
Polynomial Formal Verification of Prefix Adders
Alireza Mahzoon1 Rolf Drechsler1,2

1Institute of Computer Science, University of Bremen, Bremen, Germany
2Cyber-Physical Systems, DFKI GmbH, Bremen, Germany

{mahzoon,drechsle}@informatik.uni-bremen.de

Abstract—Nowadays, prefix adders are widely used in different
designs and applications due to their flexible carry propagation
hardware. The variety of these adders makes it possible to find
the best choice based on the design parameters, e.g., area, delay,
number of wiring tracks. Proving the correctness of prefix adders
is an important task after their design as they usually have a
complex and error-prone structure. It has been experimentally
shown that Binary Decision Diagrams (BDDs) are very efficient
in the formal verification of adders, including prefix adders.
However, it has been never proved theoretically. In this paper, we
calculate the computational complexity of proving the correctness
of prefix adders using BDDs. Based on these calculations, we show
that the formal verification of prefix adders can be done in time
polynomial in n, where n is the size of the adder (i.e., the number
of bits per input). We also compare the theoretical calculations
with the experimental results to clarify the differences between
the complexities in theory and practice.

I. INTRODUCTION

An integer adder is one of the most frequent units in many
designs and applications. Most of the arithmetic circuits in-
cluding multipliers and dividers require integer adders in their
architectures. Designers have proposed a variety of addition
algorithms to satisfy the community demands in terms of
area, delay, and the number of wiring tracks. These algorithms
usually employ different carry propagation strategies. One of
the important groups of adder architectures is prefix adders.
Prefix adders are widely used in industry due to their regular
structures and efficient design [1].

In prefix adders, addition is expressed as a prefix com-
putation [2]. Using prefix computations makes it possible to
have more than one implementation for intermediate structures
within the adder, allowing trade-offs between the amount of
internal wiring and the fan-out of intermediate nodes. As a
result, a large variety of prefix adders can be implemented to
satisfy different design goals.

Arithmetic circuits are very error-prone particularly when
they are generated automatically. The wrong implementation
of an algorithm in an arithmetic circuit generator can result
in buggy hardware. It is possible that the bug appears only
for some of the circuits’ types and sizes, and thus becomes
hard to detect. Consequently, an important phase after the
design of an arithmetic circuit including a prefix adder is
verification. The verification method based on the Binary
Decision Diagram (BDD) reports very good results when it
comes to the verification of integer adders. The core idea
of the verification is based on symbolic simulation. In the
simulation, an input pattern is applied to a circuit, and the
resulting output values are observed to see whether they are the
expected values. Symbolic simulation verifies a set of scalar
tests in the input space with a single symbolic test. In order to
cover all the possible values on each input, symbolic functions
are encoded using BDDs. At the end of the simulation, the

This work was supported by the German Research Foundation (DFG) within
the Reinhart Koselleck Project PolyVer (DR 287/36-1).

resulting BDD for each primary output is evaluated. A BDD
is a canonical representation; thus, independent of the adder
architecture, the outputs’ BDDs should be always identical.

Despite the practical success of the BDD-based formal
verification method in proving the correctness of different
adders, the verification complexity has not been discussed
in depth. Therefore, there is a gap in literature where the
theoretical proofs for the verification complexities are missing.
It leads to several verification problems: 1) unpredictability
in performance of the verification method, i.e., it cannot be
predicted before actually invoking the verification tool whether
it will successfully terminate or run for an indefinite amount
of time, 2) unknown scalability of the verification technique,
i.e., it is not predictable how much the run-time and the
required memory increase when the size of the circuit under
verification grows, and 3) It is not possible to compare the per-
formance of the verification method against other techniques
and choose the best one.

PolyAdd [3] is the first work that focuses on the complexity
of adder verification. The author proves that the complete
formal verification process of the three adders (i.e., ripple carry
adder, conditional sum adder, and carry look-ahead adder) can
be carried out polynomially. This proof becomes possible by
calculating the BDD sizes for each internal signal. PolyAdd
focuses on only three traditional adder architectures, and it
does not ensure the polynomial verification of other adder
structures such as prefix adders. Moreover, the calculations
for the exact order of the complexity are absent in the
paper. Authors of [4] extend PolyAdd by extracting the exact
verification complexity bounds for the conditional sum adder.

In this paper, we calculate the computational complexity of
proving the correctness of three prefix adders: serial prefix,
Ladner-Fischer, and Kogge-Stone adder. Moreover, we prove
that the computational complexity of verifying the prefix
adders is always polynomial with respect to the number of bits
per input. This new achievement confirms the good scalability
of the BDD-based verification method in proving the correct-
ness of prefix adders, which had been only shown in practice
before. Finally, we compare the theoretical calculations with
the experimental results to clarify the differences between the
complexities in theory and practice. This paper is the first step
to fill the long-lasting gap in the BDD-based verification of
adders by providing a careful exposition of the computational
steps to obtain the polynomial bounds.

II. PRELIMINARIES

In this section, first, an overview of the prefix adders is
given. Then, the BDD representation is reviewed.

A. Prefix Adders
A simple ripple carry adder is very area-efficient; however, it

has a huge delay due to the long carry chains. Several solutions
have been proposed to solve the problem of carry propagation

HA HA HA HA

PC

bn-1an-1 bn-2an-2 b1a1 b0a0

gn-1 gn-2 g1 g0pn-1 pn-2 p1 p0

G[0:0]G[1:0]G[n-2:0]G[n-1:0] pn-1 p2 p1

sn sn-1 s2 s1 s0

p0

Fig. 1. The general structure of a prefix adder

and provide flexibility in computing carries. Among these
solutions, prefix algorithms gained high popularity as they
can be used to generate a wide variety of adders aiming for
different design goals.

We explain the mathematical foundation of the prefix adders
in detail. Let A = an−1an−2 . . . a0 and B = bn−1bn−2 . . . b0
be n-bit binary numbers. Their sum can be computed as
S = A + B = snsn−1 . . . s0 which has n + 1 bits. For each
position 0 6 i 6 n− 1, we compute a generate signal gi and
a propagate signal pi:

gi = ai ∧ bi,

pi = ai ⊕ bi (1)
where ∧ and ⊕ are binary AND and XOR, respectively.
Please note that gi and pi signals can be generated from
primary inputs using Half-adders (HAs). Then, the carry bits
are computed recursively using generate and propagate signals:

ci+1 = gi ∨ (pi ∧ ci) (2)
By having carry bits in hand, we can compute the final sum

bits:

si =

{
ci ⊕ pi if 0 6 i 6 n− 1
ci if i = n

(3)

For two pairs (gi, pi) and (gj , pj) of generate and propagate
signals, the binary prefix operator is defined as:(

gi
pi

)
•
(
gj
pj

)
=

(
gi ∨ (pi ∧ gj)

pi ∧ pj

)
(4)

The prefix operator can be used to compute the carry bit
ci+1:(

ci+1

pi ∧ pi−1 ∧ · · · ∧ p0

)
=

(
gi
pi

)
•
(
gi−1

pi−1

)
• · · · •

(
g0
p0

)
(5)

The most important advantage of the prefix operator is its
associativity. Thus, the carry bits can be computed in many
different ways. We define G[i:j] and P[i:j] to show the result
of applying prefix operator to i− j consecutive generate and
propagate signals, respectively:(

G[i:j]

P[i:j]

)
=

(
gi
pi

)
•
(
gi−1

pi−1

)
• · · · •

(
gj
pj

)
(6)

Based on the definition of G[i:j] and P[i:j], we can derive
the following equations:(

G[i:j]

P[i:j]

)
=

(
G[i:k]

P[i:k]

)
•
(
G[k−1:j]

P[k−1:j]

)
(7)

ci+1 = G[i:0] (8)
G[i:j] and P[i:j] are used in sophisticated parallel prefix

adders to compute the carry bits.
Fig. 1 shows the general structure of a prefix adder [2],

[5]. First, the propagate (pi) and generate (gi) signals are
computed from the primary inputs using HAs. Then, the prefix

11

Serial Prefix Adder

• Structure
(𝑔0, 0)

(𝑔1, 𝑝1)

(𝑔2, 𝑝2)

(𝑔3, 𝑝3)

(𝑔𝑛−3, 𝑝𝑛−3)

(𝑔𝑛−2, 𝑝𝑛−2)

(𝑔𝑛−1, 𝑝𝑛−1)

(𝐺[1:0], 0)

(𝐺[2:0], 0)

(𝐺[3:0], 0)

(𝐺[𝑛−4:0], 0)

(𝐺[𝑛−3:0], 0)

(𝐺[𝑛−2:0], 0)

𝑆𝑛

𝐴𝑖 𝐵𝑖

𝑃𝑖𝐺𝑖

𝐺[𝑖−1:0] 𝑃𝑖

𝑆𝑖

0 < 𝑖 < 𝑛

𝑖 = 0𝑆0 = 𝑃0

Fig. 2. Serial prefix adder

✒✞☛✁ �☛✂✒✞✄✁ �✄✂☎✆✝✟ ✠✝✡✒✞✄☞✁ �✄☞✂
. . .

✌✍
✎✏✑✓
✔ ✕✖
✎✏
✑✓
✔ ✗

✌
✍
✘✙
✚✛
✜ ✕✖
✘✙
✚✛
✜ ✗

✒✞✢✁ �✢✂✒✞✣✁ �✣✂

✤✥
✎✦
✑✓
✔ ✧★
✎✦
✑✓
✔ ✩

✤✥
✎✪✑✓
✔ ✧★
✎✪
✑✓
✔ ✩

✤✥
✎✫✑✓
✔ ✧★
✎✫
✑✓
✔ ✩

✤✥
✎ ✬✑✓
✔ ✧★
✎ ✬
✑✓
✔ ✩

✭✮✯✰✱✲✳✴✵ ✶✯✰✱✲✳✴✷

✒✞☞✁ �☞✂

✌
✍
✎ ✬✑✦
✔ ✕✖
✎ ✬
✑✦
✔ ✗

Fig. 3. Ladner-Fischer adder

✒✞☛✁ �☛✂✄☎✆✝ ✟✆✠✒✞✡✁ �✡✂✄☎✆☞✝ ✟✆☞✠
. . .

✌
✍
✎✏✑✓
✔ ✕✖
✎✏
✑✓
✔ ✗

✌
✍
✘✙✚✛
✜ ✕✖
✘✙
✚✛
✜ ✗

✒✞✢✁ �✢✂✒✞✣✁ �✣✂

✤✥
✎✦
✑✓
✔ ✧★
✎✦
✑✓
✔ ✩

✤
✥
✎✪
✑✓
✔ ✧★
✎✪
✑✓
✔ ✩

✤✥
✎ ✫
✑✓
✔ ✧★
✎ ✫
✑✓
✔ ✩

✬✭✮✯✰✱✲✳✴ ✵✮✯✰✱✲✳✶

✤
✥
✎✷✑✓
✔ ✧★
✎✷
✑✓
✔ ✩

✤
✥
✎✷✑✏
✔ ✧★
✎✷
✑✏
✔ ✩

✤
✥
✎✦
✑✪
✔ ✧★
✎✦
✑✪
✔ ✩

✤
✥
✎ ✫✑✦
✔ ✧★
✎ ✫
✑✦
✔ ✩

✤✥
✎✦
✑✏
✔ ✧★
✎✦
✑✏
✔ ✩

✤✥
✎ ✫
✑✷
✔ ✧★
✎ ✫
✑✷
✔ ✩

✒✞✸✁ �✸✂

Fig. 4. Kogge-Stone adder

computations are performed in the PC block to generate the
carry bits (i.e., G[i:0]). As we mentioned, the associativity of
prefix operator (see Eq. (5), Eq. (6), and Eq. (7)) makes it
possible to compute the carry bits in many different ways.
Several prefix algorithms have been proposed to compute the
carry bits. Each algorithm prioritizes one of the important
design parameters (e.g., area, delay, or the number of wiring
tracks) or tries to make a trade-off between them. As a result,
the PC block is a tree of prefix operators connected based on a
prefix algorithm, e.g., Ladner-Fischer or Kogge-Stone. Finally,
the sum bits (si) are computed in the final stage using XOR
gates based on Eq. (3). We now explain the PC block of the
three prefix adders in detail:

Serial Prefix Adder: Fig. 2 represents the PC block of a
serial prefix adder. Prefix operators are arranged in a single
column. The serial prefix algorithm needs a minimal number
of binary operations, but it is inherently slow.

Ladner-Fischer Adder: Fig. 3 depicts the PC block of
a 16-bit Ladner-Fischer adder. In this architecture, interme-
diate signals are computed by a minimal tree structure and
distributed in parallel to all higher bit positions. This structure
leads to a high fan-out of some prefix operators, but on the
other hand, it results in the smallest possible delay and very
few wiring tracks.

Kogge-Stone Adder: Fig. 4 shows the structure of a 16-
bit Kogge-Stone adder. This architecture has minimal depth

Algorithm 1 If-Then-Else (ITE)
Input: f , g, h BDDs
Output: ITE BDD
1: if terminal case then
2: return result
3: else if computed-table has entry {f, g, h} then
4: return result
5: else . General case
6: v = top variable for f , g, or h
7: t = ITE(fv=1, gv=1, hv=1)
8: e = ITE(fv=0, gv=0, hv=0)
9: r = FindOrAddUniqueTable(v, t, e)

10: InsertComputedTable({f, g, h}, r)
11: return R

(like the Ladner-Fischer adder) as well as bounded fan-outs
(maximum of 2 fan-outs for each node). However, using a
large number of independent and parallel tree structures has
led to a massively increased number of prefix operators and
interconnections.

B. Binary Decision Diagrams

Definition 1. A Binary Decision Diagram (BDD) is a directed,
acyclic graph. Each node of the graph has two edges associ-
ated with the values of the variables 0 and 1. A BDD contains
two terminal nodes (leaves) that are associated with the values
of the function 0 or 1.

Definition 2. An Ordered Binary Decision Diagram (OBDD)
is a BDD, where the variables occur in the same order in each
path from the root to a leaf.

Definition 3. A Reduced Ordered Binary Decision Diagram
(ROBDD) is an OBDD that contains a minimum number of
nodes for a given variable order. The ROBDD of a Boolean
function is always unique.

The ITE operator (If-Then-Else) is used to calculate the
results of the logic operations in BDDs:

ITE(f, g, h) = (f ∧ g) ∨ (f̄ ∧ h) (9)

The basic binary operations can be presented using the ITE
operator:

f ∧ g = ITE(f, g, 0), f ∨ g = ITE(f, 1, g),

f ⊕ g = ITE(f, g, g), f̄ = ITE(f, 0, 1). (10)

ITE can be also used recursively in order to compute the
results:

ITE(f, g, h) = ITE(xi, ITE(fxi
, gxi

, hxi
), ITE(fxi

, gxi
, hxi

)) (11)

where fxi (fxi) is the positive (negative) cofactor of f with
respect to xi, i.e., the result of replacing xi by the value 1 (0).

The algorithm for calculating ITE operations is presented
in Algorithm 1. The result is computed recursively based
on Eq. (11) in this algorithm. When calculating the results
of ITE operations for the f , g, h BDDs, the arguments for
subsequent calls to the ITE subroutine are the subdiagrams of
f , g and h. The algorithm employs two major data structures:
a Unique Table to guarantee the canonicity of the BDDs (see
Line 9), and a Computed Table to store results of previous
computations and avoid repetition (see Line 10). The number
of subdiagrams in a BDD is equivalent to the number of nodes.
For each of the three arguments, the sub-routine is called at
most once. Assuming that the search in the Unique Table is
performed at a constant time, the computational complexity
of the ITE algorithm, even in the worst-case, does not exceed

O(|f | · |g| · |h|), where |f |, |g| and |h| denote the size of the
BDDs in terms of the number of nodes [6].

In order to formally verify an adder, we need to have the
BDD representation of the outputs. Symbolic simulation helps
us to obtain the BDD for each primary output. In a simulation,
an input pattern is applied to a circuit, and the resulting output
values are observed to see whether they match the expected
values. On the other hand, symbolic simulation verifies a set of
scalar tests (which usually covers the whole input space) with a
single symbolic test. Symbolic simulation using BDDs is done
by generating corresponding BDDs for the input signals. Then,
starting from primary inputs, the BDD for the output of a gate
(or a building block) is obtained using the ITE algorithm. This
process continues until we reach the primary outputs. Finally,
the output BDDs are evaluated to see whether they match the
BDDs of an adder.

III. COMPLEXITY OF VERIFYING PREFIX ADDERS

In this section, we first calculate the complexity of the
symbolic simulation for the first and third stages of a prefix
adder (Fig. 1). Then, we derive the complexity of a prefix
operation. Finally, we use the obtained results to calculate the
computational complexity of verifying different prefix adders.

A. First and Third Stage Complexity
Prefix adders have different architectures in their PC block.

However, the first stage (i.e., HAs) and third stage (i.e., XOR
gates) are identical in all types of prefix adders (see Fig. 1).
Thus, the computational complexities of these two stages in
verification are exactly the same between prefix adders.

A HA consists of an AND(∧) and an XOR(⊕) operators;
therefore, it can be translated into two ITE operations:

gi = ai ∧ bi = ITE(ai, bi, 0),

pi = ai ⊕ bi = ITE(ai, bi, bi) (12)
The ITE operations are computed by Algorithm 1 to get the

BDDs for the gi and pi signals. Assuming that f , g and h are
the input arguments of an ITE operator, the computational
complexity is computed as |f | · |g| · |h|. As a result, the
complexity of computing gi and pi is as follows:

complexity(gi) = |ai| · |bi| = 9,

complexity(pi) = |ai| · |bi| · |bi| = 27 (13)
Since there are n HAs in an n-bit prefix adder, the compu-

tational complexity of the first stage is:
complexity[stage1] = 36 · n (14)

In the final stage of a prefix adder, the XOR operations are
required to generate the sum bits. These operations can be
translated into ITE operations:

si = G[i−1:0] ⊕ pi = ITE(G[i−1:0], pi, pi) (15)
The complexity of the ITE operation is calculated as fol-

lows:
complexity(si) = |G[i−1:0]| · |pi| · |pi| (16)

It has been proved in [7] that the BDD size of the ith carry
bit (G[i−1:0]) is bounded by 3(i + 1). We substitute the size
of G[i−1:0], pi, and pi in Eq. (16) to get:

complexity(si) = (3 · (i + 1)) · 5 · 5 = 75 · (i + 1) (17)
By adding up the complexity of all XOR operations, we get

the computational complexity of the third stage:

complexity[stage3] =

n−1∑
i=1

75 · (i + 1) =
75

2
n2 +

75

2
n− 75 (18)

7

Prefix Adders Complexity (2)

• Propagate BDD size

𝑃[0:0]

𝑎0

𝑏0𝑏0

01

𝑃[1:0]

𝑎0

𝑏0𝑏0

01

𝑎1

𝑏1𝑏1

𝑃[2:0]

𝑎0

𝑏0𝑏0

01

𝑎1

𝑏1𝑏1

𝑎1

𝑏1𝑏1

Fig. 5. The BDDs for P[0:0], P[1:0], and P[2:0]

9

Prefix Adders Complexity (4)

𝐺[3:0]

𝐺[0:0]

𝑎0

𝑏0

01

𝐺[1:0]

𝑎0

𝑏0

01

𝑏1

𝑎1 𝑎1

𝐺[2:0]

𝑎0

𝑏0

01

𝑏1

𝑎1 𝑎1

𝑏2

𝑎2 𝑎2

Fig. 6. The BDDs for G[0:0], G[1:0], and G[2:0]

B. Prefix Operation Complexity
Based on the definition of a prefix operator (see Eq. (4) in

Section II), the prefix operation between two pairs (G,P)[i:k]
and (G,P)[k−1:j] (see Eq. (7)) is given by the two Boolean
functions:

G[i:j] = G[i:k] ∨ (P[i:k] ∧G[k−1:j]),

P[i:j] = P[i:k] ∧ P[k−1:j] (19)
In order to obtain the BDDs for the Boolean functions, they

are first converted into ITE operations:
G[i:j] = ITE(G[i:k], 1, P[i:k] ∧G[k−1:j])

= ITE(G[i:k], 1, ITE(P[i:k], G[k−1:j], 0)),

P[i:j] = ITE(P[i:k], P[k−1:j], 0) (20)
Thus, the complexity of computing G[i:j] and P[i:j] is as

follows:
Complexity(G[i:j]) = |G[i:k]| · |P[i:k]| · |G[k−1:j]|,
Complexity(P[i:j]) = |P[i:k]| · |P[k−1:j]| (21)

We need to calculate the size of the BDDs and substitute
them in Eq. (21) to get the complexities based on the i, j, and
k variables.

According to Eq. (4) and Eq. (6), P[m:n] is computed by
preforming AND operations between m−n propagate signals:

P[m:n] = pm ∧ pm−1 ∧ · · · ∧ pn (22)
The propagate signal pt can be substituted by at⊕ bt to get

the Boolean function for P[m:n] based on the primary inputs:
P[m:n] = (am ⊕ bm) ∧ (am−1 ⊕ bm−1) ∧ · · · ∧ (an ⊕ bn) (23)
The size of the BDD for P[m:n] depends on the number of

XOR operations. Fig. 5 presents the BDDs for P[0:0], P[1:0] and

P[2:0] in which there are one, two and three XOR operations,
respectively. There are in total m − n + 1 XOR operators in
each function, and each XOR operator adds three nodes to the
BDD. Thus, considering the two terminal nodes, the size of
the BDD for P[m:n] is obtained:

|P[m:n]| = 3 · (m− n + 1) + 2 = 3 · (m− n) + 5 (24)

According to Eq. (4) and Eq. (7), G[i:j] can be computed
as follows:

G[m:n] = gm ∨ (pm ∧G[m−1:n]) (25)

In order to get the function based on the primary inputs, we
substitute gi and pi with ai ∧ bi and ai ⊕ bi, respectively:

G[m:n] = (am ∧ bm) ∨ ((am ⊕ bm) ∧G[m−1:n]) (26)

Fig. 6 shows the BDDs for G[0:0], G[1:0] and G[2:0]. The
initial BDD size for G[0:0] = g0 is equal to 4, and performing
prefix operation with g1 increases the size of the BDD by 3
nodes. The increase in the size of the BDD occurs again after
the operation with g2, g3, and so forth. Therefore, the BDD
size for G[i:j] is calculated as follows:

|G[m:n]| = 3 · (m− n) + 4 (27)

By replacing the size of G[i:k], G[k−1:j], P[i:k], and P[k−1:j]
BDDs in Eq. (21) based on Eq. (24) and Eq. (27), the
complexity of computing G[i:j] and P[i:j] is obtained:

Complexity(G[i:j]) =

(3 · (i− k) + 4) · (3 · (i− k) + 5) · (3 · (k − j) + 1),

Complexity(P[i:j]) =

(3 · (i− k) + 5) · (3 · (k − j) + 2) (28)

The calculated complexities only depend on i−k and k−j.
Thus, we can represent them as two functions CG(i−k, k−j)
and CP (i− k, k − j) with only two input arguments.

A prefix operation contains the computations for both G[i:j]

and P[i:j]. Thus, the overall complexity can be calculated:
C(i− k, k − j) = CG(i− k, k − j) + CP (i− k, k − j) (29)

We use the C(i − k, k − j) function to calculate the
complexity of the three prefix adders.

C. Verification Complexity of a Serial Prefix Adder
In an n-bit serial prefix adder, the carry bits (i.e., G[t:0])

are computed subsequently using prefix operators (see Fig. 2).
The inputs of the tth prefix operator are 1) the pair of generate
(gt+1 or G[t+1:t+1]) and propagate (pt+1 or P[t+1:t+1]) signals,
and 2) the carry bit (G[t:0]) generated by the previous prefix
operator. As a result, the tth prefix operator always performs
the following operation:(

G[t+1:0]

0

)
=

(
G[t+1:t+1]

P[t+1:t+1]

)
•
(
G[t:0]

0

)
, (30)

where the second signal in the output pair is always equal to
zero, and therefore it requires no computation. Thus, CP is
equal to zero in all calculations.

The computational complexity of tth prefix operation is
calculated based on Eq. (28) and Eq. (29) as follows:

C(t + 1− t− 1, t + 1− 0) = C(0, t + 1) = CG(0, t + 1)

= 60t + 80 (31)

The computational complexity of the PC block is calcu-
lated by adding up the complexity of each individual prefix
operation.

complexity[PC] =

n∑
t=1

(60t + 80) = 30n2 + 110n (32)

✟ ✌ ✡

✟ ✌ �

✟ ✌ ✁

✂ ✄ ☎

✞✒✆✝✠☛✞✒✆✝✠☛✞✒✆✝✠☛✞✒✆✝✠☛✞✒✆✝✠☛✞✒✆✝✠☛✞✒✆✝✠☛✞✒✆✝✠☛

✞✒✆✝☞☛✞✒✠✝☞☛✍✎✏✑✓✔✞✒✠✝☞☛✞✒✆✝☞☛✞✒✠✝☞☛✞✒✆✝☞☛✞✒✠✝☞☛

✞✒✆✝✕☛✞✒✠✝✕☛✞✒☞✝✕☛✍✎✖✑✗✔

✞✒✆✝✘☛✞✒✠✝✘☛

✙✚✛✜ ✢✛✣✙✚✤✜ ✢✤✣✥✦✧★ ✩✧✪✙✚✤✫✜ ✢✤✫✣ ✙✚✬✜ ✢✬✣✙✚✭✜ ✢✭✣✙✚✫✜ ✢✫✣

✞✒✆✝✕☛✞✒✠✝✕☛✞✒☞✝✕☛✞✒✮✝✕☛

✍✎✓✑✯✔✞✒✮✝✘☛✍✎✗✑✯✔✞✒✰✝✘☛✞✒✱✝✘☛✞✒✲✝✘☛

Fig. 7. The complexity calculations for a 16-bit Ladner-Fischer adder

. . .

✞✒✄✁�✂☎✆✝✟✠✡✞✒✄✁�✂✞✒✄✁�✂✞✒✄✁�✂✞✒✄✁�✂☎✆✝✟✠✡✞✒✄✁�✂☎✆✝✟✠✡☎✆✝✟✠✡✞✒✄✁�✂✞✒✄✁�✂✞✒✄✁�✂✞✒✄✁�✂✞✒✄✁�✂

✞✒�✁�✂✞✒�✁☛✂✞✒�✁☛✂✞✒�✁☛✂✞✒�✁☛✂✞✒�✁☛✂

☎✆☞✟✠✡✞✒✌✁☛✂✞✒✌✁✌✂✞✒✌✁✍✂✞✒✌✁✍✂

✞✒✎✁✏✂ ✞✒✎✁✎✂ ☎✆✑✟✓✡ ☎✆✑✟✔✡

✞✒�✁☛✂✞✒�✁☛✂✞✒�✁☛✂✞✒�✁☛✂✞✒�✁☛✂✞✒�✁☛✂✞✒�✁☛✂✞✒�✁☛✂

☎✆☞✟✕✡✞✒✌✁✍✂✞✒✌✁✍✂✞✒✌✁✍✂✞✒✌✁✍✂✞✒✌✁✍✂✞✒✌✁✍✂

✞✒✎✁✍✂ ✞✒✎✁✌✂ ✞✒✎✁☛✂ ✞✒✎✁�✂

✖ ✗ ✘

✖ ✗ ✙

✚ ✛ ✜

✖ ✗ ✢

✒✣✤✁ ✥✤✂✒✣✦✁ ✥✦✂✒✣✧✁ ✥✧✂✒✣✦★✁ ✥✦★✂ ✒✣✩✁ ✥✩✂✒✣✪✁ ✥✪✂✒✣★✁ ✥★✂

Fig. 8. The complexity calculations for a 16-bit Kogge-Stone adder

Finally, the overall computational complexity of a serial
prefix adder is achieved by adding up the complexity of the
three stages in Eq. (14), Eq. (18), and Eq. (32). We can
conclude that the order of the verification complexity isO(n2).
As a result, proving the correctness of a serial prefix adder has
quadratic time complexity.

D. Verification Complexity of a Ladner-Fischer adder

The Lander-Fischer adder is a parallel prefix adder in
which the prefix operators are connected in a tree structure to
generate the carry bits in parallel. Fig. 3 shows the interme-
diate pairs (G,P)[m:n] generated by the prefix operators. By
knowing the inputs of each prefix operator (i.e., (G,P)[i:k] and
(G,P)[k−1:j]), the computational complexity can be calculated
using function C(i−k, k−j) (see Eq. (28) and Eq. (29)). Fig. 7
presents the complexity of the prefix operation for each node
of the circuit by the C function.

For an n-bit Ladner-Fischer adder, the depth (i.e., number
of rows) and the number of nodes in each row are calculated
as follows:

depth = log2(n),

nodes in row =
n

2
, (33)

where the equations are exact for all word length being a power
of 2 (i.e., n = 2m) [2].

We group the nodes with the same fan-ins in each row of
a Ladner-Fischer adder, e.g., the second row is divided into
four groups in which the nodes have the same fan-ins (see red
boxes in Fig. 7). The number of groups in each row and the
number of nodes in each group depend on the row number l,
and are calculated as follows:

numder of groups = 2(log2
n
2
−l),

nodes in group = 2l (34)

As an example, the second row (l = 1) has 2(log2
16
2 −1) = 4

groups, and there are 21 = 2 nodes in each group.
The second input argument of the C function (i.e., k− j) is

identical for the nodes in a group and equals 2l. On the other
hand, the first argument (i.e., i− k) is equal to h for the hth

node in the group. Consequently, the groups in each row have
the same accumulative complexity, which can be obtained by
adding up the complexity of the nodes:

group complexity =

2l−1∑
h=0

C(h, 2l) (35)

The computational complexity of a whole row is obtained
with respect to the complexity of the groups and the number
of groups in a row:

row complexity = 2(log2
n
2
−l) ×

2l−1∑
h=0

C(h, 2l) (36)

The computational complexity of the PC block is obtained
by adding up the complexity of all rows:

complexity[PC] =

log2(n)−1∑
l=0

2(log2
n
2
−l) ×

2l−1∑
h=0

C(h, 2l)

=

9

14
n4 +

23

4
n3 +

93

4
n2 +

15

2
n log2 n−

415

14
n (37)

Finally, the overall computational complexity of a Ladner-
Fischer adder is calculated by adding up the complexity of
the three stages in Eq. (14), Eq. (18), and Eq. (37). Based on
the calculated complexity, we can observe that the order of
the verification complexity is O(n4). Therefore, proving the
correctness of a Ladner-Fischer adder using BDDs has quartic
time complexity.

E. Verification Complexity of a Kogge-Stone adder

The Kogge-Stone adder is another parallel prefix adder
with a parallel tree of prefix operators (see Fig. 4). The
computational complexity of each prefix operator is shown
in Fig. 8 as a C function. Note that if the inputs of a
prefix operator are (G[i:k], P[i:k]) and (G[k−1:j], P[k−1:j]), the
complexity can be calculated by C(i− k, k − j).

For an n-bit Kogge-Stone adder, the depth (i.e., number of
rows) and the number of nodes in each row are:

depth = log2(n),

nodes in row = n− 2l (38)
where l is the row number. Please note that the equations are
exact for all word lengths being a power of 2 (i.e., n = 2m) [2].

We divide the nodes in each row into two groups based
on the input values of the C functions. In the first group
(green boxes in Fig. 8), the input values of the C functions are
identical, i.e., C(2l−1, 2l). In the second group (red boxes in
Fig. 8), the first input values are exactly the same and equal
2l − 1. However, the second value is equal to h + 1 for the
hth node in the group.

The number of nodes in the first group (group1) and the
second group (group2) are as follows:

nodes in group1 = n− 2l+1 + 1,

nodes in group2 = 2l − 1 (39)

The computational complexity of each group is obtained by

TABLE I
RUN-TIME OF VERIFYING ADDERS (SECONDS)

Size
Benchmarks

serial prefix Ladner-Fischer Kogge-Stone

1024 1.28 1.64 1.84
2048 6.37 7.56 8.37
3072 15.24 17.94 21.60
4096 27.21 33.59 39.01
5120 43.05 49.85 69.89
6144 67.87 78.07 104.47
7168 97.36 114.06 142.42
8192 129.78 153.67 177.43
9216 164.53 184.33 234.78
10240 200.45 241.49 315.52

adding up the complexity of the inside nodes:
group1 complexity = (n− 2l+1 + 1)× C(2l − 1, 2l),

group2 complexity =

2l−2∑
h=0

C(2l − 1, h + 1) (40)

We can add the complexity of the first and second groups to
get the computational complexity of a row. The computational
complexity of the PC block is obtained by adding up the
complexity of all rows:
complexity[PC] =

log2(n)−1∑
l=0

(n− 2
l+1

+ 1)× C(2
l − 1, 2

l
) +

2l−2∑
h=0

C(2
l − 1, h + 1)

 =

81

70
n
4
+

111

14
n
3
+ 22n

2
+ 6n log2 n−

321

7
n +

517

35
(41)

By adding up the complexity of the three stages in Eq. (14),
Eq. (18), and Eq. (41), the overall complexity is obtained. Af-
ter calculating the computational complexity, we can conclude
that the order of the BDD-based verification complexity is
O(n4). Therefore, proving the correctness of a Kogge-Stone
adder has quartic time complexity.

IV. EXPERIMENTAL RESULTS

We have implemented the BDD-based verifier in C++. The
tool takes advantage of the symbolic simulation to obtain the
BDDs for the primary outputs. Then, the BDDs are evaluated
to see whether they match the BDDs for an adder. In order to
handle the BDD operations, we used the CUDD library [8].
The benchmarks for the three prefix adders are generated using
GenMul [9]. All experiments are performed on an Intel(R)
Core(TM) i7-8565U with 1.80 GHz and 24 GByte of memory.

Table I reports the verification times for adders. The first
column Size denotes the size of the adder based on the
inputs’ bit-width. The run-time (in seconds) of the BDD-
based verification method is reported in the second column
Benchmarks for the three prefix adders.

It is evident in Table I that the BDD-based verification
reports very good results for prefix adders. A Kogge-Stone
adder with 10240 bits per input, which consists of more than
400K gates, can be verified in less than 6 minutes. Thus, the
experimental results for the three prefix adders confirm the
scalability of the BDD-based verification method.

In order to check the correctness of the complexity bounds
obtained in Section III, we first show the results of Table I
as three graphs in Fig. 9. Then, we fit a curve to the points
with an acceptable error and evaluate the curve function. We
can fit a curve with the order of 2 to the verification run-
times of a serial prefix adder in Fig. 9a. It confirms the
calculated complexity bound in Eq. (32). It is also possible
to fit a polynomial with the order of 2 to the verification

0

50

100

150

200

1024 2048 3072 4096 5120 6144 7168 8192 9216 10240

R
u

n
-t

im
e

(s
ec

o
n

d
s)

Size (number of bits per input)

𝑦 = 2 × 10−6𝑥2 − 0.0021𝑥 + 0.8742

(a) Serial prefix adder

0

50

100

150

200

250

1024 2048 3072 4096 5120 6144 7168 8192 9216 10240

R
u

n
-t

im
e

(s
ec

o
n

d
s)

Size (number of bits per input)

𝑦 = 3 × 10−6𝑥2 − 0.0034𝑥 + 3.1027

(b) Ladner-Fischer adder

0

50

100

150

200

250

300

350

1024 2048 3072 4096 5120 6144 7168 8192 9216 10240

R
u

n
-t

im
e

(s
ec

o
n

d
s)

Size (number of bits per input)

𝑦 = 9 × 10−14𝑥4 − 2 × 10−9𝑥3 +
2 × 10−5𝑥2 − 0.0339𝑥 + 23.897

(c) Kogge-Stone adder

Fig. 9. Run-time graphs of the prefix adders

run-times of a Ladner-Fischer adder (see Fig. 9b). It has a
smaller order of complexity than our theoretical calculations
in Eq. (37). However, the theoretical complexity calculations
are always based on the worst-case scenarios that might never
happen in practice. Finally, a polynomial curve with the order
of 4 is fitted to the verification run-times of a Kogge-Stone
adder. It confirms our theoretical calculation for obtaining the
computational complexity of a Kogge-Stone adder in Eq. (41).

V. CONCLUSION

In this paper, we calculated the computational complexity
of the BDD-based verification for the three prefix adders,
i.e., serial prefix adder, Ladner-Fischer adder, and Kogge-
Stone adder. Based on the calculations, we proved that
verifying these adders is possible in polynomial time. The
experimental results confirm the correctness of the complexity
bounds obtained in our theoretical calculations.

In our future research, we focus on the verification complex-
ity of the other prefix adders, e.g., Brent-Kung adder and Han-
Carlson adder. We also investigate the complexity of the other
existing verification techniques such as *BMD [10], [11] and
SCA [12], [13], [14] when it comes to proving the correctness
of different arithmetic circuits.

REFERENCES

[1] S. Knowles, “A family of adders,” in ARITH, 2001, pp. 277–284.
[2] R. Zimmermann, “Binary adder architectures for cell-based VLSI and their synthesis,”

Ph.D. dissertation, Swiss Federal Institute of Technology, 1997.
[3] R. Drechsler, “PolyAdd: Polynomial formal verification of adder circuits,” in DDECS,

2021, pp. 99–104.
[4] A. Mahzoon and R. Drechsler, “Late breaking results: Polynomial formal verification

of fast adders,” in DAC, 2021.
[5] I. Koren, Computer Arithmetic Algorithms, 2nd ed. A. K. Peters, Ltd., 2001.
[6] K. S. Brace, R. L. Rudell, and R. E. Bryant, “Efficient implementation of a BDD

package,” in DAC, 1990, pp. 40–45.
[7] I. Wegener, Branching Programs and Binary Decision Diagrams. SIAM, 2000.
[8] F. Somenzi, “CUDD: CU decision diagram package release 2.7.0,” available at https:

//github.com/ivmai/cudd, 2018.
[9] A. Mahzoon, D. Große, and R. Drechsler, “GenMul: Generating architecturally

complex multipliers to challenge formal verification tools,” in Recent Findings in
Boolean Techniques, R. Drechsler and D. Große, Eds. Springer, 2021, pp. 177–191.

[10] R. Drechsler, B. Becker, and S. Ruppertz, “The K*BMD: A verification data struc-
ture,” IEEE Design & Test of Computers, vol. 14, no. 2, pp. 51–59, 1997.

[11] M. Keim, R. Drechsler, B. Becker, M. Martin, and P. Molitor, “Polynomial formal
verification of multipliers,” Formal Meth. in Sys. Des., vol. 22, no. 1, pp. 39–58, 2003.

[12] A. Mahzoon, D. Große, and R. Drechsler, “REVSCA-2.0: SCA-based formal verifica-
tion of non-trivial multipliers using reverse engineering and local vanishing removal,”
TCAD, 2021.

[13] A. Mahzoon, D. Große, C. Scholl, and R. Drechsler, “Towards formal verification of
optimized and industrial multipliers,” in DATE, 2020, pp. 544–549.

[14] D. Kaufmann, A. Biere, and M. Kauers, “Verifying large multipliers by combining
SAT and computer algebra,” in FMCAD, 2019, pp. 28–36.

https://github.com/ivmai/cudd
https://github.com/ivmai/cudd

