
LLMs for Hardware Verification: Frameworks,
Techniques, and Future Directions

Khushboo Qayyum2, Sallar Ahmadi-Pour1, Chandan Kumar Jha1, Muhammad Hassan1,2, Rolf Drechsler1,2
1Institute of Computer Science, University of Bremen, 28359 Bremen, Germany

2Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany
khushboo.qayyum@dfki.de, {hassan, sallar, chajha, drechsler}@uni-bremen.de

Abstract—Large Language Models (LLMs) have gained im-
mense popularity and are being explored for use in several
domains. In this paper, we describe the LLMs for their use
in the Electronic Design Automation (EDA) domain specifically
for hardware verification. LLMs are being rapidly explored for
hardware design generation and verification. However, given the
inherent non-determinism and the limited capabilities of the
current LLMs, the designs may contain bugs or the generated
properties could be incorrect. The process of manually checking
these bugs can be tedious and time-consuming. This highly limits
the applicability of the LLMs. Researchers are looking to alleviate
these limitations by incorporating verification strategies using the
LLMs and enhancing the LLMs’ capabilities not only for bug-
free design generation but also stand-alone for verification. The
current pace of development in these can cause many areas to
be overlooked. Therefore in this work, we discuss the state-of-
the-art tools and frameworks available for utilizing LLMs for
EDA. We will then discuss the hardware verification techniques
being explored using LLMs. We then discuss the consistency of
the natural language properties generated using LLMs. Lastly,
we will discuss the future directions in which the LLMs can aid
in the hardware verification process.

Index Terms—Large Language Models, Verification, Verilog,
System Verilog, Assertions-based Verification, VHDL, Electornics
Design Automation.

I. INTRODUCTION

LLMs are advanced AI models designed to understand and
generate human-like text [1], [2]. Trained on vast datasets,
these models can recognize patterns, understand context, and
identify semantic relationships within data. Their ability to
generate coherent text has significantly influenced fields like
Natural Language Processing (NLP) and AI-driven com-
munication. A key feature of LLMs is their capability to
perform zero-shot and few-shot learning, meaning they can
provide accurate responses or generate relevant content when
faced with new tasks or minimal examples. This adaptability
and versatility make LLMs valuable across various domains,
including EDA [3]–[7].

In the context of EDA, where complex design flows, ver-
ification, and optimization tasks require precision and expert
knowledge, LLMs have the potential to streamline processes,
reduce human error, and increase productivity throughout the
IC design and verification cycle. By integrating LLMs in EDA,
the goal is to automate repetitive tasks, provide insights, and
optimize workflows in the design verification process [8]–[10].

There has been a lot of interest in various domains related
to the utility of the LLMs. However, the LLMs are growing
rapidly and the use case domains can be very different from

that of the NLP. This can lead to cases where existing method-
ologies are re-implemented, increasing the time required to
integrate the LLMs for the required tasks. In addition to
this, the methodologies used in different works vary a lot
leading to more ambiguity. In this paper, we make efforts to
show a typical workflow of utilizing LLMs in the domain
of EDA [9], [11], [12]. We also clearly highlight different
tools that are used in the different stages of the workflow [13],
[14]. We believe this will help researchers in EDA not only
to understand the existing works but also to develop their
methodologies more efficiently.

Several works have tried to use LLMs in the domain of
EDA. These works encompass different aspects of the EDA
including design, synthesis, verification, and testing [3]–[7].
The works vary from using standalone LLMs via the web
browser to using frameworks like LangChain for the desired
purpose. In this work, we dive deeper into the use of LLMs
for hardware verification. We discuss the works ranging from
formal verification by proof generation to generating assertions
and detection of bugs [8], [9], [11], [15], [16]. We also discuss
one of our prior works that iteratively detects bugs in a
hardware design.

Since there are several Hardware Description Languages
(HDLs) the LLMs may be better at generation assertions for
one hardware language than the other, i.e., the consistency in
the quality of properties generation can vary widely. We show
some preliminary results obtained using ChatGPT-4 on simple
arithmetic circuits from the ELAU benchmarks [1], [17]. The
natural language-based properties varied widely for different
HDLs. We believe that this will worsen when the designs are
more complex. Lastly, we discuss some potential directions
that can be explored to make the LLMs more consistent.
Overall, we believe that this paper can serve as a reference for
the researchers who are looking to explore LLMs for hardware
verification and be a stepping stone to creating methodologies
and frameworks in this particular area.

As a familiarization with the organization of the paper, in
Section II, we discuss the tools and frameworks available
for the LLMs. In Section III, we discuss the related works
that use LLMs for verification. In Section IV, we discuss
the results when properties are generated using the LLMs
for different languages. In Section V, we discuss the future
directions that can be explored using LLMs. We conclude the
paper in Section VI.



II. TOOLS AND FRAMEWORKS FOR LLMS

To maximize the effectiveness of LLM-based applications,
developers can leverage existing frameworks and tools, which
eliminates the need to reinvent the wheel. Fig. 1 illustrates
the common architecture used to build LLM applications,
incorporating off-the-shelf tools such as cosine similarity and
semantic search techniques. Several design patterns, such as
in-context learning, Chain-of-Thought (CoT) reasoning, and
Retrieval Augmented Generation (RAG), can be utilized to
expedite development. These patterns are essential for tailoring
LLM applications to specific use cases and improving response
accuracy.

Two widely used frameworks that support rapid LLM-based
development are LangChain [13] and Haystack [14]. These
frameworks simplify integration with external APIs, custom
tools, and memory management, making them suitable for
both prototyping and production-level applications. Moreover,
agentic approaches, such as those seen in AutoGPT [18], offer
opportunities for LLMs to perform tasks based on high-level
user goals autonomously, further expanding their utility in
EDA.

Each LLM-based application can be divided into three
stages (shown in Fig. 1): i) data pre-processing and embed-
ding, ii) prompt construction and information retrieval, and
iii) LLM inference.

In the first stage of data pre-processing and embedding,
data is broken down into manageable chunks, passed through
an embedding model, and stored in a vector database. For
EDA applications, contextual data includes design specifica-
tions in text documents, PDFs, HDL files, etc. Tools like
Databricks [19] and Airflow [20] can manage the data-loading
and transformation processes. At the same time, frameworks
like Haystack and LangChain offers built-in utilities (e.g.,
Unstructured [21]) to streamline data handling [22]. However,
given the syntax complexity of HDL files and the LLMs’
context window limitations, the data must be split into smaller
chunks, often based on tokens, keywords, or semantic mean-
ing [23]. This stage relies heavily on embedding models,
which convert text into vector representations, allowing for
mathematical operations such as semantic search. OpenAI’s
embedding models are widely used due to their ease of use,
performance, and cost-effectiveness. However, other options,
such as Cohere [24] and Sentence Transformers from Hugging
Face [25], provide both commercial and open-source alterna-
tives. While most embeddings are general-purpose, custom
embeddings for EDA-specific use cases are lacking. The
embeddings are stored in a vector database, essential for effi-
ciently comparing and retrieving large volumes of data [26].
Popular vector databases include Pinecone [27], Qdrant [28],
Weaviate [29], Chroma [30], Faiss [31], and pgvector [32].

In the second stage (prompt construction and information
retrieval), a user query is transformed into a well-structured
prompt, which is then submitted to the LLM. This process
typically involves constructing a prompt template, provid-
ing few-shot examples (valid output examples), and includ-

ing relevant documents retrieved from the vector database
or external EDA tools. Crafting prompts have become in-
creasingly sophisticated as developers aim to improve LLM
response accuracy, particularly in production environments.
The frameworks LangChain, Haystack, and LlamaIndex [33]
are instrumental in this stage, abstracting the complexities
of prompt construction, API integration, and contextual data
retrieval. These frameworks maintain memory across multiple
LLM calls and provides ready-made templates for common
applications. The output of this stage is a prompt (or series of
prompts) ready for submission to the LLM. These tools ensure
integration with external EDA Tools like Yosys [34], Jasper
Gold, and ABC [35] when necessary.

In the third stage (LLM Inference), the prompts are submit-
ted to the LLM for inference [36]. OpenAI’s GPT-4 [1] series
is widely used, but alternatives such as Google’s Gemini [37],
Anthropic’s Claude [38], and Meta’s LLaMA models [2] are
also gaining traction. Meta’s LLaMA models, in particular,
have set a new benchmark for open-source LLMs in terms
of accuracy and performance, making them viable alternatives
for certain applications.

Once the inference is done, responses are logged or cached
using tools such as Redis [39], SQLite [40], or GPTCache [41]
to optimize future interactions and save computation time for
frequently accessed data. This caching mechanism is vital
in high-performance environments where the same queries
or tasks might need to be revisited. Additionally, tools like
MLflow [42], Helicone [43], and PromptLayer [44] can be
integrated for logging and evaluation, ensuring that LLMs’
performance and outputs are tracked, refined, and improved
over time.

Finally, validation of LLM outputs is crucial, especially
in EDA. Validation and guardrail tools such as Rebuff [45],
LMQL [46], and Guidance [47] play a pivotal role in ensuring
the reliability and consistency of LLM responses, acting as an
additional layer of checks and safeguards before the final out-
put is accepted or used. The tools and frameworks mentioned
here represent the starting point for integrating LLMs into
EDA verification processes. They enable rapid development
and deployment without sacrificing accuracy.

In the following sections, we will explore specific appli-
cations of LLMs within the EDA domain, followed by a
proposed methodology for consistency evaluation in LLM-
assisted verification workflows.

III. LLM BASED TECHNIQUES FOR VERIFICATION

With the ever so growing body of works that utilize and
exploit the capabilities that LLMs offer, various new and
promising directions open up in which LLMs aid EDA [48],
[49] by reducing human error, or acting as an additional
source of information in specification, coding, verification, and
documentation. Moreover, researchers investigate the aspect of
security as part of the EDA process [3]–[7]. As EDA consists
of utilizing various tools, scripts, and programming languages,
LLMs help reduce human error in tedious and tailored tasks
when setting up and interconnecting EDA tools [50]–[52].



Data
Pipelines

Embedding 
Models

Vector 
Database

Contextual
Data

Data 
Chunking

• Databricks
• Airflow
• Unstructured

• Number of Tokens
• Separators
• Semantic chunking

• OpenAI Embeddings
• Cohere
• Hugging Face

• FAISS
• Qdrant
• Chroma

Prompt
Construction

LLMS

Integration

• OpenAI – GPT
• Google – Gemini
• Meta - LLAMA

• LangChain
• HayStack
• LlamaIndex

EDA Tools

LLM Cache

Logging/ 
Evaluation

Validation/ 
Guardrails

• Redis
• SQLite
• GPTCache

• MLflow
• Helicone
• PromptLayer

• Rebuff
• LMQL
• Guidance

• Yosys
• Jasper Gold
• ABC

Query

Query 
Preprocessing

Response
(i) (ii) (iii)

Fig. 1. LLM Application Architecture

One emerging body of works explores the generation
of Register-Transfer Level (RTL) as HDLs in either Ver-
ilog/SystemVerilog (SV) or VHDL [53]–[58]. Here, some
works focus on the generation of code from Natural Language
(NL) specification [53], [59], while others explore aiding
engineers in improving code or fixing bugs and errors [9], [60].
Works such as [5], for example, also present how the security
domain approaches fixing security-related bugs in RTL codes.

Another direction of the research of LLM-aided EDA ex-
plores the verification process. Next, generating the code for
regular [53], [56], [61] test benches, LLMs show promising
results for test case generation [62], [63], stimuli generation
for fuzzing-like environments [64] and the generation of
properties and assertions for formal verification [8], [10], [11],
[15], [16], [65], [66]. Lastly, a few works explore the design
understanding as in the specification, documentation, and
analysis/reverse engineering of hardware designs [67], [68].
Tasks in which LLMs handle documents that are formulated
in NL, such as specifications, benefit from the characteristics
of generative AI, as reformulating or rephrasing specifications
can immensely benefit the design understanding. In many of
these works, authors present curated datasets to benchmark the
specific EDA task with their LLM-aided approach [55], [59],
[69] or identify how Intellectual Property (IP) from projects
like OpenTitan can be utilized [5], [8], [9], respectively.

In this work, we want to highlight the works dedicated to
test and verification of hardware. Unlike the generation of RTL
code, in the domain of testing and verification, LLMs can aid
in not only generating code but in exploring and analyzing
the design. LLMs can combine specifications and additional
artifacts to identify undiscovered test patterns and unchecked
properties or help in understanding counterexamples provided
by tools performing formal verification.

In [8], [15], the authors present LLM-based frameworks,
that can generate SystemVerilog Assertion (SVA) from NL
specifications of a Hardware (HW) design. The frameworks
systematically break the specifications down into a specified
format, categorizing the information into parts like parameters,

functional requirements, timing requirements, and more. This
preprocessed format is utilized to generate the SVA-based for-
mal properties of the system that are collected in the respective
formal test bench. Moreover, the framework integrates the
checking of properties through model checking and feeds back
the bugs and error logs into the LLM to either fix the bug or
refine the property. The authors perform their evaluation with
the OpenTitan IPs, and report results for GPT-4-turbo.

In [16], the authors present an LLM-guided formal verifica-
tion methodology, to generate Z3-based properties from design
specifications and code. Here, the specifications are utilized as
the basis for the properties and invariants, while the Design
under Verification (DUV) is converted into a Z3-based formal
model with the help of LLMs. The authors perform a mutation-
based evaluation of the methodology, by comparing how well
the generated properties cover different mutations introduced
into the DUV. As a basis for the evaluation, the ISCAS-85
benchmark circuits [70] were used.

In [11], the authors present AssertLLM, a methodology to
generate a wide range of SVA properties from specification
documents. The AssertLLM workflow contains separate steps
that are meant to decompose the different tasks in generating
the SVA from the specifications, by guiding the LLM to
split respective signals, instructions, and how they map within
the specification. With the help of RAG, the decomposed
information for each signal is transformed into respective SVA
properties, which are checked against the golden RTL design,
to evaluate the quality of the generated properties.

In [65], the authors present a domain-adapted LLM for the
design and verification of Very Large Scale Integration (VLSI)
systems. While the authors present an LLM adapted for the
needs and requirements of VLSI design and verification, the
case study is particularly focused on the generation of SVA
properties for formal verification. The authors evaluated a set
of benchmark circuit designs to determine the capabilities of
generating formal properties for different systems. Moreover,
the authors include a comparison against state-of-the-art LLMs
to show how well the domain-adapted LLM performs.



Specification

Perform
Text

Splitting

Perform
Semantic
Search

Patched Code

Load
Text

Embed
Text

Split
Text

Buggy Code LLM
Instance

Test Cases

Database
(VectorStore)

RAG

Pre-Processing

Prompt

Fig. 2. Bug identification and patching with LLMs and RAG

The authors of [66] propose their nl2sva framework, a
circuit-aware translation of NL to SVA. By utilizing in-context
learning, the authors provide more meaning to the general
specification statements and provide a feedback loop with
a model checker that provides information about the tested
property for the LLM and user. Moreover, the authors adopt
the popular few-shot prompting [71] and chain-of-thought [72]
techniques for LLMs to improve their LLMs’ results. Lastly,
the authors of [10] present a methodology that assists in
incrementally generating formal properties and proofs for the
Z3 solver. By breaking the verification process down into the
hierarchical components of the DUV, the LLM first generates
properties for the units, and later the properties for the system
integration. Hence, by building more context for the LLM, the
properties can cover more and more of the integrated system.
In their case study, the authors identify various properties of
Ripple Carry Adder (RCA) and Dadda Tree Multiplier (DTM)
that are based on half adders and full adders.

To give an example of an approach that uses LLMs to
aid in verification related tasks, we present the methodology
mentioned in [9]. Fig. 2. shows the block diagram of the
methodology, in which the authors use LLM for locating bugs
in a given HDL code and patching it. The methodology works
in three stages in which the first two stages are obligatory
while the third stage only sets in motion when the second
ones fail to provide a necessary outcome. In the first stage,
i.e., the pre-processing stage, a database is created and data is
split and stored in the database. This allows the management
of unstructured data and also that the data will fit the context
window of the LLM instance. In the second stage of semantic
searching, the buggy line of code is extracted from the original
line of code, and with the help of RAG relevant data is
extracted from the database. This data is given to the LLM
instance to assess and locate the bug within the given code
and rectify it. If the bug is not identified and corrected in
the second stage, the third stage (of bug identification and
closure) is initiated, where an iterative process is performed
to help the LLM to narrow the context and reach the desired
outcome. After every iteration, the buggy code is replaced by
the solution and test cases are performed on the patched circuit
to assert if the bug has been eliminated. If the test cases fail,
the methodology proceeds to the next step. The methodology
was tested on three OpenTitan IPs with 5 different mutation
types. The methodology was able to correct all bug types
except for constant mutation.

TABLE I
CONSISTENCY OF LLM-GENERATED FUNCTIONAL PROPERTIES ACROSS

SYSTEMVERILOG, VERILOG AND VHDL FOR THE ELAU BENCHMARKS.

Languages Consistency AddMulSgn DivArrSgn SqrSgn SubVZ IncGrayC

SV-V

min 0.101 0.358 0.652 0.67 0.272
max 0.885 0.963 0.896 1 0.703
avg 0.617 0.689 0.755 0.822 0.551

% > 0.75 50% 50% 28% 66% 0%
% > 0.80 50% 33% 28% 50% 0%

SV-VHDL

min 0.336 0.404 0.627 0.649 0.208
max 0.471 0.916 0.896 0.963 0.834
avg 0.381 0.653 0.742 0.782 0.569

% > 0.75 0% 33% 28% 50% 16%
% > 0.80 0% 33% 14% 50% 16%

V-SV

min 0.272 0.588 0.542 0.426 0.448
max 0.885 0.962 0.896 1 0.703
avg 0.655 0.753 0.708 0.723 0.598

% > 0.75 50% 50% 28% 66% 0%
% > 0.80 50% 33% 28% 50% 0%

V-VHDL

min 0.353 0.564 0.572 0.482 0.529
max 0.751 0.913 0.891 0.963 0.792
avg 0.529 0.772 0.736 0.731 0.649

% > 0.75 25% 66% 28% 50% 16%
% > 0.80 0% 66% 28% 50% 0%

VHDL-SV

min 0.331 0.515 0.294 0.721 0.368
max 0.471 0.916 0.896 0.963 0.835
avg 0.397 0.652 0.579 0.830 0.594

% > 0.75 0% 33% 14% 66% 16%
% > 0.80 0% 33% 14% 50% 16%

VHDL-V

min 0.364 0.411 0.332 0.791 0.363
max 0.751 0.913 0.891 0.963 0.793
avg 0.517 0.694 0.639 0.862 0.560

% > 0.75 25% 66% 28% 83% 33%
% > 0.80 0% 66% 28% 66% 0%

Overall, researchers identified the generative nature of
LLMs as an aid in property generation. While works com-
monly generate properties and assertions in SVA or Z3, it
seems plausible to generate these in PSL or a formal language
such as LTL or CTL. An emerging question from this will be:
Given a DUV, will the generated properties and assertions be
consistent across the available specification languages? As
properties can be effortlessly generated with LLMs, another
open question would be: How many properties/assertions can
LLMs generate from a specific set of specifications? This is
corresponding to the works regarding the completeness of
verification properties [73]–[75].

IV. PRELIMINARY STUDY ON CONSISTENCY

In this section, we present the results of the experiments in
which we assess the consistency of the LLMs. We performed
these experiments using the Langchain framework [13]. The
cosine similarity was used as a metric to compare the con-
sistency of the functional properties generated by LLMs in
natural language. For this purpose, the properties were con-
verted into embedding using the hugging face all-MiniLM-L6-
v2 sentence transformer model [76]. The experiments were
carried out on 5 different modules from the ELAU library
[17], [77] i.e. AddMulSgn, DivArrSgn, SqrSgn, SubVZ, and
IncGrayC.

The results of the experiments are summarized in the
Table I. The first column of the table shows the languages that
are compared where SV stands for System Verilog, V stands
for Verilog and VHDL stands for Very High Speed Integrated
Circuit Hardware Description Language. In the second col-
umn, different parameters we use to assess the consistency



are listed like the minimum cosine similarity score obtained
by comparing two properties (listed as min in the table). The
maximum cosine similarity is achieved when comparing all
properties of two different languages listed under max in the
table. The average similarity score is listed under avg in the
table. The relative number of properties for which the cosine
similarity score is higher than 0.75 and 0.80 are also shown
as percentages in the table, respectively. These percentages
provide insight into how consistent are the properties generated
by LLM when the same circuit is implemented in different
languages. In the ideal case, the properties generated by LLMs
should be the same regardless of the language format i.e. the
percentage of properties with a cosine similarity score greater
than 0.75 should be as high as possible. Some difference in
the scores is expected as the properties are written in natural
language and can be written and formulated in various ways.

Overall it can be seen that the consistency of the properties
generated by LLMs in natural language varies across different
languages. The properties generated for the same circuits in
different languages hardly ever completely match. Despite
the inconsistency, the results seem language agnostic i.e.
the average similarity score of the properties is very similar
when one language is compared to another and vice versa.
Usually, the number of properties created for one language is
different from the other so a little difference in the average is
predictable. The percentage of properties that match strongly
remain the same in almost all cases except in the SubVZ. Such
behaviors can happen when LLM merges two properties into
one. The inconsistency of LLMs in generating properties in
natural language should not be presumed as a weakness but
a potential area of research that can be explored. In the next
section we highlight more areas for future research.

V. FUTURE DIRECTIONS

Several promising directions can be explored to enhance the
application of LLMs in hardware verification. Incorporating
RAG can improve response quality by providing relevant
design information alongside LLM outputs, helping to reduce
ambiguity and tailor responses to specific hardware designs.
As a next step, Fine-tuning LLMs on domain-specific data
can improve performance across different HDLs out-of-the-
box, ensuring high-quality property generation regardless of
the HDL in use. Ensuring completeness in generated properties
using LLMs is crucial and currently an open research problem.
In this regard, exploring formal methods in combination with
state-of-the-art metrics is an interesting direction.

To enhance the reasoning capabilities of LLMs, integrating
reasoning engines or formal verification tools with LLMs
could ensure that generated properties are logically sound.
Furthermore, LLMs could also be useful in defining coverage
goals for coverage-directed simulations by analyzing design
specifications and suggesting critical coverage points, thereby
reducing manual effort. As a next step, LLMs can be utilized
in coverage-guided simulations to provide automated coverage
guidance, identifying coverage holes, and recommending new
tests. Another potential area of improvement is using LLMs

to define criteria for splitting complex designs and specifica-
tions into smaller, manageable sections for efficient analysis,
ensuring no critical interactions are missed. This is important
because of the context window limitations. Finally, developing
embedding models tailored specifically for EDA can improve
LLMs’ understanding and generation of hardware-related con-
tent by capturing the nuances of design concepts, signals,
and properties more effectively. These enhancements could
streamline verification processes, making LLMs more reliable
and efficient tools for hardware verification.

VI. CONCLUSION

In this paper, we highlighted the typical workflow of using
LLMs in the EDA domain. In addition to this several libraries,
frameworks, tools, etc., that are required at each step of the
methodology are discussed. We then summarize the recent
advancements in the domain of using LLMs for hardware
verification. We took an example of one of the workflows
used in the work which used LLMs and RAG for identifying
bugs in the verification process. While the LLMs have been
used for generating properties we showed that they are very
inconsistent when used as is and also vary widely depending
upon the language chosen for the implementation. We then
propose some directions that can help to improve the use of
LLMs in hardware verification and suggest potential research
directions.

ACKNOWLEDGEMENTS

This work was supported in part by the German Research
Foundation (DFG) within the Reinhart Koselleck Project
PolyVer (DR 287/36-1) and by the German Federal Ministry of
Education and Research (BMBF) within the project ECXLplus
under contract no. 01IW24001.

REFERENCES

[1] J. Achiam et al., “Gpt-4 technical report,” arXiv preprint arXiv:2303.08774,
2023.

[2] META, “Llama models.” [Online]. Available: https://github.com/meta-
llama/llama

[3] D. Saha et al., “Empowering hardware security with LLM: The development
of a vulnerable hardware database,” in 2024 IEEE International Symposium
on Hardware Oriented Security and Trust (HOST), vol. 33. IEEE, 2024, p.
233–243.

[4] R. Afsharmazayejani et al., “Toward hardware security benchmarking of
LLMs,” in 2024 IEEE LLM Aided Design Workshop (LAD), vol. 55. IEEE,
2024, p. 1–7.

[5] B. Ahmad et al., “On hardware security bug code fixes by prompting
large language models,” IEEE Transactions on Information Forensics and
Security, vol. 19, p. 4043–4057, 2024.

[6] A. Ayalasomayajula et al., “LASP: LLM assisted security property genera-
tion for SoC verification,” in Proceedings of the 2024 ACM/IEEE Interna-
tional Symposium on Machine Learning for CAD. ACM, 2024, p. 1–7.

[7] D. Saha et al., “LLM for SoC security: A paradigm shift,” IEEE Access, p.
1–1, 2024.

[8] B. Mali et al., “ChIRAAG: ChatGPT informed rapid and automated asser-
tion generation,” in 2024 IEEE Computer Society Annual Symposium on
VLSI (ISVLSI). IEEE, 2024, p. 680–683.

[9] K. Qayyum et al., “From bugs to fixes: HDL bug identification and patching
using LLMs and RAG,” in 2024 IEEE LLM Aided Design Workshop (LAD).
IEEE, 2024, p. 1–5.

[10] K. Qayyum et al., “Late breaking results: LLM-assisted automated incre-
mental proof generation for hardware verification,” in 2024 61st ACM/IEEE
Design Automation Conference (DAC). IEEE, 2024.

[11] W. Fang et al., “AssertLLM: Generating hardware verification assertions
from design specifications via multi-llms,” in 2024 IEEE LLM Aided Design
Workshop (LAD). IEEE, 2024, p. 1–1.



[12] V. Pulavarthi et al., “AssertionBench: A benchmark to evaluate large-
language models for assertion generation,” 2024.

[13] Langchain, “Langchain.” [Online]. Available: https://www.langchain.com/
[14] Haystack, “Haystack.” [Online]. Available: https://haystack.deepset.ai/
[15] K. Maddala et al., “LAAG-RV: LLM assisted assertion generation for RTL

design verification,” in 2024 IEEE 8th International Test Conference India
(ITC India). IEEE, 2024, p. 1–6.

[16] M. Hassan et al., “LLM-guided formal verification coupled with mutation
testing,” in 2024 Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 2024, p. 1–2.

[17] ETH Zurich & Università di Bologna, “Library of arithmetic units (ELAU),”
https://github.com/pulp-platform/ELAU, 2024.

[18] AutoGPT, “Autogpt: Build, deploy, and run ai agents.” [Online]. Available:
https://github.com/Significant-Gravitas/AutoGPT

[19] Databricks, “Databricks.” [Online]. Available: https://www.databricks.com/
[20] Airflow, “Airflow.” [Online]. Available: https://airflow.apache.org/
[21] Unstructured, “Unstructured.” [Online]. Available: https://unstructured.io/
[22] Langchain, “Embedding models.” [Online]. Available:

https://python.langchain.com/docs/integrations/text embedding/
[23] G. Kamradt, “5 levels of text splitting.”

[Online]. Available: https://github.com/FullStackRetrieval-
com/RetrievalTutorials/blob/main/tutorials/LevelsOfTextSplitting
/5 Levels Of Text Splitting.ipynb

[24] Cohere, “Cohere.” [Online]. Available: https://github.com/cohere-ai/cohere-
toolkit

[25] H. Face, “Embedding models leaderboard.” [Online]. Available:
https://huggingface.co/spaces/mteb/leaderboard

[26] Langchain, “Vector stores.” [Online]. Available:
https://python.langchain.com/docs/integrations/vectorstores/

[27] Pinecone, “Pinecone.” [Online]. Available: https://github.com/pinecone-
io/pinecone-python-client/blob/main/README.md

[28] Qdrant, “Qdrant.” [Online]. Available: https://github.com/qdrant/qdrant
[29] Weaviate, “Weaviate.” [Online]. Available:

https://github.com/weaviate/weaviate
[30] Chroma, “Chroma.” [Online]. Available: https://github.com/chroma-

core/chroma
[31] META, “Faiss.” [Online]. Available:

https://github.com/facebookresearch/faiss
[32] Pgvector, “Pgvector.” [Online]. Available:

https://github.com/pgvector/pgvector
[33] LlamaIndex, “Llamaindex.” [Online]. Available: https://github.com/run-

llama/llama index
[34] C. Wolf et al., “Yosys-a free verilog synthesis suite,” in Proceedings of the

21st Austrian Workshop on Microelectronics (Austrochip), vol. 97, 2013.
[35] R. Brayton et al., “ABC: An academic industrial-strength verification tool,”

in Computer Aided Verification: 22nd International Conference, CAV 2010,
Edinburgh, UK, July 15-19, 2010. Proceedings 22. Springer, 2010, pp.
24–40.

[36] LangChain, “Large language models.” [Online]. Available:
https://python.langchain.com/docs/integrations/llms/

[37] G. Team et al., “Gemini: a family of highly capable multimodal models,”
arXiv preprint arXiv:2312.11805, 2023.

[38] Anthropic, “Anthropic llms.” [Online]. Available:
https://github.com/anthropics

[39] Redis, “Redis.” [Online]. Available: https://github.com/redis/redis
[40] SQLite, “Sqlite.” [Online]. Available: https://www.sqlite.org/
[41] GPTCache, “Gptcache.” [Online]. Available:

https://github.com/zilliztech/GPTCache
[42] MLFlow, “Mlflow: A machine learning lifecycle platform.” [Online].

Available: https://github.com/mlflow/mlflow
[43] Helicone, “Helicone - open source llm-observability platform for

developers.” [Online]. Available: https://github.com/Helicone/helicone
[44] PromptLayer, “Promptlayer - maintain a log of your prompts and openai api

requests.” [Online]. Available: https://github.com/MagnivOrg/prompt-layer-
library

[45] Rebuff, “Rebuff - self-hardening prompt injection detector.” [Online].
Available: https://github.com/protectai/rebuff

[46] LMQL, “Lmql - a programming language for large language models.”
[Online]. Available: https://github.com/eth-sri/lmql

[47] Guidance, “Guidance - a guidance language for controlling large language
models.” [Online]. Available: https://github.com/guidance-ai/guidance

[48] Z. He et al., “Large language models for EDA: Future or mirage?” in
Proceedings of the 2024 International Symposium on Physical Design,
vol. 35. ACM, 2024, p. 65–66.

[49] N. Wu et al., “Survey of machine learning for software-assisted hardware
design verification: Past, present, and prospect,” ACM Transactions on
Design Automation of Electronic Systems, vol. 29, no. 4, p. 1–42, 2024.

[50] U. Sharma et al., “Openroad-assistant: An open-source large language
model for physical design tasks,” in Proceedings of the 2024 ACM/IEEE
International Symposium on Machine Learning for CAD, 2024, pp. 1–7.

[51] B.-Y. Wu et al., “Eda corpus: A large language model dataset for enhanced
interaction with openroad,” in 2024 IEEE LLM Aided Design Workshop
(LAD), vol. 36. IEEE, Jun. 2024, p. 1–5.

[52] M. Liu et al., “Chipnemo: Domain-adapted llms for chip design,” arXiv
preprint arXiv:2311.00176, 2023.

[53] W. Salcedo et al., “Leveraging generative AI for rapid design and verification
of a vector processor SoC,” IEEE Design & Test, p. 1–1, 2024.

[54] J. Blocklove et al., “Chip-Chat: Challenges and opportunities in conver-
sational hardware design,” in 2023 ACM/IEEE 5th Workshop on Machine
Learning for CAD (MLCAD). IEEE, 2023.

[55] L. J. Wan et al., “Invited paper: Software/hardware co-design for LLM and
its application for design verification,” in 2024 29th Asia and South Pacific
Design Automation Conference (ASP-DAC). IEEE, 2024, p. 435–441.

[56] J. Blocklove et al., “Evaluating LLMs for hardware design and test,” in 2024
IEEE LLM Aided Design Workshop (LAD), vol. 1. IEEE, 2024, p. 1–6.

[57] X. Wang et al., “ChatCPU: An agile CPU design & verification platform
with LLM,” in 61st ACM/IEEE Design Automation Conference (DAC’24),
2024, p. 6.

[58] S. Thakur et al., “Verigen: A large language model for verilog code gen-
eration,” ACM Transactions on Design Automation of Electronic Systems,
vol. 29, no. 3, pp. 1–31, 2024.

[59] S. Liu et al., “RTLCoder: Outperforming GPT-3.5 in design RTL generation
with our open-source dataset and lightweight solution,” in 2024 IEEE LLM
Aided Design Workshop (LAD). IEEE, Jun. 2024, p. 1–5.

[60] H. Huang et al., “Towards LLM-powered verilog RTL assistant: Self-
verification and self-correction,” 2024.

[61] R. Qiu et al., “AutoBench: Automatic testbench generation and evaluation
using LLMs for HDL design,” in Proceedings of the 2024 ACM/IEEE
International Symposium on Machine Learning for CAD. ACM, 2024,
p. 1–10.

[62] Z. Zhang et al., “LLM4DV: Using large language models for hardware test
stimuli generation,” in Machine Learning for Systems 2023, 2023.

[63] R. Ma et al., “VerilogReader: LLM-aided hardware test generation,” in 2024
IEEE LLM Aided Design Workshop (LAD), vol. 34. IEEE, 2024, p. 1–5.

[64] M. Rostami et al., “Beyond random inputs: A novel ML-based hardware
fuzzing,” in 2024 Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 2024, p. 1–6.

[65] M. Liu et al., “Domain-adapted LLMs for VLSI design and verification: A
case study on formal verification,” in 2024 IEEE 42nd VLSI Test Symposium
(VTS), vol. abs/2312.11805. IEEE, 2024, p. 1–4.

[66] C. Sun et al., “Towards improving verification productivity with circuit-
aware translation of natural language to systemverilog assertions,” in First
International Workshop on Deep Learning-aided Verification, 2023.

[67] S. Qiu et al., “LLM-aided explanations of EDA synthesis errors,” in 2024
IEEE LLM Aided Design Workshop (LAD), vol. 20. IEEE, 2024, p. 1–6.

[68] S. Fernando et al., “Boosting productivity of hardware documentation using
large language models,” in 2024 IEEE LLM Aided Design Workshop (LAD).
IEEE, 2024, p. 1–1.

[69] S. Yang et al., “FormalEval: A method for automatic evaluation of code gen-
eration via large language models,” in 2024 2nd International Symposium of
Electronics Design Automation (ISEDA). IEEE, 2024, p. 660–665.

[70] M. Hansen et al., “Unveiling the ISCAS-85 benchmarks: a case study in
reverse engineering,” IEEE Design & Test of Computers, vol. 16, no. 3, p.
72–80, 1999.

[71] T. B. Brown et al., “Language models are few-shot learners,” in Proceedings
of the 34th International Conference on Neural Information Processing
Systems, ser. NIPS ’20. Red Hook, NY, USA: Curran Associates Inc.,
2020.

[72] J. Wei et al., “Chain-of-thought prompting elicits reasoning in large language
models,” Advances in neural information processing systems, vol. 35, pp.
24 824–24 837, 2022.

[73] S. Katz et al., ”Have I Written Enough Properties?” - A Method of Compari-
son Between Specification and Implementation. Springer Berlin Heidelberg,
1999, p. 280–297.

[74] H. Chockler et al., “Coverage metrics for formal verification,” in Correct
Hardware Design and Verification Methods: 12th IFIP WG 10.5 Advanced
Research Working Conference, CHARME 2003, L’Aquila, Italy, October 21-
24, 2003. Proceedings 12. Springer, 2003, pp. 111–125.

[75] R. Drechsler et al., “Completeness-driven development,” in International
Conference on Graph Transformation. Springer, 2012, pp. 38–50.

[76] all-MiniLM-L6-v2, “all-MiniLM-L6-v2,” 2023. [Online]. Available:
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

[77] R. Zimmermann, “VHDL library of arithmetic units,” in Proc. First Int.
Forum on Design Languages (FDL’98), Lausanne, Switzerland. Citeseer,
1998, pp. 267–272.


