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Abstract—Acrtificial intelligence methods and applications have
recently seen a massive surge, partially caused by the success of
neural networks in areas like image classification and LLMs for
generating near-perfect natural-language texts. Unnoticed by the
public, but highly important for many AI methods to function,
bio-inspired optimisation techniques have also seen a rising usage.
However, the more techniques are used, the more complex the
explainability decreases. Even developers of Neural Networks
can seldom state why the Neural Network’s results are what
it is. The explainability of AI methods, as well as systems in
general, is, however, essential for safety, security reasons, and
to gain and maintain trust with system users. While research
in explainability has therefore gained significant traction with
prominent AI methods, such as neural networks, bio-inspired
optimisation techniques have seen less research in this regard.
The complexity of explainability with these algorithms lies in the
use of populations and randomness. We present an approach to
track individuals in bio-inspired optimisation techniques, aiming
to improve our understanding of the quality of results from
such optimisation algorithms. To that end, we introduce a data
model, include this model in the standard implementations of
these approaches, and provide a visualisation that allows for
understanding the relational information of these individuals,
yielding more insight into these optimisation techniques and
providing a first step toward improved explainability.

Index Terms—explainability, artiftical intelligence, randomised
optimisation, individual tracking, inheritance.

I. INTRODUCTION

Artificial Intelligence (AI) has evolved to influence our
everyday lives. [1] Many people across all educational levels
now utilise GenAl to support them with repetitive tasks or
help them gain a deeper understanding of unfamiliar topics.
Doctors use AI methods to detect tumours [2] or predict
Alzheimer’s [3]]. Tesla, Mercedes, and other car manufacturers
push the boundaries of self-driving cars [4]]. Due to widespread
use, the term Al no longer has a strict definition. Usually, it
refers to a wide variety of data-based, computation-intensive
techniques that involve stochastic aspects. Machine-learning
techniques, such as neural networks, are one key ingredient,
while LLMs for GenAl are another, and bio-inspired optimisa-
tion techniques are widely used to tackle complex optimisation
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tasks. However, while these techniques steadily increase their
presence in our lives, it is barely impossible for a normal
human being to retrace or understand the results produced by
these techniques. It may be possible to verify that the image
processed by a neural network does indeed contain a tumour,
for example. Still, it is unclear why the method classified
the image as it did. More importantly, if a human expert
holds a different opinion, a chain of causation would help
emphasise the AD’s decision. LLMs can sometimes change
their answer entirely when switching a simple expression in
the request prompt—however, why they obtained the answer
they provided and which training data was responsible—these
aspects remain hidden and unclear to the user.

In bio-inspired optimisation, a user can confirm the result,
but usually not its optimality, and especially not why the
process yielded that result or which parts of the population
were relevant to that solution. For quite some time now,
researchers have been developing methods for explaining
the results of AI methods. Explainable Artificial Intelligence
(XAI) has become a coined term for this research direc-
tion. However, its definition varies greatly. Another research
direction in that regard is the step-back from a dedicated
Al-explanation to an explanation of systems, following the
question: Why does the system do what it does? [5]. An
area that has received less research attention in this regard is
bio-inspired optimisation. Especially an analysis of stochastic
population-based optimisation algorithms, such as Particle
Swarm Optimisation (PSO), Evolutionary Algorithms (EA), or
Ant Colony Optimisation (ACO), as well as stochastic optimi-
sation algorithms in general, like Simulated Annealing (SA),
is very complex and theoretical work is limited to very small
populations so far. The challenge with stochastic (population-
based) optimisation algorithms is two-fold. First, the stochastic
nature across many iterations makes theoretical analysis chal-
lenging, or even impossible. So, it is usually unclear whether
a result was luck or could be easily reproduced. This can be
tested statistically, but these results cannot explain why the
returned value was considered optimal. Second, the advantage
that populations offer to optimisation algorithms is a hurdle
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when explaining results. Which aspect made the swarm turn
to its new position? Was this aspect sensible in relation to
the parameter settings? How much influence did the original
population have on the returned individual, and how significant
was the impact of chance? The population approach loses the
information about individuals.

In our work, we take the first step toward understanding
stochastic and population-based optimisation by introducing
a data model for individuals in these algorithms. This data
model not only represents individuals but also models their
relationships over generations. Introducing such a data model
has several advantages: First, it allows us to analyse an
optimisation run not only based on statistical features of its
population (the best fitness in the population, average fitness
in the population, the worst fitness in the population) but also
based on the individuals and their trajectory with respect to
fitness, search space and the relationship between one another.
We are now capable of analysing the heritage of individ-
vals and thus potentially explaining its existence. Second,
this individual-based information allows the development of
metrics for analysing stochastic influence. Third, having a
precise data model enables us to debug the algorithm, in the
sense that we can analyse the population step-by-step and step
through each iteration and adjustment of the individuals. These
aspects represent the first contribution to understanding these
optimisation algorithms, making them, and therefore, some
parts of Al methods, explainable.

II. BACKGROUND

This section’s purpose is to keep this paper self-contained
and allow readers to familiarise themselves with our terminol-
ogy for optimisation algorithms, as various slightly differing
notations and terminology are present in the literature. We will
first introduce the general concept of an optimisation problem,
followed by the general introduction of stochastic optimisation
algorithms.

A. Optimisation Problem

In general, optimisation problems are defined as finding the
input to a function that minimises or maximises the function
value. More formally:

Definition 1: Let S be a search space and O be an

optimisation space (each of arbitrary dimensions). Further, let
f S — O be a function mapping from the search space
to the optimisation space, called optimisation function. Given
this triple (S, O, f), the optimisation problem is defined as
finding z € S : x = argminges f(s).
Please note that maximisation problems can easily be trans-
ferred to the upper definition by minimising — f. Additionally,
search problems (given a value 0o € O, find x € S : f(x) = 0)
can be transferred by adapting f as follows fsearcn = |f — 0
yielding a minimisation problem once again.

The complexity of an optimisation algorithm depends on the
properties of the search and optimisation space, as well as the
properties of the optimisation function. These properties also
determine the choice of algorithm. For example, differentiable

optimisation functions can often be solved efficiently using
Newton’s method or gradient descent. Linear programming
methods can solve linear optimisation functions. Non-linear
functions that are non-differentiable, however, require algo-
rithms that only evaluate the function (rather than its gradient)
and typically utilise either randomness or population strength.
Space properties can include the number of dimensions, the
types of operations possible on the data (nominal, ordinal,
or cardinal data), whether it is discrete or continuous, and
the smoothness. Not every optimisation algorithm can handle
every type of space property. Often, stochastic optimisation
algorithms based solely on function evaluations exhibit greater
flexibility, which is why we focus on them in the following
subsection.

B. Stochastic Optimisation Algorithms

Stochastic optimisation algorithms differ from other opti-
misation algorithms in that they include randomness beyond
initialisation. The primary reason for including randomness is
to escape local optima. The standard deterministic function-
evaluation-based optimisation algorithm is the Hill-Climbing
algorithm, which continually moves to an improved neighbour
until no such neighbour exists. This algorithm quickly finds
the next local optimum but can never leave it. In a multi-modal
problem (f has several local optima), this is an undesirable be-
haviour. Therefore, almost all other algorithms in that category
introduce randomness. We divide them into algorithms that
use only one candidate per iteration (local search algorithms)
and those that use populations per iteration (population-based
algorithms).

function LocalSearch () begin
individual = random () ;
bestFitness = fitness (individual) ;

while not terminate () loop
for neighbour in neighbours (individual) loop
if acceptingCondition (fitness (neighbour),

bestFitness, randomness) then
individual = neighbour;
best-fitness = fitness (neighbour) ;
end if;
adjustParameters () ;
end loop;
return (individual, fitness);

end LocalSearch;

Listing 1: Individual-based Local Search Algorithms

Local Search Algorithms: Listings [l| shows the pseu-
docode of local search-based optimisation algorithms. First,
the algorithm randomly selects a starting individual from the
search space and calculates its fitness. The fitness is a value
that is based on the optimisation value f(z) for a given indi-
vidual x. It expresses how well the individual already performs
on the respective optimisation problem. Mostly, the fitness is
identical to the optimisation value. Sometimes, however, some
adjustments are made to the original function to improve the
optimisation process. The following code block is executed
as long as a stopping criterion for termination does not hold.



There are different strategies for the stopping criterion, such
as that the best fitness does not improve or the algorithm
has iterated for a predefined number of times. During each
iteration, the algorithm explores the local neighborhood of
the current solution. If a neighboring solution satisfies the
accepting condition the respective algorithm employs, it re-
places the current solution. This step can include randomness.
The comparator considers the fitness of both individuals but
can also take into account other relevant information. Before
proceeding to the next iteration, parameters may be adjusted
if necessary. Finally, the algorithm returns the best-found
solution along with its fitness value.

Basically, all local search algorithms work as the given
algorithm. They differ only in the condition that must be
satisfied and in the parameters to adjust. The aforementioned
HillClimbing algorithm, for example, uses a strict isBetter as
the accepting condition, uses no randomness, and adjusts no
parameters. A standard local search optimisation algorithm
that uses randomness is Simulated Annealing, which allows
worse individuals to be accepted with a decreasing probability.
This includes a randomness aspect, a more sophisticated satis-
fying condition, and additional parameters. Another algorithm

in this category is the threshold accepting (TA) algorithm.
function PopulationSearch() begin
for i in 1 size loop

population[i] = random();

fitness[i] = fitness (population[i]);
end loop;

while not terminate () loop

next = adapt (select (population, fitness),
randomness)
next += select (population, fitness)

for i in 1 size loop
population[i] = next[i]
fitness[1i] = fitness (population[i]);
end loop;
end loop;

return (population, fitness);

end PopulationSearch;

Listing 2: Population-based Search Algorithms

Population-based Algorithms: Listings 2] shows the pseu-
docode of population-based optimisation algorithms. As in
Listings [T} the initial population consists of random starting in-
dividuals. The algorithm then iteratively refines the population
until a termination criterion is met. In each iteration, a new
set of candidates is created by adapting the existing population
and copying a subset of it. The pseudocode uses two operators
that need explanation. The select operator selects a subset
of the population, and the literature specifies different selection
operators. In the first usage, the result is passed to the adapt
operator. Depending on the concrete algorithm, the operator
combines multiple individuals, mutates existing individuals, or
adapts them based on information from other individuals. The
population is then updated with this new set, and the fitness
values of its members are evaluated. The algorithm returns the
final population along with their associated fitness scores.
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Fig. 1. Classical visualisation techniques for analysing the progression of
individuals across the search space or the optimisation space

A popular example of a population-based algorithm is
Particle Swarm Optimisation. The initial swarm is randomly
generated in the beginning. After fitness evaluation, each
individual’s position is updated relative to both the common
and personal optima. The distribution of influence between
the common and the personal optimum is influenced by a
random factor, introducing randomness. The select operator,
in this case, chooses all individuals. Another very prominent
group of algorithms in this category is the group of evolution-
ary algorithms. This group includes evolutionary strategies,
genetic algorithms, genetic programming, and evolutionary
programming. In these algorithms, the adaptation step includes
recombination operators that combine two parents to produce
two children and mutation operators that introduce a random
component into individuals. The select operator has many vari-
ants and is chosen based on the properties of the optimisation
function.

Especially in PSO and EA, it is difficult to analyse an
individual’s path from beginning to end and the influences it
was subjected to. In general, population-based algorithms are
evaluated based on statistics for each generation’s population
rather than the development of individuals. Another poten-
tial analysis uses the visualisation of individuals’ positions
throughout the search space or on the fitness landscape (see,
for example, Figure [I). To finally allow the tracking of indi-
viduals throughout the history of an optimisation algorithm,
we introduce our data model in the next section.

III. METHODOLOGY

As already stated in the last section, evaluation and analysis
of population-based algorithms are usually based on statistical
information about the entire population of each generation. For
example, the evolution of the population’s best (minimal) value
is investigated. Additionally, the diversity of the population
attracts much interest, i.e., whether the individuals in the
population are spread out over the search space or concentrated
in one area. However, the heritance of a single individual is
not analysed, at least not in populations of arbitrary size. To
work towards our goal of explaining the results of stochastic
optimisation-based algorithms, we therefore want to track the



trajectory of each individual: How it influences other indi-
viduals, how it results from other individuals, and how many
development steps include stochastic elements. To that end,
we developed a data model for individuals that captures this
information and can be included in standard implementations
of the stochastic algorithms mentioned in Section

Figure 2] shows an excerpt of the Ecore-based data model for
stochastic optimisation approaches that focuses on describing
the execution of and tracking the history of individuals in
population-based stochastic optimisation problems. Ecore is a
UML-like modelling language and can be used to create meta-
models and models, and the graphical representation is similar
to UML class diagrams. The model stores the individuals of
every iteration. An individual consists of the search-space
representation (the input space) and an optimisation-space
representation (the output space). We assume that the domain
problem is also modelled using Ecore. Thus, the spaces are of
type EClass, and instances are of type EOb ject. While the
individuals store information on the search- and optimisation-
space values, the relationships store information on the evolu-
tion and the reasons for the evolution. The identity relation, for
instance, shows that an individual is directly copied from one
of the previous versions, while the mutation and recombination
relation store information about the adaptation introduced
in Listing 2] The relationship holds additional information,
not shown in the depiction, such as mutation rates or the
recombination form.

Iteration Identity Mutation Recombination
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Fig. 2. Unified data model for tracking the history of individuals in
population-based stochastic optimisation algorithms.

A. Relationships between individuals

A great advantage of most bio-inspired algorithms is their
usage of populations - following the predicate of the senti-
ment: There’s strength in masses. They explicitly differ from
executing individual-based algorithms, like Simulated Anneal-
ing, repeatedly or with several starting points in parallel,
in one key factor: They let their individuals interact. They
can therefore exchange their knowledge of the search space
with one another. However, when only analysing populations

over generations as a whole, this particular information on
the exchange is lost. By expanding our data model beyond
search space and optimisation space information to include
knowledge about the relations between individuals, we enable
a more detailed analysis and therefore understanding of the
optimisation process. For example, in a PSO algorithm, where
a global optimum influences every individual, a respective
relationship type is stored between the individual that reached
this global optimum and the current individual. In an evolu-
tionary algorithm, a form of heritance can be tracked by stating
parental (recombination) relationships between individuals. In
the end, for each individual in the final population, we are
capable to state which individuals influenced it along the way
and to what degree (which type of relationship). This will yield
essential insights into why the population progressed to which
part of the search space and why it developed the way it did.

B. Tracking stochastic influence through metrics

Stochastic optimisation algorithms have the obvious draw-
back that their results are not deterministic. Hence, when
the task is not about finding a single solution but providing
an optimisation algorithm that generally yields reliably rea-
sonable solutions, algorithm candidates are run several times
to describe the algorithm’s quality using statistical metrics.
After a single run, it is entirely unclear whether the resulting
optimum is highly influenced by chance or whether the result
is influenced only by small portions of chance. However, this
degree of dependence could be an indicator of reliability. It
is, therefore, of great interest to understand when, where, and
to what extent randomness influences the algorithm.

After developing the above-introduced data model, it is
now possible to develop metrics to track the influence of
randomness. For each relationship, the influence of random-
ness varies. For example, if an individual has a relationship
of type identity, then this iteration step (generation) has no
stochastic influence. A recombination relationship introduces a
small amount of randomness, as the selector randomly chooses
a subset of individuals for recombination. Another aspect is
the choice of distribution in the recombination. For example,
a line crossover (a recombination operator from evolutionary
algorithms) computes two weighted sums from the two given
parents: ¢; = u-p1+(1—u)-py and 3 = u-pa+(1—u)-p;. As
long as u is randomly chosen between 0 and 1, the resulting
values lie somewhere in between the parents. Randomness
determines the exact location, but the possible locations can
be computed very efficiently. A mutation relationship, on the
other hand, introduces a high amount of randomness: Again,
the chance of being picked up and the randomness in the
actual mutation process. The mutation operation potentially
introduces completely new information. For example, a single-
bit flip mutator in evolutionary algorithms randomly flips an
arbitrary bit, potentially moving the individual to an entirely
different area of the search space. Having an understanding
of the degree of introduced randomness by the operators,
we are now capable of tracking the degree of introduced
randomness on individuals throughout the entire population



and every generation, enabling statements like: The optimal
individual has a degree of 50% randomness in its inheritance
graph. This information can now be used for analysing the
algorithm’s behaviour but also to enable or disable trust in the
result.

C. Debugging Optimisation Algorithms

The introduced data model, in combination with a unified
meta-algorithm for optimisation algorithms — similar to the
shown pseudo-algorithms — allows further steps towards
understandable and explainable optimisation algorithms. The
previous advantages enable the preservation of existing in-
formation or the derivation of new information. The unified
data model and a unified pseudo-algorithm format, which
illustrates how specific algorithms apply operators (selection
and adaptation) to the data model, enable the implementation
of a generic debugging interface on the abstract algorithmic
level using standard techniques. In the presented case, we
are using an implementation of Microsoft’s Debug Adapter
Protocol for EMF-based models [6].

This integration allows antemortem inspection of the deci-
sions and workings of stochastic population-based optimisa-
tion algorithms. These debug capabilities are especially useful
when explaining and teaching algorithms, as the decisions
and progress of the algorithm can be directly inspected.
Furthermore, in combination with the aforementioned metrics
and visualisations, it is helpful to directly see and understand
the influence of different operator implementations on the
algorithm’s behaviour.

IV. PROOF OF CONCEPT

This section describes a proof-of-concept implementation
based on the open-source optimisation framework EvoAl [7]]—
[9]l. It presents screenshots of visualisations generated from
the data model.

A. Adapted optimisation algorithm operators

The necessary changes only affect certain areas and, in
many cases, can be made at the framework level, allowing
them to be carried out without adapting the specific operators.
First of all, the main loops of optimisation algorithms must
utilise the concept of individuals. Listings [3] shows an adapted
version of the population-based search algorithmﬂ Instead
of using separate vectors for search and optimisation space
values, the adapted version directly constructs the model con-
taining several iterations, each containing a list of individuals,
which store search and optimisation space information (cf.
Figure 2). The key differences are the use of a modified
adapt’ and a copy operator.

Listing ] shows the copy operator, which copies an individ-
ual from the previous version and creates the corresponding
Identity relationship.

The modified adapt operator, shown in Listing [5] uses the
original adapt operator. It first creates a copy of the individual,

'We thank Maximilian Piesbergen for implementing and providing the
EvoAl visualisation additions.

function AdaptedPopulationSearch () begin
model = Execution();

initial = model.states[0] = Iteration();
for counter in 1 size loop

ind = initial.indivduals[counter] =

ind.input = random();

ind.output = fitness (ind.input);
end loop;

Individual () ;

while not terminate () loop
previous = model.states.last
model.states += iteration =
iteration.indivduals =
adapt' (select (previous.indivduals),
randomness)
iteration.indivduals +=
copy (select (previous.indivduals)

Iteration();

for ind in iteration.indivduals loop
ind.output = fitness(ind);
end loop;
end loop;

return model;
end AdaptedPopulationSearch;

Listing 3: Adapted population-based Search Algorithms

function CopyOperator (ind)
copy = Individual();
copy.input = ind.input;

begin

copy.relationships += Identity (copy,
end CopyOperator;

ind) ;

Listing 4: Used copy operator

then executes the adaptation of the copy. Lastly, it stores the
relationship by creating a Mutation.

function AdaptOperator (ind,
copy = Individual();
copy.input = ind.input;
adapt (copy.input, randomness);

randomness) begin

copy.relationships += Mutation (copy,
end AdaptOperator;

ind) ;
Listing 5: Modified adapt operator

The necessary changes for an adapted recombination oper-
ator are similarly lightweight. Traditionally, two search space
representations are selected during recombination and passed
to the recombination operator, which task is to calculate two
new search space representations by recombining the input
values. The adaptation creates two new individuals based on
this output and stores the Recombination relationship.

B. Improving visualisation through individual tracking

The aforementioned inclusion of our proposed data model
into function evaluation-based optimisation algorithms now
enables highly improved visualisations compared to the one
in Figure [I] For example, a simulated-annealing algorithm can
now be visualised as shown in Figure [3] It is now visible how
the algorithm checks all neighbours (see the circle around the
current individual), and chooses either one with an improved
fitness, or if all are worse, a worse one with a decreasing
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Fig. 3. A visualisation for a simulated annealing algorithm run with individual
tracking.

probability for the next iteration. The colour indicates how
fitness decreases between iterations before it finally increases
again, and it also shows how the neighbours are behaving
before the next best candidate is chosen. Another option is
the embedding of this chain in a search space representation
(which can only be done in up to two dimensions) to visualise
the progressing optimisation embedded in the search space. It
is a well-known challenge in optimisation to visualise high-
dimensional search spaces. It can usually only be done via
correlation plots. The technique shown in Figure [3] however,
can be used with a semantic meaning to the position of
the circles (embedded in a search space) and without, which
enables visualising the behaviour of individuals even in a high-
dimensional setting and additionally showing their various
relationships to one another.

In Figure ] we show the visualisation for a PSO (without
the influence of a global optimum). Again, we can now see the
original swarm and the progression of each individual. We can
also see how the improved fitness of single individuals slowly
improves the fitness of the others until the entire swarm has
an improved fitness.

V. CONCLUSION AND OUTLOOK

The growth in the use of Al methods and digital systems
has increased the need to understand and therefore explain
their behaviour. For users, it is inherently important to have a
good understanding of the system’s behaviour to enable trust
in these systems. While many Al methods have seen increased
research on explainability, stochastic optimisation techniques
have received less attention in this regard. We therefore
propose an approach that allows tracking the behaviour of in-
dividuals throughout evolving populations. More specifically,
it allows tracking the interactions between individuals and
the influence of randomness, yielding more insight into the
black box that is stochastic optimisation. When applying our
approach, we can determine the degree to which a result
is influenced by chance, providing an approximation of its

Fig. 4. A visualisation tracking individuals for a PSO run without global
optimum usage.

reliability. Additionally, we can identify essential interactions
between individuals by observing the respective fitness spikes.
Our approach also allows us to visualise the behaviour of
individuals in higher-dimensional settings, because it is possi-
ble to focus on the relationship (which is independent of the
dimension) and abstract from the search-space position (which
is unplotable from n = 3 onward).
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