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ABSTRACT
Recent progress in the fabrication of Resistive Random Access Mem-
ory (ReRAM) devices has paved the way for large scale crossbar
structures. In particular, in-memory computing on ReRAM cross-
bars helps in bridging the processor-memory speed gap for current
CMOS technology. To this end, synthesis and mapping of Boolean
functions to such crossbars have been investigated by researchers.
However the verification of simple designs on crossbar is still done
through manual inspection or sometimes complemented by sim-
ulation based techniques. Clearly this is an important problem as
real world designs are complex and have higher number of inputs.
As a result manual inspection and simulation based methods for
these designs are not practical.

In this paper for the first time as per our knowledge we pro-
pose an automated equivalence checking methodology for majority
based in-memory designs on ReRAM crossbars. Our contributions
are twofold: first, we introduce an intermediate data structure called
ReRAM Sequence Graph (ReSG) to represent the logic-in-memory
design. This in turn is translated into Boolean Satifiability (SAT)
formulas. These SAT formulas are verified against the golden func-
tional specification using Z3 Satifiability Modulo Theory (SMT)
solver. We validate the proposed method by running widely avail-
able benchmarks.
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1 INTRODUCTION
Resistive Random Access Memory (ReRAM) or memristor [5] is an
emerging technology that has opened up new possibilities in cir-
cuit design. In-memory computing on ReRAM crossbars (in which
several ReRAM devices are arranged in a two-dimensional array
structure) can help to bridge the processor-memory speed gap of
conventional computing [12]. There have been several attempts for
efficientmapping and evaluation of Boolean functions on such cross-
bars [4, 11, 13–15]. Some of the most widely explored approaches
are based on material implication (IMPLY) [3], memristor-aided-
logic (MAGIC, with NOR and NOT realizations) [9], and majority
logic operation (MAJ) [7].

To ensure the functional correctness of the micro-operations,
traditionally manual inspection sometimes complemented by simu-
lation based techniques are widely used. These methods are used to
compare the micro-operations against the golden function specifi-
cation. Manual inspection methods can be employed to very small
designs, while simulation based techniques are limited to verifica-
tion for a subset of input combinations. Also traditional methods
for equivalence checking cannot be directly applied to ReRAM
based crossbars (See section 3 for details). This is clearly a problem.
With the increased complexity of larger in-memory designs, the
possibility for errors in crossbars may grow, which emphasizes the
need for advanced verification techniques to prove the functional
correctness of the crossbar mappings. Recently, some initial efforts
have been done to verify the in-memory programs [6]. However,
the work does not verify the instructions at the micro-operations
level. This clearly emphasizes the need for a systematic advanced
functional verification technique to ensure the correctness of the
micro-operations.

In this paper for the first time to the best of our knowledge,
we propose an automated equivalence checking methodology for
majority based in-memory designs on ReRAM crossbar. In partic-
ular, we systematically verify the micro-operations performed on
the crossbar against the golden functional specification as Boolean
Satifiability or SAT formulas. For this purpose, we derive a ReRAM
sequence graph (ReSG) from the logic-in-memory designs repre-
sented as crossbar micro-operations and then translate the ReSGs
into SAT formulas. These SAT formulas are verified against the
original functional specification using Z3 solver. We validate our
proposed method on several benchmark functions [1, 8].

The rest of the paper is organized as follows. In section 2, we
present a brief background on ReRAM crossbars and Boolean Satis-
fiability (SAT). In section 3, we present the motivation and outline
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the proposed verification methodology. Section 4 summarizes the
experimental results. Finally, we conclude the paper in Section 5.

2 BACKGROUND
In this section we briefly discuss about the ReRAM device, ReRAM
crossbar, and logic operations that can be performed on the cross-
bars. We also briefly discuss about the SAT.

2.1 Resistive Random Access Memory (ReRAM)
A ReRAM is an emerging memory device which consists of an
oxide layer sandwiched between two metal electrodes (𝑝, 𝑞) in a
Metal-Insulator-Metal (MIM) structure as shown in Fig. 1(a). Such a
device can be switched between a low resistance state (LRS or logic
1) and a high resistance state (HRS or logic 0) by applying a voltage
of proper magnitude and polarity to the device’s terminals. The
behavior of a ReRAM device is shown in Fig. 1(b), where the values
0 and 1 at terminals 𝑝 and 𝑞 represent the voltages required to
switch the internal state 𝑟 . Depending on the behavior of the device,
we can state that a ReRAM device inherently realizes a Boolean
function 𝑓 (𝑝, 𝑞, 𝑟 ) = 𝑝𝑞 + 𝑝𝑟 + 𝑞𝑟 [7].

Fig. 1(c) shows the logic symbol of a ReRAM device. Several such
devices are typically laid out in a compact fashion in crossbar as
shown in Fig. 1(d), where 𝑝 and 𝑞 terminals of ReRAM devices are
connected to the vertical and horizontal wires, respectively, of the
crossbar. A vertical wire (or 𝑝 terminal) is called a bitline and a
horizontal wire (or 𝑞 terminal) is called a wordline.

(a) ReRAM Structure (b) ReRAM Operation [7]

(c) Symbol (d) ReRAM Crossbar

Figure 1: ReRAM device and crossbar structure

To realize an arbitrary Boolean functions in crossbar, we must
sequentially execute several operations called micro-operations in
the crossbar depending on the given function representation, e.g.
Majority-Inverter Graph (MIG) [2]. The micro-operations in the
crossbar are performed by traversing each node in the correspond-
ing MIG. Each node in a MIG, called MAJ3 realizes a 3-input major-
ity function of the form 𝑓 (𝑎, 𝑏, 𝑐) = 𝑎𝑏 + 𝑎𝑐 + 𝑏𝑐 .

Example 1. Consider a full adder function that takes three binary
inputs 𝑎, 𝑏 and 𝑐 , and generates two outputs 𝑠𝑢𝑚 = 𝑎 ⊕ 𝑏 ⊕ 𝑐 and
𝑐𝑎𝑟𝑟𝑦 = 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎. We express the 𝑠𝑢𝑚 and 𝑐𝑎𝑟𝑟𝑦 functions as a

Majority Inverter Graph (MIG) as shown in Fig. 2(a), which essen-
tially depicts a netlist comprising of three MAJ3 nodes (denoted as
circles) and two inverters (denoted as solid dots). Fig. 2(b) depicts the
equivalent Verilog description of the MIG structure. To map the given
MIG to a crossbar circuit (of Fig. 1(d)), we traverse the entire MIG in a
breadth-first manner and realize node m1 as a sequence of operations
that include (1) realization of 𝑏 in crossbar located at row 1(r1) and
column 0(c0) (i.e. 1x0) by applying input 𝑏 and logic 1 (TRUE) at
wordline 1 (row 1) and bitline 0 (column 0) respectively, followed by
the realization of node m1 in the crossbar located at 1x2 (i.e. row 1 (r1)
and column 2 (c2)) by applying input 𝑎 and 𝑏 to wordline 1 and bitline
2 respectively, provided the device at 1x2 is already initialized to input
𝑐 (by applying logic 0 (FALSE) and input 𝑐 at wordline 1 and bitline 2
respectively). In a similar manner, remaining nodes of MIG are real-
ized as a set of operations realizing the desired full adder functionality.
The complete crossbar micro-operations realizing full adder are shown
in Fig. 3a. Further, the execution of each micro-operation leading to
the realization of sub-function in each ReRAM device located at each
row and column of the crossbar is depicted in Fig. 3b. A more detailed
explanation of the micro-operations is provided in Section 3.2.

Figure 2: Full adder: (a) MIG, (b) Equivalent verilog code

(a) (b)

Figure 3: Micro-operations realizing full adder: (a) set of
micro-operations, (b) resulting sub-functions in ReRAM de-
vices after each micro-operation

2.2 Boolean Satisfiability (SAT)
The Boolean satisfiability (SAT) is a problem of determining an
assignment 𝛼 to the variables of a Boolean function 𝐹 such that 𝐹
evaluates to true (sat). Otherwise, a proof is generated indicating
that no such assignment exists (unsat). Often, 𝐹 is expressed in
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Conjunctive Normal Form (CNF) consisting of conjunction of clauses.
A clause is a disjunction of literals, where each literal is a normal
variable or its negation. For example, a Boolean function 𝐹 = (𝑎 +
𝑏) (𝑎 + 𝑐) (𝑏 + 𝑐) is satisfied for an assignment 𝑎 = 𝑏 = 0, 𝑐 = 1.
SAT solvers are commonly used in the industry for verification and
equivalence checking. In our work, we use Z3 solver at the backend
[10].

3 PROPOSED AUTOMATED EQUIVALENCE
CHECKING METHODOLOGY

In this section we first present the motivation and general idea,
then discuss the proposed crossbar file format, the intermediate
data structure to represent the sequence of operations, and the
verification methodology.

3.1 Motivation
Like traditional CMOS design, we need to ensure that a ReRAM
crossbar for a given set of micro-operations indeed realizes the
desired functionality. As mentioned before manual inspection and
simulation basedmethods cannot be applied to functionswith larger
input. In this context, equivalence checking plays a significant
role. In particular, the equivalence checker determines whether the
function description (the traditional logic network) and the ReRAM
micro-operations on crossbar realize the same functionality.

However, unlike traditional combinational circuit design, ReRAM
crossbars realize the desired functionality sequentially, thereby
yielding a situation where traditional equivalence checkers cannot
be applied directly to the ReRAM crossbar. While combinational
circuits implement the sub-functions without considering the cur-
rent states of the logic gates, the realization of any sub-function
on ReRAM crossbar depends on the present state of the device
(as illustrated previously in Example 1). The present state decides
the subsequent steps to be carried out to implement the desired
functionality on the crossbar. This leads to a situation where the
sequential states of the devices need to be monitored during any
equivalence checking.

It may be noted that no equivalence checker for ReRAMcrossbars
exist yet that considers the domain-specific characteristics and
issues. This leads to the question: how do we verify whether the
generated ReRAM micro-operations correctly realize the original
(MIG) functional specification? The solution to this question further
leads to the specific query: how do we monitor the present and
next states of the ReRAM devices? For a small function like the
full adder, it may be possible to answer these questions manually
through step-by-step evaluation. However, for large functions the
process becomes too complex to be carried out manually. Hence
there is a need to develop automated systematic solutions to this
problem. This is the precise aim of the present paper.

3.2 Crossbar Micro-Operations File Format
The synthesis tool generates the sequence of micro-operations for
the crossbar to realize a given function. As mentioned earlier, every
MAJ3 operation can be carried out by applying suitable voltages
on the wordline and the bitline(s) of the crossbar. Basically, three
things need to be specified as discussed below.

a) The initial crossbar locations for the primary inputs of the
function. The general format is:

<row> <col1> \<PI1> <col2> \<PI2> ...

where <row> indicates the wordline, <col1>, <col2>, etc.
indicate the bitlines, and <PI1>, <PI2>, etc. indicate the pri-
mary input names as defined in the input Verilog file.

b) The crossbar locations where the primary outputs of the
function are finally available. The general format is:

\<PO1>: r1xc1 \<PO2>: r2xc2

where 𝑟1, 𝑟2 indicate the wordlines and 𝑐1, 𝑐2, etc. indicate
the bitlines where the output variables <PO1>, <PO2>, etc.
will get stored.

c) The sequence of MAJ3 operations to be carried out on the
crossbar. The general format to specify one (or more) parallel
MAJ3 operations on wordline <row> is:

<row> <val> <col1> <val> <col2> <val> ...

where <col1>, <col2>, etc. indicate the bitlines, and <val>
indicates a voltage value to be applied. The value of <val>
can be either TRUE or FALSE or the value of a crossbar cell
specified as rxc; it represents the voltage to be applied to
the wordline or the bitline as specified in the preceding line.

The complete crossbar micro-operations for the full adder is
shown in Fig. 3. The first two lines indicate that the input variables
are 𝑎, 𝑏 and 𝑐 , and the output variables are 𝑐𝑎𝑟𝑟𝑦 and 𝑠𝑢𝑚. The third
line indicates that the input variables 𝑎, 𝑏, 𝑐 are loaded in the cells
0x0, 0x1 and 0x2 respectively. The next seven lines specify MAJ3
operations on the crossbar, in the following order:

1) Apply TRUE in wordline 1, and FALSE in bitlines 0, 1 and 2.
This resets the cells 1x0, 1x1 and 1x2 to logic 0.

2) Apply the value of cell 0x1 in wordline 1 and TRUE in bitline
0. This stores the value of 𝑏 in cell 1x0.

3) Apply FALSE in wordline 1 and value of cell 0x2 in bitline 2.
This copies the value of 𝑐 in cell 1x2.

4) Apply the value of cell 1x0 in wordline 1 and value of cell
0x0 in bitline 2. This stores the value of MAJ3(a,b,c) in cell
1x2. This is the value of 𝑐𝑎𝑟𝑟𝑦 (𝑚1).

5) Apply FALSE in wordline 1 and value of cell 0x1 in bitline 1.
This copies the value of 𝑏 in cell 1x1.

6) Apply the value of cell 0x2 in wordline 1 and value of cell
0x0 in bitline 1. This stores the value of MAJ3(a,b,c’) in cell
1x1. This is the value of𝑚2.

7) Apply the value of cell 1x2 in wordline 1 and value of cell 0x2
in bitline 1. This computes themajority operationMAJ3(m1’,m2,
c) and stores it in cell 1x1.

The last two lines specify that the output 𝑠𝑢𝑚 is in cell 1x1, and the
output 𝑐𝑎𝑟𝑟𝑦 is in cell 1x2.

3.3 ReRAM Sequence Graph (ReSG)
Every line in the micro-operation file format provides the values ap-
plied to the wordline and bitline of the ReRAM device, but does not
specify the current state of the device. This makes the generation of
Boolean functions from the micro-operation file format a difficult
task. To overcome this difficulty, we structure the micro-operations
in such a manner that makes the generation of Boolean functions
simpler while ensuring the sequential nature of ReRAM operations.
This necessitates the design of an intermediate data structure called
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ReRAM Sequence Graph (ReSG). It is defined as a directed acyclic
graph 𝐻 = (𝑉 , 𝐸) composed of four types of vertices, and repre-
sents the micro-operations in the crossbar. The first and second
types of vertices have no incoming edges and represent primary
inputs and two constant inputs (logic 0 and logic 1), respectively.
The third type of vertices has no outgoing edges and represents
primary output (or terminal) nodes. The fourth type has three in-
coming edges and an outgoing edge, and represents the function
𝑓 (𝑝, 𝑞, 𝑟 ) = 𝑝𝑞 + 𝑝𝑟 + 𝑞𝑟 . These non-terminal function nodes have
three kinds of incoming edges: two regular edges representing the
inputs 𝑝 and 𝑟 , and a complement edge denoting the negation of
the input 𝑞. More formally, a ReSG is defined as follows.

Definition 1. A ReRAM Sequence Graph (ReSG) over the primary
input variables 𝑋 = {𝑥0, 𝑥1, · · · , 𝑥𝑛−1} and primary output variables
𝑌 = {𝑦0, 𝑦1, · · · , 𝑦𝑚−1} is a directed acyclic graph 𝐻 = (𝑉 , 𝐸) with

a) a finite set of nodes 𝑉 = (𝑉𝑋 ∪𝑉𝐶𝐼 ∪𝑉ℎ ∪𝑉𝑌 ), where 𝑉𝑋 =

{𝑣𝑥0 , 𝑣𝑥1 , · · · , 𝑣𝑥𝑛−1 } are primary input nodes, 𝑉𝐶𝐼 = {𝑣𝑇 , 𝑣𝐹 }
are constant input nodes, True (logic 1) and False (logic 0),𝑉ℎ =

{𝑣ℎ0 , 𝑣ℎ1 , · · · , 𝑣ℎ𝑙 } are non-terminal nodes inherently realizing
the ReRAM functionality, and 𝑉𝑌 = {𝑣𝑦0 , 𝑣𝑦1 , · · · , 𝑣𝑦𝑚−1 } are
terminal nodes representing primary outputs,

b) an edge 𝑒 ∈ 𝐸 between a source node 𝑢 ∈ 𝑉 and a target
node 𝑣 ∈ 𝑉 is either a regular edge 𝑝 or a regular edge 𝑟 or a
complement edge 𝑞, i.e. 𝑒 = {(𝑢, (𝑣 × 𝑡)) | 𝑢, 𝑣 ∈ 𝑉 ,𝑢 ∉ 𝑉𝑌 , 𝑣 ∉

𝑉𝑋 , 𝑣 ∉ 𝑉𝐶𝐼 }, where 𝑡 denotes whether the edge is a regular
edge 𝑝 (𝑡 = +1) or 𝑟 (𝑡 = −1) or a complement edge 𝑞 (𝑡 = 0).

The size of a ReSG is measured by the number of functional
nodes that depends on the number of ReRAM operations in the
crossbar file. We now explain the process of translating the crossbar
file into a functionally equivalent ReSG.

Suppose a set of ReRAM operations is represented as 𝑀 =

{𝑚1,𝑚2, · · · ,𝑚𝑘 } where any operation𝑚𝑖 is denoted as:

𝑚𝑖 = <𝑄 𝑗> <𝑣𝑎𝑙 (𝑄 𝑗 )> <𝑃𝑠> <𝑣𝑎𝑙 (𝑃𝑠 )>

where 𝑣𝑎𝑙 (𝑄 𝑗 ) and 𝑣𝑎𝑙 (𝑃𝑠 ) denote the values at row𝑄 𝑗 and column
𝑃𝑠 respectively. The ReSG is obtained by traversing each operation
𝑚𝑖 and mapping it to an equivalent functional node 𝑣𝑖 such that the
regular edges 𝑝 and 𝑟 connect source nodes 𝑢𝑠 and 𝑢𝑖 respectively
to the target node 𝑣𝑖 , whereas the complement edge 𝑞 connects the
source node𝑢 𝑗 to the target node 𝑣𝑖 . Herein, the nodes𝑢𝑠 , 𝑢 𝑗 , 𝑢𝑖 ∈ 𝑉

indicate the value of column 𝑃𝑠 , value of row 𝑄 𝑗 and the present
state of the functional node 𝑣𝑖 , respectively.

The above idea is further explained with an example.

Example 2. Consider the crossbar operations for the full-adder
shown in Fig. 3 to be transformed into a functionally equivalent ReSG.
The transformation begins by traversing the listing line-by-line from
top to bottom and from left to right. The complete ReSG representing
the full adder realization on ReRAM crossbar is shown in Fig. 4. Note
that the regular incoming edges, 𝑝 and 𝑟 of a functional node are
highlighted in red and green colors, respectively, while the incoming
complement edge of a functional node is denoted by a dashed line in
blue color. For the line 3, the primary input and two constant input
nodes are inserted at level 1 of the ReSG as shown in Fig. 4. For the
line 4, we insert three nodes at level 2 with regular edges 𝑟 connected
to the constant input node False as shown in Fig. 4. Once these initial

operations are translated into suitable nodes in ReSG, we then consider
the operations listed from lines (5 - 10) realizing the sub-functions. To
realize operation at line 5, we apply 0x1 and True respectively to the
complement and regular edges of the functional node 1x0_1 at level 2,
thereby realizing the negation of primary input 𝑏. For line 6, we apply
False and 0x2 to the complement and regular edge 𝑝 respectively of
node 1x2_1 at level 2. As a result, the primary input 𝑐 is duplicated at
node 1x2_1. For line 7, we add another node 1x2_2 at level 3, where,
we apply 0x0, 1x2_1 and 1x0_1 at the regular incoming edges 𝑝, 𝑟
and a complement edge 𝑞 respectively leading to the realization of
primary output carry. In a similar fashion, lines 8 to 10 are translated
into ReSG functional nodes at level 3 and level 4 as depicted in Fig. 4.
Finally, we add two terminal nodes sum (1x1) and carry (1x2) at level
5 of the ReSG and connect them to the appropriate functional nodes.

Figure 4: ReRAM Sequence Graph (ReSG)

We label the ReSG functional nodes with the corresponding
locations of the ReRAM crossbar and a number separated by an
underscore (_). The numbers indicate the sequence number of the
operations being executed sequentially on the same ReRAM de-
vices. For example, the functional node label 1x1_1 denotes that
a sub-function is initially stored on the ReRAM device located at
1x1, the node label 1x1_2 indicates that the second sub-function is
overwritten on the same ReRAM device at 1x1, and so on.

3.4 Overall Verification Methodology
The proposed verification methodology is depicted in Fig. 5, where
it is considered that a given function specification is represented as
a Majority-Inverter Graph (MIG). The MIG data structure is repre-
sented in Verilog form, and is considered as the golden representa-
tion of the function in the context of the present work. A ReRAM
mapping tool analyzes the MIG representation and generates a
set of micro-operations for evaluation on the crossbar. The micro-
operations are represented as ReSG, and represents the reference
representation of the function. An equivalence checker based on a
SAT solver finally determines whether the golden representation
and the reference representation are equivalent or not.

The general idea of the SAT-based equivalence checking is to
encode the problem as a Boolean satisfiability instance to be solved
by the SAT solver. In the present context, if the solver returns
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Figure 5: Proposed verification methodology

(a) miter w/ MIG and ReSG (b) result

Figure 6: SAT formulation and outcome

unsatisfiable, then the golden and the reference representations
are equivalent. Otherwise, a counter-example is extracted from the
satisfying assignment of the instance.

More precisely, every MAJ3 node in the MIG representation is
expressed as a set of clauses that can be directly processed by the
SAT solver. To encode the ReRAM micro-operations into a SAT
instance, the ReSG is generated as discussed in the previous section,
where every functional node of the ReSG can directly be expressed
by a set of clauses. After encoding the MIG and ReSG structures into
respective SAT instances, we define amiter to check the equivalence
between a MIG and a ReSG.

A miter is a circuit structure which is composed of a set of 2-
input XOR gates in the first level and an OR gate in the second level.
By applying the input assignments to both the circuits (i.e. golden
and reference), the inequality between the corresponding outputs
are checked by the XOR operations. In case of multi-output circuits,
all the outputs of XOR gates are observed by the OR operation. If
the OR operation returns a value 1, it means at least one XOR gate
evaluates to 1 indicating that the MIG and ReSG are non-equivalent.
Otherwise, they are equivalent. Note that, the added miter structure
is only used to determine the circuit equivalence, and do not alter
the actual functionality of the MIG and ReSG.

Example 3. The miter structure for two representations of full
adder containing two output lines is shown in Fig. 6(a). For all the
input assignments, the OR operation evaluates to 0 (i.e. Unsat as
shown in Fig. 6(b)) indicating that the MIG and ReSG for full adder
are equivalent.

4 EXPERIMENTAL EVALUATION
This section summarizes the experimental results. All the bench-
marks were obtained from ISCAS and IWLS [1, 8]. We have imple-
mented our proposed scheme of constructing the ReSG, checking

equivalence (i.e. miter structure) and generating clauses in Python
3.6. For checking equivalence based on Boolean satisfiability, we
have used Z3 solver [10]. All the experiments have been run on a
2.8 GHz machine with a dual core processor and an 8 GB RAM.

Table 1 shows the obtained results. The first column provides the
details of the benchmark, i.e. name of the benchmark and the num-
ber of Primary Inputs (PI) as well as the number of Primary Outputs
(PO). The next column reports the number of nodes (#Nodes) in the
MIG representation of the respective benchmark, the number of
resulting clauses (#Clauses) and the time to obtain the clauses (𝑡1).
The next column provides the total number of micro-operations
(#Ops), the number of nodes (#Nodes) in the corresponding ReSG,
the number of resulting clauses (#Clauses) and their generation
time (𝑡2). The final column shows the time to check the equivalence
(SAT solver time) between MIG and ReSG. All the times are shown
in CPU seconds.

Note that the table has two parts: equivalent and non-equivalent.
The benchmarks are divided into small (where 𝑃𝐼 + 𝑃𝑂 ≤ 20) and
larger (where 𝑃𝐼 + 𝑃𝑂 > 20). The upper part of Table 1 reports that
the MIG representation and the corresponding micro-operations
(or ReSG) are functionally equivalent. The average run-time for
generating clauses from MIGs is very few CPU seconds. Similarly,
the average time taken to obtain the ReSG from the given crossbar
file and then to generate the respective clauses is also a few CPU
seconds. For the small and large benchmarks, the SAT-solver ob-
tains the solution (i.e., equivalent (Unsat) or non-equivalent (Sat))
very quickly except two large benchmarks, c6288 and c3540, for
which the run-times are higher. This is due to the fact that those
benchmarks (i.e. c6288 and c3540) have significantly large number
of clauses as compared to all the other large benchmarks, resulting
in higher run-time. In our future work we will try to incorporate
some optimization technique to improve the mapping methodol-
ogy, which might in turn helps to reduce the number of clauses and
eventually the run-time.

The proposed verification method must also detect the non-
equivalence between a given MIG and the corresponding micro-
operations when the latter is erroneous. For this purpose, we have
modified the micro-operations by randomly inserting or deleting
operations in the crossbar file, while keeping the given MIG repre-
sentation unchanged. As expected, the SAT-solver indicates that
the MIG and the modified micro-operations are functionally non-
equivalent. The lower part of Table 1 shows the results for non-
equivalent cases, where all the columns remain same as that of
equivalent cases except the third column (ReSG). Since we mod-
ify the micro-operations, the number of operations, ReSG nodes,
clauses reported in the third column of lower part of the Table 1
differ from that of the third column in upper part of the same table.
Overall, our proposed automated verification approach can iden-
tify the equivalence or non-equivalence between the MIG and its
corresponding crossbar micro-operations.

5 CONCLUSION
We present an automated method for verifying whether the cross-
bar micro-operations generated from majority-based mapping for
ReRAM circuits is equivalent to the original functional specifica-
tion. To the best of the knowledge of the authors, this is the first
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Table 1: Experimental results for small and large benchmarks

Equivalent cases
Benchmark MIG ReSG

Name PI PO #Nodes #Clauses 𝑡1 (s) #Ops #Nodes #Clauses 𝑡2 (s) SAT solve time (s)

small



exam1 3 1 6 13 0.002 12 9 28 0.004 0.039
rd32 3 2 3 11 0.002 10 6 20 0.003 0.041
exam3 4 1 10 21 0.002 19 16 49 0.004 0.049
xor5 5 1 12 25 0.002 22 19 58 0.004 0.033
rd53 5 3 20 59 0.006 39 34 105 0.012 0.141
con1 7 1 8 18 0.002 15 12 37 0.004 0.053
con2 7 1 9 19 0.002 16 13 40 0.004 0.053
rd73 7 3 34 99 0.006 63 58 177 0.016 0.179

newtag 8 1 9 19 0.002 16 13 40 0.004 0.042
newill 8 1 20 43 0.002 31 28 85 0.007 0.089
rd84 8 4 43 127 0.009 79 73 223 0.021 0.258
9sym 9 1 60 131 0.003 91 88 265 0.006 0.059
max46 9 1 132 302 0.004 181 178 535 0.009 0.152
sym10 10 1 79 80 0.003 117 114 343 0.007 0.062
sao2 10 4 141 297 0.008 220 214 646 0.025 0.258
t481 16 1 25 51 0.002 39 36 109 0.005 0.063

large


c6288 32 32 1867 1899 0.025 2381 2347 7073 0.095 22270.671
c1908 33 25 296 738 0.006 415 388 1189 0.018 10.636
c432 36 7 95 233 0.003 133 124 379 0.009 2.013
c499 41 32 292 762 0.006 390 356 1100 0.017 9.541
c3540 50 22 824 1989 0.013 1183 1159 3499 0.075 15600.673
Non-equivalent cases

Benchmark MIG ReSG
Name PI PO #Nodes #Clauses 𝑡1 (s) #Ops #Nodes #Clauses 𝑡2 (s) SAT solve time (s)

small



exam1 3 1 6 13 0.002 11 8 25 0.004 0.039
rd32 3 2 3 11 0.002 9 5 17 0.003 0.041
exam3 4 1 10 21 0.002 18 15 46 0.004 0.049
xor5 5 1 12 25 0.002 21 18 55 0.004 0.033
rd53 5 3 20 59 0.006 40 35 108 0.012 0.141
con1 7 1 8 18 0.002 14 11 34 0.004 0.053
con2 7 1 9 19 0.002 17 14 43 0.004 0.053
rd73 7 3 34 99 0.006 64 59 180 0.016 0.179

newtag 8 1 9 19 0.002 15 12 37 0.004 0.042
newill 8 1 20 43 0.002 30 27 82 0.007 0.089
rd84 8 4 43 127 0.009 80 74 226 0.021 0.258
9sym 9 1 60 131 0.003 92 89 268 0.006 0.059
max46 9 1 132 302 0.004 182 179 538 0.009 0.152
sym10 10 1 79 80 0.003 118 115 346 0.007 0.062
sao2 10 4 141 297 0.008 222 216 652 0.026 0.258
t481 16 1 25 51 0.002 40 37 112 0.006 0.063

large


c6288 32 32 1867 1899 0.025 2413 2379 7169 0.11 22273.673
c1908 33 25 296 738 0.006 412 385 1180 0.018 10.333
c432 36 7 95 233 0.003 140 131 400 0.009 2.331
c499 41 32 292 762 0.006 422 388 1196 0.021 10.673
c3540 50 22 824 1989 0.013 1175 1151 3475 0.073 15600.333

attempt to develop a systematic approach in this regard. The in-
termediate data structure ReSG helps in direct generation of the
clauses, as required by the verificationmethod. Experimental results
validate that the method is able to correctly verify the generated
micro-operations. This further helps in improving our confidence

on whether the crossbar mapping is indeed generating functionally
equivalent micro-operations corresponding to a given function. As
a future work, optimizations can be applied to improve the mapping
methodology for crossbar circuits, which in turn can reduce the
time for verification.
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