating point adders with different exponent and significand sizes.

Index Terms—floating point, verification, symbolic simulation

I. INTRODUCTION

In the last 30 years, several formal methods have been pro-
posed to verify integer arithmetic circuits. Furthermore, polyno-
mial bounds have been proven for some of these techniques [1]–
[6]. However, the available approaches totally fail if they are
applied to floating point arithmetic: (1) BDD-based verification
runs out of memory since the size of graphs grows exponentially
with respect to the size of the circuit, (2) Boolean Satisfiability
(SAT) based verification runs for an indefinite amount of time,
and (3) word-level verification techniques based on Symbolic
Computer Algebra (SCA), e.g., [7] and Word-Level Decision
Diagrams (WLDDs) , e.g., [8] fail as there is no clear word-level
specification. There have been some efforts to extend the existing
verification techniques for the floating point arithmetic [9]–
[13]. Many of them make use of case splitting to simplify the
verification process, but fail to give bounds on the complexity.

In this paper, we propose a verification method based on
symbolic simulation with case splitting to ensure the correct-
ness of big floating point adders. In symbolic simulation [14],
the function represented by the circuit is iteratively built from the
inputs towards the outputs using BDDs. The represented function
is compared to the expected function by checking the equality of
BDDs, which can be done in constant time by BDD packages.
This verification technique is successfully used to prove the
correctness of integer adders in polynomial time. However, it
fails when it comes to the verification of floating point adders
since the size of intermediate BDDs grows exponentially with
respect to the input sizes. We first find the explosion points in a
floating point adder by experimental evaluation, i.e. we detect the
points in the circuit where the size of intermediate BBDs grows,
dramatically. Subsequently, we come up with a case splitting
technique to avoid the explosion. We detect the BDDs in some
specific points of the circuit and simplify them by considering
several cases. We keep the size of intermediate BDDs small
during the symbolic simulation and make polynomial formal

This work has been supported by DFG within the project DR 287/36-1.

TABLE I
BDD SIZES OF THE INTERMEDIATE RESULTS FOR DIFFERENT FORMATS

exponent/significand 5/5 5/10 8/15 8/20
exp. comp. 15 15 24 24

exp. diff. 26 26 38 38
(1.7×) (1.7×) (1.6×) (1.6×)

align. shift 115 153 593 701
(4.4×) (5.9×) (15.6×) (18.4×)

sig. add. 367 1677 9729 50471
(3.2×) (11.0×) (16.4×) (72.0×)

lead. zero count. 859 6164 36399 211224
(2.3×) (3.7×) (3.7×) (4.2×)

norm. shift 2306 52237 756297 10024731
(2.7×) (8.5×) (20.8×) (47.5×)

output 2748 61823 841735 10618756
(1.2×) (1.2×) (1.1×) (1.0×)

verification possible. The experimental results confirm that our
method verifies floating adders with different sizes, including
standard IEEE754 format (i.e. single precision, double precision,
and quadruple precision) as well as arbitrary sizes.

II. CHALLENGES

In this section, we investigate the challenges of verifying a
floating point adder using BDDs. TABLE I reports the interme-
diate BDD sizes during the symbolic simulation of the floating
point adder. There are two formats with an exponent size of 5
(see the second and third column) and two with an exponent
size of 8 (see the fourth and fifth column). For the formats with
the exponent size 5(8), the significand has 5(15) or 10(20) bits.
Each cell contains two numbers: the first number is the size of
the intermediate BDD in the specific point of the circuit and the
second number is the growth of the BDD size compared to the
last point, i.e. the above cell. It is evident from the table that
at two points of the circuit an explosion occurs in the size of
intermediate BDDs:

1) The intermediate BDD size grows significantly on the
output of the significand addition compared to the previous
point, i.e. the output of the alignment shift. This growth is
exponential with respect to the significand and exponent
sizes, e.g. it reaches a growth of 72.0× for the expo-
nent/significand size of 8/20. [15] provides a theoretical
explanation for this explosion.

2) The explosion happens again on the output of the normal-
ization shift compared to the previous point, i.e. the output
of the leading zero counter. Similar to the first blow-up, the
growth is exponential with respect to the significand and
exponent sizes.

Therefore, the two main points of BDD explosion can be
determined as the significand addition and the normalization shift.



III. CASE SPLITTING

We now explain our approach, which takes advantage of
symbolic simulation with case splitting to avoid the explosion:
first, a set of cases is specified on the intermediate results. This
set has to have a polynomial size with respect to the input size to
be efficient. Furthermore, every possible value of an intermediate
result has to be included in at least one of the cases to keep the
verification complete. For every bit of the intermediate result,
there is one simplification in the case. The simplification is done
by replacing the original BDD with the simplified BDD. The
easiest way to simplify an intermediate BDD is to have one case
where the BDD is simplified to a terminal one and another case
where it is simplified to a terminal zero. Unfortunately, it cannot
be done for all bits of an n-bit intermediate result since this
would result in 2n cases. Hence, when creating the set of cases
the input space has to be divided smartly.

A. Alignment Shift Case Splitting

To avoid the BDD explosion at the significand addition, a
case splitting is introduced. One easy way to define such a case
splitting is to split with regard to the shift amount or the exponent
difference. While there are exponentially many possible values
for the exponent difference with respect to the exponent size, only
linear many cases with respect to the significand size are actually
needed for the shift. This is due to the fact that it is irrelevant
how big the actual shift was if all non-zero values were shifted
out. Additionally, by simplifying the exponent comparison result
(which multiplies the number of cases by two) the shift direction
is determined. The total number of cases is (n + 2) × 2 if we
assume that the significand size is widened by two to ensure a
correct rounding. The maximum BDD size evaluates to 3n − 1
nodes with the simplifications.

B. Leading Zero Case Splitting

To handle the explosion at the normalization shift, the sim-
plification is done on the significand addition result. Creating a
case for every possible result of the addition is not possible due
to the exponential number of possible results. Instead, one case
is created for every possible number of leading zeros. This does
not specify a simplification for every bit of the addition result
in every case. In total, there are n + 3 cases from 0 leading
zeros to n + 2 leading zeros, considering two bits extra width
for rounding. The n-th case contains n + 1 simplifications. The
biggest BDD with a size of 3n− 1 nodes occurs when 0 leading
zeros are present.

C. Subnormal Numbers and Rounding

We also extended our approach for the support of subnormal
numbers as well as round-to-nearest rounding. Subnormal num-
bers are handled by adding a simplification in cases where they
can occur. Rounding does not trigger an explosion in BDD size.

IV. EXPERIMENTAL RESULTS

We have implemented the proposed approach in C++. The
experiments have been carried out on an AMD Ryzen 7 PRO
5850U with 4.50 GHz boost frequency and 32 GByte of main
memory. TABLE II reports the results of verifying floating
point adders and consists of three columns: The benchmarks
information is given in the first column Adder Parameters,

TABLE II
VERIFICATION RESULTS (RUN-TIMES IN SECONDS)

Adder Parameters Our Method Classic Sym. Sim.
Format Exp. Sig. Nodes Time Nodes Time

8 20 1,087 1.8 10,618,756 430.4
single prec. 8 24 1,583 2.1 - T.O.

10 38 4,146 5.6 - T.O.
double prec. 11 53 8,190 10.2 - T.O.

13 83 20,398 38.3 - T.O.
quad. prec. 15 113 38,116 82.9 - T.O.

18 170 86,808 325.1 - T.O.

consisting of three sub-columns: Format shows the name of the
used format if possible. The exponent and significand sizes are
reported in Exp. and Sig., respectively. The second column Our
Method reports the verification results of our proposed method,
including the numbers of output nodes (Nodes) and execution
times in seconds (Time). The results of verification using a classic
symbolic simulation without case splitting is given in the third
column Classic Sym. Sim.. The timeout (T.O.) has been set to
two hours for all benchmarks.

The benchmarks including the three IEEE754 adders can be
verified in short times, and the sizes of the output BDDs are
much smaller than for the classic symbolic simulation even
for smaller formats. For example, a floating point adder with
quadruple precision can be verified in less than 2 minutes. Thus,
the experimental results confirm the efficiency of our proposed
method in verifying large floating point adders. On the other
hand, the classic symbolic simulation without case splitting only
works for the smallest benchmark, and it runs out of time for the
bigger adders.

REFERENCES

[1] M. Keim, R. Drechsler, B. Becker, M. Martin, and P. Molitor, “Polynomial
formal verification of multipliers,” Formal Methods in System Design: An
International Journal, vol. 22, no. 1, pp. 39–58, 2003.

[2] R. Drechsler, “PolyAdd: Polynomial formal verification of adder circuits,”
in DDECS, 2021, pp. 99–104.

[3] A. Mahzoon and R. Drechsler, “Polynomial formal verification of prefix
adders,” in ATS, 2021, pp. 85–90.

[4] ——, “Late breaking results: Polynomial formal verification of fast adders,”
in DAC, 2021, pp. 1376–1377.

[5] R. Drechsler, A. Mahzoon, and M. Goli, “Towards polynomial formal
verification of complex arithmetic circuits,” in DDECS, 2022, pp. 1–6.

[6] R. Drechsler and A. Mahzoon, “Polynomial formal verification: Ensuring
correctness under resource constraints.”

[7] R. Drechsler and D. Sieling, “Binary decision diagrams in theory and
practice,” STTT, vol. 3, pp. 112–136, 2001.

[8] R. E. Bryant and Y.-A. Chen, “Verification of arithmetic functions with
binary moment diagrams,” in DAC, 1995, pp. 535–541.

[9] R. Kaivola, R. Ghughal, N. Narasimhan, A. Telfer, J. Whittemore, S. Pandav,
A. Slobodová, C. Taylor, V. Frolov, E. Reeber, and A. Naik, “Replacing
testing with formal verification in Intel® Core™ i7 processor execution
engine validation,” in CAV, 2009, pp. 414–429.

[10] W. Hunt, S. Swords, J. Davis, and A. Slobodova, “Use of formal verification
at centaur technology,” Design and Verification of Microprocessor Systems
for High-Assurance Applications, 01 2010.

[11] M. D. Aagaard, R. B. Jones, and C.-J. H. Serger, “Formal verification
using parametric representations of boolean constraints,” in DAC, 1999,
p. 402–407.

[12] C. Jacobi, K. Weber, V. Paruthi, and J. Baumgartner, “Automatic formal
verification of fused-multiply-add fpus,” in DATE, 2005, pp. 1298–1303.

[13] Y.-A. Chen and R. E. Bryant, “*PHDD: an efficient graph representation
for floating point circuit verification,” in ICCAD, 1997, pp. 2–7.

[14] R. E. Bryant, “A methodology for hardware verification based on logic
simulation,” Journal of the ACM, vol. 38, no. 2, pp. 299–328, 1991.

[15] J. Kleinekathöfer, A. Mahzoon, and R. Drechsler, “Lower bound proof
for the size of bdds representing a shifted addition,” 2022, coRR
abs/2209.12477.


