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Abstract—Software written for constrained devices, commonly
used in the Internet of Things (IoT), is primarily written in C
and thus subject to vulnerabilities caused by the lack of memory
safety (e.g. buffer overflows). To prevent these vulnerabilities, we
present a systematic approach for finding spatial memory safety
violations in low-level code for constrained embedded devices.
We propose implementing this approach using SystemC-based
Virtual Prototypes (VPs) and illustrate an architecture for a non-
intrusive integration into an existing VP. To the best of our
knowledge, this approach is novel as it is the first for finding
spatial memory safety violations which addresses challenges spe-
cific to constrained devices. Namely, limited computing resources
and utilization of custom hardware peripherals. We evaluate our
approach by applying it to the IoT operating system RIOT where
we discovered seven previously unknown spatial memory safety
violations in the network stack of the operating system.

Index Terms—Symbolic Execution, Memory Safety, Embedded
Software, Constrained Devices, Virtual Prototype, RISC-V, RIOT

I. INTRODUCTION

Software for constrained devices, as used in the low-end
Internet of Things (IoT), is primarily written in C [1, Table 1].
Bormann et al. define constrained devices as “small devices
with limited CPU, memory, and power resources”. These con-
straints exist to make building large IoT networks consisting of
numerous constrained devices financially viable. For example,
while non-constrained conventional devices (e.g. laptops) have
several gigabytes of memory at their disposal, constrained
devices only have access to a few kilobytes of memory [2]. In
the IoT context, these devices are often used in conjunction
with custom hardware peripherals, such as sensors, to gather
information about their surrounding environment.

The C programming language is a popular choice for
programming these devices as it gives programmers control
over low-level machine details thereby enabling optimization
to reduce the use of scarce resources. Unfortunately, C is an
inherently unsafe programming language, i.e. the C language
specification leaves some behavior undefined. The classic ex-
ample of undefined behavior in C is its lack of memory safety
(e.g. buffer overflows or use-after-frees). Undefined behavior
can be exploited by a malicious attacker to gain control over
the constrained device [3]. For instance, stack-based buffer
overflows can be utilized to subvert program control flow
through an overwrite of the function return address as stored
in the stack frame.

For conventional devices a variety of tools are available
for detecting memory safety violations and other sources of
undefined behavior during early stages of software develop-
ment. Most C programmers will be familiar with development
tools such as Valgrind [4] or AddressSanitizer [5] which
are often used for this exact purpose on non-constrained

devices. Unfortunately, neither Valgrind nor AddressSanitizer
are intended to be used on bare-metal and instead target
conventional operating systems such as Linux.

Prior work by Devietti et al. has proposed HardBound [6],
a technique for detecting memory safety violations in C code
which we believe to be applicable to constrained devices.
HardBound performs runtime boundary checks in hardware
using a custom hardware peripheral [6]. Unfortunately, such
custom hardware is difficult to manufacture and thus not
commonly available early on in the development process.

In order to employ HardBound as an early software testing
technique, we propose combining it with Virtual Prototypes
(VPs). VPs provide an executable model of the entire hard-
ware platform and are commonly created in SystemC1 TLM
(Transaction-Level Modeling) [7]. As such, VPs enable early
simulation and testing of software targeting this platform. To
ensure comprehensive test coverage during VP-based software
testing, we combine HardBound with symbolic execution, a
software testing technique which enumerates reachable pro-
gram paths based on symbolic input variables. This com-
bination allows us to check all reachable programs paths
(obtained through symbolic execution) for spatial memory
safety violations (via application of Hardbound on each path)
in a VP-based execution environment.

Software for constrained devices interacts closely with
hardware peripherals and often relies on custom peripherals.
By combining HardBound with VPs, we can model these
peripherals using SystemC TLM and check low-level code
interacting with them for spatial memory safety violations.
To the best of our knowledge, this is a novel feature of
our approach which is not supported by prior approaches
(section III). We demonstrate that an integration of HardBound
with VPs and symbolic execution is feasible (section IV).
Afterwards, we evaluate our integration by conducting ex-
periments with RIOT, a popular operating system designed
explicitly for constrained devices (section V). We tested the
network stack of the RIOT operating system, including low-
level network driver code, using our HardBound extended
VP. As part of these experiments, we found seven previously
unknown memory safety violations in the RIOT network stack.
They have been acknowledged by RIOT developers and are
currently in the process of being fixed. To stimulate further
research we have released our HardBound extended VP on
GitHub2.

1SystemC is a C++ class library for modeling hardware.
2https://github.com/agra-uni-bremen/hardbound-vp

https://github.com/agra-uni-bremen/hardbound-vp


1 load_addr R2, 0x1000
2 setbound R2, 0x1000, 4
3
4 load_byte R3, R2 // load at 0x1000, success
5 addi R2, R2, 2 // R2: (0x1002, 0x1000, 0x1004)
6 load_byte R3, R2 // load at 0x1002, success
7 addi R2, R2, 2 // R2: (0x1004, 0x1000, 0x1004)
8 load_byte R3, R2 // load at 0x1004, fail

Fig. 1. HardBound example usage [6, Figure 2].

II. BACKGROUND

The following subsections serve as a brief primer on mem-
ory safety, HardBound, and symbolic execution as a software
testing technique.

A. Memory Safety

Existing publications on memory safety issues of the C
programming language distinguish spatial memory safety and
temporal memory safety as follows [8, p. 53]:

Temporal safety is ensured when memory is never
used after it is freed. Spatial safety is ensured when
any pointer dereference is always within the memory
allocated to that pointer.

The programming language C offers neither spatial nor tem-
poral memory safety. Lack of memory safety allows attackers
to perform unintended computations which are central to many
security vulnerabilities. Prior work by Szekeres et al. provides
a formal model for attacks exploiting memory safety issues
[3]. A variety of different techniques have been proposed by
prior work which attempt to address the lack of memory safety
in the C programming language [6], [8], [9]. As explained
in the Introduction, our approach is based on a combination
of HardBound and symbolic execution, both will be further
described in the following subsections.

B. HardBound

HardBound enforces spatial memory safety for C programs
through a hardware peripheral. Enforcement is achieved by
enhancing values representing C pointers with bounds in-
formation tracked in hardware. Contrary to software-only
approaches, HardBound does not modify the C pointer repre-
sentation and allows bounds checks to be performed efficiently
in hardware. Conceptually, each register and memory value
in HardBound is a triplet (value, base, bound) where value
represents the original pointer value and base/bound represent
the lower/upper bound of the bounded pointer. We will refer
to the additional base and bound information as HardBound
metadata in the following. The HardBound metadata is used
by a custom hardware peripheral to perform boundary checks
on each load/store instruction. As such, it is ensured that each
load/store is within the pointer bounds as specified by the base
and bound metadata. For this reason, spatial violations cannot
occur on bounded pointers [6].

Since the C type system is not accessible at the binary
level, the executed software must communicate which values
represent pointers (and their respective HardBound metadata)
to the hardware peripheral. In the original HardBound paper
this is achieved through a custom setbound instruction.
The insertion of setbound instructions is automated using
“simple intra-procedural compiler instrumentation” [6, p. 103].

The hardware peripheral is in turn responsible for propagating
metadata initial set by the executed software. As an example,
consider pointer arithmetic as performed using an addi
instruction in the pseudo assembler code in Figure 1. In this
example, a pointer to a four byte value at address 0x1000
is created (Line 1 - 2). The pointer is then incremented (Line
5 and 7) and dereferenced (Line 4 and 6), on each increment
the metadata must be propagated. Ultimately, the load in Line
8 fails as the pointer value is no longer within the propagated
bounds.

C. Symbolic Execution

Symbolic execution is an automated software testing tech-
nique. Contrary to normal program execution, symbolic ex-
ecution does not use concrete input values. Instead, input
values are declared as symbolic variables and operations on
these inputs cause the symbolic variables to be constrained
accordingly. After execution terminates, a constraint solver
is used to find new assignments for the inputs values based
on the tracked constraints. The new input values, generated
by the constraint solver, cause the execution of a different
path through the program. For example, new input values
might cause execution of a different if statement branch in
the program. This process is repeated until all paths through
the program have been explored, some predefined coverage
goal has been reached, or an error is detected.

During execution of each discovered path, a path analyzer
is used to determine whether the currently executed path
constitutes an error. In this publication, we provide a path
analyzer for finding spatial memory safety violations. The
analyzer we are proposing is specifically tailored to con-
strained devices and addresses challenges specific to these
devices which have not been addressed in prior work. We use
this analyzer in conjunction with an open source symbolic
execution engine from prior work done by Tempel et al.
(referred to as symex-vp in the following) [10].

III. RELATED WORK

Prior work has largely focused on the detection of spatial
memory safety violations on conventional devices. Popular
approaches in this regard include EXE [11], which utilizes
compiler instrumentations to detect spatial memory safety vi-
olations, and KLEE [12] which symbolically executes LLVM
IR, the intermediate language used by the LLVM compiler in-
frastructure. As such, KLEE-based approaches do not capture
low-level machine details and operate on a higher abstraction
level than our approach which symbolically executes machine
code directly.

With the focus on conventional systems, the aforementioned
publications also do not address challenges specific to con-
strained devices as discussed in the Introduction. Prior work
by Muench et al. discusses these challenges further [13]. They
identified “silent memory corruptions” as the predominant
issue in this domain, most of which would be detected by
conventional operating systems through employed protection
mechanisms lacking on constrained devices to reduce produc-
tion costs [13, p. 13]. They also propose several heuristics
to improve error detection in this domain and combine these
heuristics with fuzzing to automatically discover memory
corruptions [13, p. 9]. Our approach does not rely on heuristics



and we believe symbolic execution to be preferable over
fuzzing on constrained devices as the state space is smaller
due to limitations on code size. This might mitigate the
state explosion problem known from conventional devices [14,
p. 4].

This hypothesis is confirmed by Davidson et al. who present
FIE, a symbolic execution framework for finding vulner-
abilities in embedded firmware [15]. FIE targets MSP430
microcontrollers and attempts to achieve a “complete analyses
for simple firmware programs” [15, p. 467]. FIE is based on
KLEE and therefore also executes LLVM IR symbolically.
For this reason, FIE operates on a higher abstraction level
than our own approach which symbolically executes RISC-V
machine code directly. This comes with the drawback that FIE
cannot take low-level machine details into consideration. As
an example, FIE fails to execute paths which include inline
assembly, usage of which we believe to be common on con-
strained devices. Furthermore, FIE does not use accurate mod-
els of hardware peripherals. Instead, it approximates peripheral
behavior through given memory and interrupt specifications
which results in potential false-positives [15, p. 476]. Since
our approach is based on SystemC, we have existing models
of peripherals at our disposal and can easily model new ones.

Lastly, prior work by Herdt et al. provides symbolic execu-
tion of embedded binaries [16]. However, this publication does
not support unmodified SystemC peripherals. Furthermore, the
employed path analyzer is only capable of detecting spatial
violations in buffers allocated dynamically through malloc.
Contrary to our own approach, this publication therefore
misses overflows in data structure not allocated dynamically
(e.g. buffers allocated on the stack) [16, Section 4.4.2].

We believe that our novel VP-based approach for detecting
spatial memory safety violations in software designed to be
used on constrained devices mitigates the discussed pitfalls
we identified in prior work.

IV. VP-BASED HARDBOUND INTEGRATION

In the following subsections we will describe how Hard-
Bound support can be integrated into a standard SystemC
TLM-2.0 architecture. As per subsection II-C, we extended
the open source SystemC-based symex-vp3. This VP targets
the RISC-V architecture and allows symbolic execution of
RV32IMC machine code.

A. Overview

Figure 2 provides an overview of our proposed architecture.
As explained in subsection II-C, both the Instruction Set Simu-
lator (ISS) and the symbolic execution engine are provided by
symex-vp. The latter provides us with symbolic types, a path
explorer for finding new paths through the executed software,
and an SMT Solver for solving constraints on symbolic types.
In order to employ HardBound as a path analyzer, we had to
integrate it with the ISS. By relying on implicit C++ type con-
version we were able to keep required modifications minimal,
ultimately only extending around 700LOC in symex-vp.
This illustrates that a non-intrusive integration is possible.

The ISS is the main component of the VP, it is responsible
for fetching, decoding, and executing RISC-V instructions.

3https://github.com/agra-uni-bremen/symex-vp
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Fig. 2. Overview of our HardBound implementation for symex-vp.

As such, it executes a given RISC-V software provided in
binary form. Execution is based on symbolic input values,
supplied by the symbolic execution engine (referred to as
SymEx in Figure 2). After software termination, the symbolic
execution engine determines new assignments for symbolic
input variables and restarts the ISS—and thereby also the
software—with these new variable assignments. New variable
assignments result in the discovery of new paths through the
executed software. On each path, performed load/store in-
structions are bounds checked using the provided HardBound
metadata (see subsection II-B). This metadata is initialized
by the executed software through special instructions inserted
by a compiler pass. The ISS is responsible for propagating it
correctly during execution as illustrated in subsection II-B.

B. Metadata Propagation

Since our work is based on symex-vp, our ISS supports
symbolic execution. As such, instruction operands may rep-
resent symbolic values. We modified the ISS to also track
and propagate HardBound metadata alongside these symbolic
values. During software execution, the ISS interacts with
the stored metadata to perform bounds checks. Recall that
HardBound metadata is only required for values representing
C pointers. These values may be stored in either memory or
registers. As such, the register file (RegFile) and the memory
interface (MemIf) had to be modified (see center of Figure 2).
The register file is responsible for storing register values.
The memory interface is responsible for interactions with
memory-mapped peripherals through the SystemC TLM bus.
We modified both—the memory interface and the register
file—to ensure they store associated HardBound metadata for
memory and register values representing pointers. The main
execution unit (ExecUnit) of the ISS accesses this metadata
and propagates it when executing instructions which are used
to implement C pointer arithmetic. For example, an instruction
adding a constant to a bounded pointer value must itself return
a bounded pointer value with associated HardBound metadata
(recall the example from Figure 1).

https://github.com/agra-uni-bremen/symex-vp


Implementation of metadata propagation was the most
central change made to symex-vp as we had to switch
the underlying data type, used by the execution unit for
instruction operands, from symbolic expressions to a tuple
which additionally tracks the HardBound metadata. The mod-
ifications required for this change were kept to a minimum by
relying on implicit C++ type conversions, thereby allowing
implicit conversions from symbolic expressions—with asso-
ciated HardBound metadata—to plain symbolic expressions.
As the majority of RISC-V instructions are not commonly
used to manipulate pointer values, we were able to refrain
from modifying the implementation of these instructions. As
such, only the implementation of instructions which are used
by C compilers to implement pointer arithmetic had to be
modified in the execution unit. In the RISC-V RV32IMC
context we thus implemented metadata propagation for the
following instructions: ADD, ADDI, and SUB. In the following
subsection we will explain how propagated metadata interacts
with SystemC TLM in the HardBound context.

C. TLM Integration

Storing and propagating HardBound metadata in the ISS
allows us to perform bound checks on load/store instructions.
In the SystemC context, these instructions are implemented
through SystemC TLM based on a bus abstraction. The
ISS communicates with devices attached to the TLM bus
(e.g. memory or memory-mapped peripherals) using TLM
transactions created by a memory interface [7, p. 430]. In
order to avoid modifications of peripherals attached to the
TLM bus, we are not propagating HardBound metadata over
TLM and instead perform a transparent conversion within the
memory interface itself using an internal mapping δ : addr 7→
{(base, bound)}. HardBound metadata (base and bound) can
be updated by storing new metadata at addr using a store
instruction. Load instructions return HardBound metadata if
a mapping addr → (base, bound) exists in δ for the loaded
addr. HardBound metadata originates in the executed software
through explicit setbound instructions.

While the ISS is responsible for storage and propagation
of HardBound metadata it is incapable of initializing the
metadata as information regarding pointer bounds is diffi-
cult to infer at the binary level. Instead, the software itself
communicates initial metadata values to the ISS upon pointer
creation. For each created pointer, the instructions required
for communicating associated bounds metadata to the ISS are
automatically inserted into the tested software by a compiler
pass.

D. Compiler Pass

A compiler pass is used to automatically initialize Hard-
Bound metadata for pointers to local or global variables. The
compiler pass performs an analysis detecting the creation
of pointers, infers the size of the values pointed to, and
communicates this information to the VP.

In order to ease supporting memory-mapped I/O, we devi-
ated from the compiler pass implementation in the original
HardBound paper regarding the handling of pointer casts.
Normally, creating a pointer from an integer (e.g. (int

*)0x1000) is an unsafe operation as no bounds information
is associated with the memory address 0x1000 [6, p. 112].

1 static char buf[BUFFER_SIZE];
2
3 int add_to_buffer(char c) {
4 static size_t index = 0;
5 if (index >= BUFFER_SIZE)
6 return -1;
7
8 // ------- [[ Original Code ]] -------
9 buf[index] = c;

10 // ------- [[ 1st Compiler Pass ]] -------
11 char *ptr = &buf[0];
12 *(ptr + index) = c;
13 // ------- [[ 2nd Compiler Pass ]] -------
14 char *ptr = &buf[0];
15 setbound(&ptr, ptr, sizeof(buf));
16 *(ptr + index) = c;
17 // ------- END -------
18
19 index++;
20 return 0;
21 }

Fig. 3. Performed HardBound compiler pass transformations.

This is, however, a common idiom to communicate with
memory-mapped peripherals from low-level C code. For this
reason, we relaxed the handling of these unsafe casts in
the compiler pass. This prevented the addition of manual
setbound invocations for memory-mapped peripheral ac-
cesses.

Furthermore, the original HardBound paper does not pro-
vide a detailed description of how direct array accesses are
handled in the compiler pass. Consider an array access such
as buf[i] = n, since no pointer exists in this example
code no HardBound metadata is available for ensuring spatial
memory safety. To mitigate this problem, we have written two
compiler passes. The first transforms any array access of the
form buf[i] = n to a pointer-based access of the form
*(buf + i) = n. The second pass communicates pointer
bounds, upon pointer creation, to the VP.

Figure 3 illustrates the transformations performed by the
two compiler passes. The original code (Line 9) performs a
direct array access on buf. The first compiler pass rewrites
this to a pointer-based access (Line 11 - Line 12). The second
compiler pass inserts an appropriate call to a setbound
function which communicates the bounds of ptr to the
VP4 (Line 14 - Line 16). We have implemented both passes
using LLVM and published them as open source software on
GitHub5.

V. EVALUATION

We evaluate our approach by applying it to the RIOT
operating system. RIOT is targeting constrained devices as
defined in RFC 7228 [2] (i.e. the low-end Internet of Things).
We used RIOT as an evaluation target since prior work by
Hahm et al. considers it to be one of the “most prominent
open source” operating systems in this domain [1, p. 732].
Furthermore, RIOT employs a code quality management pro-
cess and automated unit tests, thereby aiming for high code
quality [17, p. 4438]. This allows us to evaluate whether
our approach is capable of finding real bugs missed during

4On a technical note, we intercept RISC-V ecall instructions in the VP
to set bounds information from the software. The original HardBound paper
uses custom instructions.

5https://github.com/agra-uni-bremen/hardbound-llvm

https://github.com/agra-uni-bremen/hardbound-llvm


TABLE I
SPATIAL MEMORY SAFETY VIOLATIONS FOUND IN RIOT MODULES.

Id Module Test #Paths Time #instr
#15927 uri_parser UNIT 48 11 s 408646
#15930 uri_parser UNIT 156 35 s 1311034
#15945 clif UNIT 227 50 s 1847765
#15947 clif UNIT 10 2 s 91302
#16018 gnrc_rpl SLIP 75 143 s 3378636
#16062 gnrc_rpl SLIP 72 307 s 3444769
#16085 gnrc_rpl SLIP 855 3532 s 46262378

manual code review and unit testing. RIOT supports a variety
of hardware platforms. For our experiments we utilize the
constrained SiFive HiFive16 platform which uses RISC-V and
is supported by both RIOT and symex-vp. RIOT itself is
further described in a publication by Baccelli et al. [17].

In accordance with prior work, we believe input handling
routines of the network stack to be the biggest attack vector
of a networked IoT operating system [18]. Our experiments
therefore focus on RIOT components which are part of this
network stack. In the following we will further describe how
we employed HardBound in the RIOT context to analyze these
components and which memory safety violations we were able
to uncover through our analysis.

A. RIOT HardBound Setup

HardBound is intended to be deployable with “minimally
invasive changes to the compiler and run-time”. As a first
step, we had to ensure that the RIOT build system utilizes
our LLVM-based compiler pass. Fortunately, RIOT already
supports compilation with LLVM. For this reason, we only
had to modify the employed compiler flags via a build
system configuration variable. The original HardBound paper
also acknowledges that library functions performing memory
allocations, e.g. malloc, need to be modified to include
appropriate setbound calls [6, p. 107]. While usage of
malloc in RIOT is discouraged, we still had to modify the
RIOT module used to allocate memory for network packets
to set the appropriate bounds for each returned packet. This
allows us to discover spatial violations potentially occurring
when accessing these packets.

Overall, our HardBound setup for the RIOT operating
system was straightforward and only required the outlined
changes which we believe to be negligible in terms of effort re-
quired. For our experiments we boot RIOT on our HardBound
extended VP and perform boundary checks in the VP during
the execution of RIOT software. More details are provided in
the next subsection.

B. Results

RIOT follows a modular software architecture, modules
which should be enabled are selected at compile-time [17,
p. 4430]. We tested several RIOT modules which are part
of the network stack using our proposed software testing
technique. In this regard, we distinguish two test types:

1) UNIT tests, conducted using custom test drivers which
invoke functions from the public module API. In this
case, symbolic values are created directly in the test
driver through custom instructions7.

6https://www.sifive.com/boards/hifive1
7We intercept RISC-V ecall instructions in the VP for this purpose.

2) SLIP tests, conducted using existing RIOT example
applications. Symbolic values are introduced through
a custom SLIP [19] network interface which is imple-
mented in the VP.

We tested different modules of the RIOT network stack us-
ing both approaches. We used UNIT tests for utility modules,
used indirectly by network protocol implementations. SLIP
tests were used for freestanding implementations of network
protocols, which directly process input received through the
Internet Protocol (IP).

We tested the following RIOT network modules which
implement internet protocols that we believe to be in common
use in the low-end IoT context on constrained devices:

1) The uri_parser module which provides a non-
destructive parser for Uniform Resource Identifier (URI)
references as defined in RFC 3986 [20].

2) The clif module which provides a parser for the
CoRe Link Format as used in REST architectures for
constrained devices and defined in RFC 6690 [21].

3) The gnrc_rpl module which provides an implemen-
tation of the IPv6 Routing Protocol for Low-Power and
Lossy Networks (RPL) as defined in RFC 6550 [22].

In total, we found seven previously unknown spatial mem-
ory safety violations in the tested modules, all of which have
been discovered using our proposed combination of symbolic
execution and HardBound. We have reported these issues to
RIOT developers and they are currently in the process of
being fixed. Further information regarding the discovery of
individual issues is provided in Table I. For each discovered
issue, we list the identifier in the public RIOT issue tracker8,
the module in which it was found, the employed test method,
the number of paths enumerated until it was found, and the
total execution time. As a complexity metric, we also include
the total amount of RISC-V instruction executed.

In modules which we tested through UNIT tests, spatial
memory safety violations are discovered faster and fewer
instructions are executed. This is due to the fact, that less
constrains are tracked as we only test individual functions.
With SLIP tests, issue discovery takes longer as the input
is passed through the entire network stack, thereby imposing
more constrains on symbolic input variables. However, given
the complexity of a routing protocol (such as RPL) this
indicates that our approach is also capable of finding spatial
memory safety violations in complex real-world code for
constrained devices.

VI. CONCLUSION

In this paper, we concerned ourselves with the early de-
tection of spatial memory safety violations on constrained
devices. We proposed and implemented a VP-based software
testing technique for this purpose which uses symbolic ex-
ecution to enumerate reachable program paths and checks
each path for spatial violations through a SystemC-based
HardBound implementation (section IV). We illustrated an
architecture for achieving a non-intrusive integration of Hard-
Bound with existing SystemC-based VPs and implemented
this architecture on top of the open source symex-vp.
We have also released our HardBound extended version of

8https://github.com/RIOT-OS/RIOT/issues

https://github.com/RIOT-OS/RIOT/issues/15927
https://github.com/RIOT-OS/RIOT/issues/15930
https://github.com/RIOT-OS/RIOT/issues/15945
https://github.com/RIOT-OS/RIOT/issues/15947
https://github.com/RIOT-OS/RIOT/issues/16018
https://github.com/RIOT-OS/RIOT/issues/16062
https://github.com/RIOT-OS/RIOT/issues/16085
https://www.sifive.com/boards/hifive1
https://github.com/RIOT-OS/RIOT/issues


TABLE II
EXTENDED DESCRIPTION OF INDIVIDUAL SPATIAL MEMORY SAFETY VIOLATIONS FOUND IN RIOT NETWORK MODULES.

Module Bug Description
uri_parser #15927: During parsing of the userinfo part of a URI the parser did not check if the input is long enough to

even contain a complete userinfo if the URI contained an @ character, thereby performing an out-of-bounds read
on the provided input buffer.
#15930: The uri_parser module attempted to parse data after the hier-part of the URI, even if none was
present. For example, on an input like a:// the parser would perform an out-of-bounds read due to missing
bounds checks.

clif #15945: During parsing of key-value pairs, the module did not check if a value was actually present after the
key has been read, thereby performing an out-of-bounds read.
#15947: During parsing of link attributes, the clif module did not check whether any attributes were present,
thus performing an out-of-bounds read on the input buffer.

gnrc_rpl #16018: RPL messages are parsed by casting buffers to packed structs. Unfortunately, gnrc_rpl did not check
if the buffer was large enough to contain the struct in some instances.
#16062: During validation of RPL options, gnrc_rpl did not check if the input is large enough to contain a
given option. Attempts to access this option resulted in an out-of-bounds read.
#16085: The gnrc_rpl module separates option parsing from option validation. Similar to #16062, the option
parsing code was also lacking proper bounds checks, resulting in an out-of-bounds read.

symex-vp on GitHub to stimulate further research. Our
main contribution is a new path analyzer for an existing
symbolic execution engine. As per section III, our approach
is novel as it addresses challenges specific to constrained
devices not addressed in prior work. We applied our approach
to an operating system for constrained devices (RIOT), were
we found seven previously unknown bugs, which have been
missed by unit testing and manual code review (section V).
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