
Improving Self-Fault-Tolerance Capability of
Memristor Crossbar Using a Weight-Sharing

Approach
Dev Narayan Yadav
NIT Rourkela, India

Email: yadavd@nitrkl.ac.in

Phrangboklang Lyngton Thangkhiew
IIT Guwahati, India

Email: phrangboklang@iitg.ac.in

F Lalchhandama
JNU Delhi, India

Email: fcdama@mail.jnu.ac.in

Kamalika Datta
University of Bremen/DFKI, Germany

Email: kdatta@uni-bremen.de

Rolf Drechsler
University of Bremen/DFKI, Germany

Email: drechsler@uni-bremen.de

Indranil Sengupta
IIT Kharagpur, India

Email: isg@iitkgp.ac.in

Abstract—The ability of resistive memory (ReRAM) to natu-
rally conduct vector-matrix multiplication (VMM), the primary
operation carried out in neural networks, has caught the interest
of researchers. The memristor crossbar is a suitable architecture
to perform VMM and additionally offers benefits like in-memory
computation (IMC), low power, and high density. Memristor-
based neural networks are typically trained using a mechanism
where weight computations are carried out on a host machine and
downloaded into the crossbar. However, due to faulty memristors
in the crossbar, a cell may not be able to store the exact
weight values, which may lead to inference errors. In this paper,
we propose a weight-sharing method to improve the self-fault-
tolerance capability of memristor crossbar. In order to reduce
the impact of faulty memristors, the weights are shared among
different layers of memristors in a 3D crossbar. Simulation
analyses show considerable improvements in the fault-tolerance
capability of the crossbar.

Index Terms—Fault tolerance, Memristor crossbar, Neural
network, Stuck-at-faults, Weight-sharing

I. INTRODUCTION

Neuromorphic computing has become popular in various
applications and often demands low power and high perfor-
mance. It is observed that vector-matrix multiplication (VMM)
is the core computation carried out in a neural network,
which is computationally expensive and has a direct impact
on higher power consumption and latency when performed on
conventional architectures.

ReRAM technologies such as memristor crossbars support
in-memory computation (IMC) [1] and are able to overcome
the processor-memory bottleneck issues during computation.
Also, VMM operations execute much faster on ReRAM cross-
bars as compared to conventional systems. In the crossbar,
the weights are stored in the form of resistance/conductance
values in the cells. Among the various competing technologies,
memristors are considered one of the most desirable candidates
for this kind of application due to their non-volatile nature,

IMC capability, low power consumption, dense layout, and
high density [2].

The inference quality of a crossbar-based neural network de-
pends on how accurately the weights can be stored in the cells.
In such systems, training can be performed in two ways: (a)
direct-downloading, and (b) chip-on-the-loop approaches [3].
In both methods, an external system (host) carries out all
necessary weight calculations, which are downloaded onto the
crossbar. In the first approach, training is done completely
offline, whereas in the second approach, the crossbar interacts
with the host system in the calculation of network error.
However, in the presence of faulty memristors, the weights
may not be programmed accurately, which necessitates an
analysis of fault-tolerance capabilities of the crossbar. The
fault-tolerance approaches available in the literature can handle
up to 10% of faults and are dependent on the fault types
and their positions. Also, they incur latency, area and energy
overheads. However, it has been observed that a memristor
crossbar can tolerate a limited number of faults [4], [5]. This
paper proposes a weight-sharing approach to improve the self-
fault-tolerance capability of memristive crossbars. To achieve
this, the weights of the network are shared among layers
of memristors. To implement this, a three-dimensional (3-D)
crossbar structure is proposed, implemented as a cascade of
several 2-D crossbars. The effectiveness of the approach is
analyzed using different fault patterns and datasets.

The rest of the paper is organized as follows: Section
II presents the background and related works. Section III
discusses the proposed mapping scheme, and Section IV
evaluates the same using various fault patterns and datasets.
A comparative study is presented in Section V followed by
concluding remarks in Section VI.



II. PRELIMINARY AND RELATED WORKS

A. Memristor

A memristor is a passive circuit element capable of remem-
bering the total amount of charge passed through it [6]. The
first TiO2-based memristor device was fabricated by HP Lab
in 2008 [7]. By applying a suitable voltage across the device,
the resistance of the device changes in a non-volatile manner.
In binary logic applications, the resistance of the device can
be set to one of two different states, viz. high resistance state
(RHRS) and low resistance state (RLRS).

Memristors are often fabricated in the form of crossbar [1],
with vertical and horizontal nanowires on two planes that run
perpendicular to each other, with the devices fabricated at
every junction. Many works have been reported discussing the
implementation of neural networks using conventional tran-
sistors [8], [9]. It has been observed that memristor crossbars
can perform VMM operations naturally and can significantly
accelerate overall computations in neural network applications.

The VMM operation in a crossbar can be carried out
by applying suitable voltages to the horizontal wires and
measuring the currents generated along the columns. Fig. 1(a)
shows a crossbar structure that can be used to perform the
operation I = V × M . The voltages applied along the rows
can be represented as the vector V = {V0, V1, . . . , Vn−1}
and the currents flowing along the columns as the vector
I = {I0, I1, . . . , Im−1}. The crossbar M can be expressed
as an n×m matrix, where the (i, j)th co-efficient denotes the
conductance of the device in row Ri and column Cj .

V0

V1

Vn-1

I0 I1 Im-1

C0 C1 Cm-1

R0

R1

Rn-1

V0

V1

Vn-1

I0
M
0

I1
M
1

In-1

M
n-1

ITotal

(a) (b)

Fig. 1: VMM and dot-product operation in a crossbar

The functionality of a single neuron is similar to the dot
product operation, which can be performed in a crossbar
column as shown in Fig. 1(b). If the conductance of the
memristor Mi is Gi, the current flowing through Mi will be
Ii = Vi ∗Gi, for 0 ≤ i ≤ (n− 1). The total current will be:

Itotal =

n−1∑
i=0

(Vi ∗Gi) (1)

Eqn. (1) represents the dot product of the two vectors
{V0, V1, . . . , Vn−1} and {G0, G1, . . . , Gn−1}. Various works
are available in the literature that use memristive technology
in neuromorphic applications [10], [11].

B. Defects in Crossbar

Circuit defects are anomalies that cause undesirable vari-
ations between the design and the implemented hardware.
Memristor crossbars suffer from various defects caused by
fabrication anomalies [12]. In general, the defects can be
classified as: (i) Imperfect cross-sections – these occur due
to imperfect cross-section of the devices, and can cause
slow/fast write, deep faults and stuck-at-faults; (ii) Variable
oxide thickness – this affects the normal resistive switching
behaviour and can cause non-programmable deep faults; (iii)
Open defects – these can break the crossbar structure, thereby
causing access issues of a single cell, a row or multiple
rows; (iv) Short defects – these cause rows/columns to merge,
giving rise to coupling faults; (v) Operational defects – these
occur during operation. The presence of faults can degrade
the performance of VMM operations and, hence, the overall
accuracy of a neuromorphic application.

C. Fault-Tolerance Approach

The fault-tolerance approaches for memristive cross-
bars [13]–[16] can be broadly classified into three approaches.

i) Fault Aware Training: The authors in [13] proposed a
training approach by considering faults that can occur in
the crossbar. However, this approach does not deal with
actual faults in the chip, and so the actual performance
may deviate from expected results.

ii) Remapping: The authors in [14], [15] proposed a row-
interchanging method to reduce the overall error. The
location of faulty memristors is first identified, and then
a bipartite matching approach is used such that the
overall error is minimized.

iii) Redundant Neurons: The authors in [16], [17] proposed
a solution to use additional memristors to overcome the
effect of faulty memristors.

Recent works have reported that to incorporate fault tol-
erance in crossbars, 30-50% energy overhead and 50-100%
area overhead are incurred [13]–[17]. Most of these works are
capable of tolerating the effects of only up to 8–10% faulty
memristors.

III. THE PROPOSED WEIGHT-SHARING APPROACH FOR
IMPROVED SELF-FAULT-TOLERANCE

It has been observed that neural networks implemented
using memristor crossbars can tolerate a limited number of
faults [4], [5]. However, performance can significantly degrade
in the presence of a higher number of faults. In this section, we
discuss how the self-fault-tolerance capability of the crossbar
can be further improved.

A. General Analysis on weight-sharing

To illustrate the effectiveness of the weight-sharing ap-
proach, we consider a perceptron implementation of an AND
gate as shown in Fig 2(a). Here X1 and X2 are the inputs, b
is the bias, and W1 and W2 are weights.

The output of the network shown in Fig 2(a) is given by:



X1

X2

W1

W2

b

Y∑XiWi + b

X1

W12

W21

b

Y

W11

W22

X2

∑XiWi + b

(a) (b)

Fig. 2: Perceptron model of AND gate: (a) without weight-
sharing; (b) with shared weights

Y =

{
0, if

∑n−1
i=0 (Wi ∗Xi) + b ≤ 0

1, if
∑n−1

i=0 (Wi ∗Xi) + b > 0
(2)

The corresponding truth table considering inputs, non-faulty
and faulty weight patterns is shown in Table I. We observe that,
for b = −1, W1 = 1 and W2 = 1, the network behaves as an
AND gate. However, if one of the weight storage units (say,
W2) is faulty with stuck-at-0 fault, it will not perform as an
AND gate.

TABLE I: Truth table of AND gate without weight-sharing.

Inputs Ideal Network Faulty Network
X1 X2 (b=-1, W1=1, W2=1) (b=-1, W1=1, W2=0)∑

Y
∑

Y
0 0 -1 0 -1 0
0 1 0 0 -1 0
1 0 0 0 0 0
1 1 1 1 0 0

Now consider a modified implementation of an AND gate
as shown in Fig 2(b), where each weight is shared between
two cells. We assume for the time being that the weights are
distributed equally among the cells. The corresponding truth
table is shown in Table II. We observe that with the values
b = −1, W11 = 0.5, W12 = 0.5, W21 = 0.5 and W22 = 0.5,
the network behaves as an AND gate. In the presence of a
stuck-at-0 fault on W22, the behaviour of the network does
not change (i.e., the fault can be tolerated). However, with
multiple faults, the functionality of the network might change.

TABLE II: Truth table of AND gate with weight-sharing.

Inputs Ideal Network Faulty Network
X1 X2 (b=-1, W11=0.5, W12=0.5) (b=-1, W11=0.5, W12=0.5)

(W21=0.5, W22=0.5) (W21=0.5, W22=0)∑
Y

∑
Y

0 0 -1 0 -1 0
0 1 0 0 -0.5 0
1 0 0 0 0 0
1 1 1 1 0.5 1

In the next subsection, we discuss how this functionality
can be implemented in a crossbar.

B. Implementation of weight-sharing in Memristor Crossbar

We now discuss the architecture and approach that can be
used to implement the weight-sharing network.

1) Suitable Architecture: We propose to implement the
weight-sharing network in a 3-D crossbar. A 3-D crossbar can
be constructed as a cascade of several 2-D crossbars, as shown
in Fig 3.

Suppose the crossbar consists of k layers {L1, L2, . . . , Lk},
and the memristor at location (i, j) and layer Lx is represented
as Mij,x. A weight W will be shared among the memristors
available at Mij,x for x = 1, 2, . . . , k. However, instead of
the actual weight-sharing across layers, we can modify the
magnitude of voltage used during VMM operation that will
have an equivalent effect of weight-sharing.

For example, let the conductance of a memristor Mi be Gi.
If we apply a voltage V , then the total current injected through
Mi in the respective crossbar column will be:

Ii = V ×Gi (3)

Now consider memristors Mi1 and Mi2 with same conduc-
tance value Gi. If we reduce the voltage to V/2, the current
injected in the column through both the memristors will be:

Iinew
=

V

2
×Gi +

V

2
×Gi = V ×Gi (4)

In other words, Ii = Iinew .
This will reduce the latency as unnecessary weight setup

can be avoided, and the VMM operation can be performed in
parallel across different layers of the crossbar.

Controller

Layer-k

Layer-2

Layer-1

Fig. 3: 3D Crossbar using cascaded 2D crossbars

The outputs of the 3-D crossbar will be the sum of the
currents in corresponding columns of all the layers. For
instance, for a weight that is shared across the first columns
of all layers, the output will be the sum of currents generated
by the first columns of all layers:

Ic =

k∑
i=1

Ici (5)

2) How to Share Weights: The weights can be shared
among the memristors in various ways.

i) Equal weight-sharing: The simplest approach is to share
the weight equally in memristors Mij,x across all layers
x. Also, we reduce the Vread voltage to perform VMM
operation; thus, for 2 layers the read voltage will be
Vread/2.

ii) Weighted weight-sharing: Here we apply unequal weight
values across layers. Instead of applying Vread equally,



we divide it in a ratio such that the weight value is
maintained. Thus, for 2 layers, the read voltage can be
Vread × 0.7 for the first layer and Vread × 0.3 for the
second layer.

iii) Memristors with different Ron/Roff : Here we use mem-
ristors with different Ron, Roff values in the different
layers and the same Vread in all layers. However, this
method is difficult to implement in practice.

3) Fault Proportionality Effect: It may be noted that with
the increase in layers, the number of faults may increase.
However, the proposed weight-sharing approach can provide
improved fault tolerance even in the presence of larger number
of faulty cells.

To understand the fault proportionality effect, we consider
an example that uses an equal weight-sharing approach. If
we use a single cell, the computed weights will have to be
stored completely (100%), or else we shall lose the weight
value. Thus, there is a 50% chance of not being able to store
the weight correctly. However, if we store the weights in two
different cells, if both are non-faulty then we will be able to
store the learned weight correctly. If one of the cells is faulty,
we will be able to store 50% of the learned weight, and if
both are faulty, we will not have any information about the
weight. Thus, the probability that we can store either all or
part of the weight is 75%. Similarly, if we have three cells to
store the weight, then the probability that we can store all or
part of the learned weight will be 87.5%.

In general, the probability that we can store complete or
part of the learned weight with n crossbar layers will be:

pnon−zero =
n− 1

2n
(6)

and the probability that we lose the weight value will be:

pzero =
1

2n
(7)

Clearly, with an increase in the number of layers, the
probability of losing the complete weight will decrease, which
basically increases the fault-tolerance capability. However, this
will incur area and energy overheads.

IV. SIMULATION EVALUATION

The proposed weight-sharing approach has been imple-
mented in Python and runs on an i7-based desktop with a
2.6 GHz clock and 16 GB of RAM running Ubuntu. We
have used the simple forward weight update algorithm to
train the applications [18]. The Stanford memristor model [19]
is used to simulate the crossbar using the Cadence Virtuoso
environment. For simulation, we have used the MNIST [20],
Extended-MNIST [21], Fashion-MNIST [22] and CIFAR-
10 [23] datasets. The direct-downloading training approach [3]
is used for offline training and the generation of the weights.

All the chosen datasets are trained using fully connected
neural networks, with crossbar sizes of Na×Nc, where Na and
Nc respectively denote the number of attributes and classes,
respectively. For example, to train the dataset for MNIST
handwritten digits, a 784×10 crossbar is used on which VMM

operations are performed. To implement weight-sharing, mul-
tiple such crossbars are used in a 3-D configuration.

Various types of traditional and unique faults are possible in
the crossbar. The HfO2-based memristor crossbars [12] show
33% faulty cells, with ≈ 12% being stuck-at-faults (SAF).
The occurrence of stuck-at-1 (SA1) is observed to be higher
(≈ 80%), as compared to stuck-at-0 (SA0) (≤ 20%). It is also
observed that the occurrence of similar types of faults in the
same row is higher and occurs with higher frequency in some
blocks. About 66% of total faults were found to occur in a
few blocks only. In the present work, we have used SAF only.

We consider different types of crossbars as follows:

i) Type-1 (C1): The crossbar consists of 8:2 SA1 and SA0
faults, where the faults are limited to a few blocks, rows,
and columns.

ii) Type-2 (C2): The crossbar consists of 8:2 SA1 and SA0
faults, where the faults occur at random positions.

iii) Type-3 (C3): The crossbar consists of an equal ratio of
SA1 and SA0 faults, where the faults are limited to a
few blocks, rows, or columns.

iv) Type-4 (C4): The crossbar consists of an equal ratio of
SA1 and SA0 faults, where the faults occur at random
positions.

A. Analysis of Self-Fault-Tolerance

To analyze the fault-tolerance capability of the proposed
approach, we use the framework as proposed in [5]. Training
is first performed considering an ideal crossbar; faults are then
added, and the network is evaluated against the added faults. If
the accuracy is found to be ≤±1 as compared to the previous
accuracy, then the fault percentage is increased and the process
is repeated. For an ideal memristor crossbar with no faults,
the network incurs 5.88% of inference errors for the MNIST
dataset. Fig. 4 shows the impact of faults in the network if
the weights are stored in a single memristor or shared among
multiple memristors for the different crossbar types for the
MNIST dataset [20].

Fig. 5 shows the fault-tolerance threshold (FTT) for the
MNIST dataset for non-shared and shared-weight cases. FTT
is defined as the threshold up to which fault percentage
does not degrade by ≤±1 as compared to the ideal crossbar
accuracy. In the figure, the y-axis shows variation in accuracy
with respect to the ideal case (as represented by line 0). If the
accuracy of the faulty crossbar reduces by more than 1 (lies
outside the green lines), then the fault % is returned as the
FTT (Fth) for the application. In Fig. 5 average FTT of both
approaches is shown.

From Fig. 4 and 5 we observe that for up to 20% faults, the
accuracy can degrade by more than 40%. Furthermore, both
weight-sharing approaches show significant improvements in
self-fault-tolerance capability as compared to the conventional
crossbar, where a single memristor is used to store weights.
With each additional layer, the fault tolerance capability in-
creases by ≈2%. A similar result has been observed for other
datasets as well that are reported in Table III.



0 2 4 6 8 10 12 14 16 18 20
5

10

15

20

25

30

35

40

45

50

% of Faults

In
fe

re
nc

e
E

rr
or

(%
)

1M
EW-2M
WW-2M
EW-3M
WW-3M

0 2 4 6 8 10 12 14 16 18 20
5

10

15

20

25

30

35

40

45

50

% of Faults

In
fe

re
nc

e
E

rr
or

(%
)

1M
EW-2M
WW-2M
EW-3M
WW-3M

(a) (b)

0 2 4 6 8 10 12 14 16 18 20
5

10

15

20

25

30

35

40

45

50

% of Faults

In
fe

re
nc

e
E

rr
or

(%
)

1M
EW-2M
WW-2M
EW-3M
WW-3M

0 2 4 6 8 10 12 14 16 18 20
5

10

15

20

25

30

35

40

45

50

% of Faults

In
fe

re
nc

e
E

rr
or

(%
)

1M
EW-2M
WW-2M
EW-3M
WW-3M

(c) (d)

Fig. 4: Self-fault-tolerance capability of crossbar for MNIST
dataset: (a) Type C1, (b) Type C2, (c) Type C3; (d) Type
C4 (1M: single-memristor based network; 2M: 2-layer cross-
bar; 3M: 3-layer crossbar; EQ: equal weight-sharing, WW:
weighted weight-sharing).

2 4 6 8 10 12 14 16 18 20

−28

−24

−20

−16

−12

−8

−4

0

% of Faults

V
ar

ia
tio

n
in

A
cc

ur
ac

y

1M
2M
3M
4M

Fig. 5: Average variation in accuracy with faults for MNIST
dataset for shared and non-shared network

B. Energy, Cycle and Area Overhead

In this work, training is done in offline mode on the host
system, and the final weights calculated are downloaded into
the crossbar. In direct-downloading approach, the crossbar
does not interact with the host, and so there is no energy
overhead during training. However, if we use the chip-on-
the-Loop learning approach, the errors are generated by the
crossbar chip itself. This increases the energy consumption
as weight updates will take place for the memristors of all

TABLE III: Percentage of faults that can be tolerated.

Data-set
No of Shared Memristors (Layers) used in Network

1 2 3 4
EQ WW EQ WW EQ WW

MNIST [20] ≤3 ≤5.1 ≤5.2 ≤7.9 ≤8 ≤9.6 ≤ 9.5
EMNIST [21] ≤2 ≤4.3 ≤4.5 ≤6.2 ≤6.1 ≤7.6 ≤7.5
FMNIST [22] ≤2 ≤4.2 ≤4.1 ≤6.3 ≤6.2 ≤7.2 ≤7.3

CIFAR-10 [23] ≤2 ≤4.1 ≤4.2 ≤6.1 ≤6.2 ≤7.3 ≤7.2

available layers.
Table IV shows the energy overheads caused by the pro-

posed scheme. In direct-downloading, the weight update oper-
ation is required only once (the final weight writing); thus, we
have reported the energy overhead for writing the weights in
crossbar. During the inference phase, the VMM operation will
be performed across all layers that also incur energy overhead;
thus, the average energy consumption required for a single
inference is reported. We have ignored the energy overheads
due to the peripheral components like ADC, DAC, etc. in the
calculation.

TABLE IV: Energy overhead for MNIST dataset.

Approaches Write (e) Read (e)
Ideal 162 J 1.33 J

EQ 2M 405 J 2.45 J
3M 608 J 3.97 J

WW 2M 425 J 2.94 J
3M 616 J 4.05 J

The approach does not cause any cycle overhead during
weight update and inference. This is because all memristors
need to be set with similar weights as in the conventional
network and can be done in the same number of cycles and
also in parallel across the layers. The approach causes an area
overhead with a multiple of 100% for each layer, as the same
size crossbar is used in every additional layer. Similar energy
overhead is reported for other datasets as well.

V. DISCUSSION

In the literature, there is no prior work that improves the
self-fault-tolerance capability of a crossbar. The proposed
approach tries to reduce the effect of faulty memristors by
sharing the weights across multiple memristors. However,
various fault-tolerance approaches exist that try to reduce
the impact of faulty cells in a crossbar for neural network
applications. We provide a brief discussion as to how the
proposed work can be beneficial as compared to other fault-
tolerance approaches.

i) Fault Aware Training: In a retraining-based approach,
training is carried out considering possible variations
and faults that can occur in the crossbar. To achieve
this, during the training process, a variation or fault
model is validated with training samples. As a result,
re-training-based approaches become highly dependent
on the variation/fault model considered during training.
Here, the actual performance may deviate from the
expected results, as the actual faults in the crossbar are
not considered. Furthermore, about 20% more training
cycles are required. This approach also requires weight
pruning; for up to 10% faults, 70% of the weights need
to be pruned. It has been observed that the performance
of retraining methods degrades for a large number of
faults [13]. The proposed approach, however, deals with
actual faults in the crossbar, does not require weight
pruning, and can handle faults up to 7-10% without
retraining.



ii) Remapping: In Remapping based approach row inter-
changing method is used to minimize the overall er-
ror [14], [15]. First, the locations of faulty memristors
are identified, and then some matrix matching approach
(e.g., bipartite matching) is used such that the overall er-
ror is minimized. The diagnosis of faulty memristor cells
itself requires a high number of read/write operations
(usually 2 writes and 2 reads for each cell) that cause
high energy and cycle overheads. Furthermore, this
requires complex routers to map the rows for efficient
performance. On the other hand, the proposed approach
does not need to identify the faulty cell locations.

iii) Redundant Neurons: Here, additional rows or cross-
bars are used as in the proposed approach [16], [17].
However, this approach necessitates the diagnosis of
faulty cells and requires a complex router and controller
to route the input of the defective cells to additional
crossbar or crossbar rows. Furthermore, we need to ini-
tialize the weights for the additional memristors; as the
locations of these additional memristors are not regular,
the update can be done in a serial or semi-parallel way.
On the other hand, in the proposed approach, all the
weights can be initialized in parallel across the layers
and do not require fault diagnosis as well.

Many works in the literature do not follow a single strategy
but rather use a mixed approach. For example, the work in [15]
uses retraining, remapping, and redundant rows (neurons).
Most of the work can recover from the effect of up to 10%
faulty memristors with 30-50% energy and cycle overheads
and 50-100% area overhead with complex circuits. In contrast,
the proposed approach gives similar fault-tolerance perfor-
mance without using any extra circuit; rather, it uses additional
crossbar layers and allows parallel execution among layers.

VI. CONCLUSION

Resistive RAM crossbars have drawn the attention of re-
searchers in neuromorphic computing due to their capability
of low-power VMM operation. The proposed work uses ad-
ditional crossbar layers to improve the crossbars self-fault-
tolerance capability. The weights are shared among layers to
reduce the impact of faults. The proposed approach allows
parallel operation among layers, which does not cause any
latency overhead but rather achieves similar fault tolerance
capability with additional crossbar layers. It is possible that
by applying the state-of-the-art fault tolerance approach in
the proposed weight-sharing architecture, the fault tolerance
capability can be further improved. This can lead to a high
fault tolerance memristor crossbar-based architecture, which
can be taken up as future work.

ACKNOWLEDGEMENT

This work is partly supported by the Indo-German project
funded by Department of Science and Technology (DST),
India, Federal Ministry of Education and Research (BMBF)
and German Academic Exchange Service (DAAD), Germany
(DST TPN No. 86669, DAAD No. 57682048) and by the

German Research Foundation (DFG) within the Project PLiM
(DR 287/35-1, DR 287/35-2).

REFERENCES

[1] K. Akarvardar and H. S. P. Wong, “Ultralow voltage crossbar nonvolatile
memory based on energy-reversible NEM switches,” IEEE Electron
Device Letters, vol. 30, no. 6, pp. 626–628, 2009.

[2] O. Kavehei, Memristive devices and circuits for computing, memory,
and neuromorphic applications. PhD thesis, The University of Adelaide,
Australia, 2012.

[3] S. M. Tam, B. Gupta, et al., “Learning on an analog VLSI neural network
chip,” in IEEE Intl. Conf. on Systems, Man, and Cybernetics, pp. 701–
703, November 1990.

[4] D. N. Yadav, K. Datta, and I. Sengupta, “Analyzing fault tolerance
behaviour in memristor-based crossbar for neuromorphic applications,”
in 2020 IEEE International Test Conference India, pp. 1–9, 2020.

[5] D. N. Yadav, P. L. Thangkhiew, et al., “Famcrona: Fault analysis
in memristive crossbars for neuromorphic applications,” Journal of
Electronic Testing, vol. 38, no. 2, pp. 145–163, 2022.

[6] L. O. Chua, “Memristor-the missing circuit element,” IEEE Transactions
on Circuit Theory, vol. 18, pp. 507–519, September 1971.

[7] D. B. Strukov, G. S. Snider, et al., “The missing memristor found,”
nature, vol. 453, no. 7191, pp. 80–83, 2008.

[8] A. Sengupta, A. Banerjee, et al., “Hybrid spintronic-cmos spiking neural
network with on-chip learning: Devices, circuits, and systems,” Physical
Review Applied, vol. 6, no. 6, p. 064003, 2016.

[9] W. Shan, M. Yang, et al., “14.1 a 510nw 0.41 v low-memory low-
computation keyword-spotting chip using serial fft-based mfcc and
binarized depthwise separable convolutional neural network in 28nm
cmos,” in 2020 IEEE International Solid-State Circuits Conference,
pp. 230–232, IEEE, 2020.

[10] F. M. Bayat, M. Prezioso, et al., “Implementation of multilayer percep-
tron network with highly uniform passive memristive crossbar circuits,”
Nature communications, vol. 9, no. 1, pp. 1–7, 2018.

[11] C. Li, D. Belkin, et al., “Efficient and self-adaptive in-situ learning in
multilayer memristor neural networks,” Nature communications, vol. 9,
no. 1, pp. 1–8, 2018.

[12] C.-Y. Chen, H.-C. Shih, et al., “Rram defect modeling and failure
analysis based on march test and a novel squeeze-search scheme,” IEEE
Transactions on Computers, vol. 64, no. 1, pp. 180–190, 2015.

[13] L. Xia, M. Liu, et al., “Fault-tolerant training with on-line fault detection
for rram-based neural computing systems,” in 54th ACM/EDAC/IEEE
Design Automation Conference, pp. 1–6, 2017.

[14] B. Zhang, N. Uysal, et al., “Handling stuck-at-fault defects using matrix
transformation for robust inference of dnns,” IEEE Trans. on Computer-
Aided Design of Integrated Circuits and Systems, vol. 39, no. 10,
pp. 2448–2460, 2020.

[15] Y. Xu, S. Jin, et al., “Aggressive fault tolerance for memristor crossbar-
based neural network accelerators by operational unit level weight
mapping,” IEEE Access, vol. 9, pp. 102828–102834, 2021.

[16] L. Xia, W. Huangfu, et al., “Stuck-at fault tolerance in rram computing
systems,” IEEE Journal on Emerging and Selected Topics in Circuits
and Systems, vol. 8, no. 1, pp. 102–115, 2018.

[17] W. Huangfu, L. Xia, et al., “Computation-oriented fault-tolerance
schemes for rram computing systems,” in 22nd Asia and South Pacific
Design Automation Conference, pp. 794–799, 2017.

[18] D. N. Yadav, P. L. Thangkhiew, et al., “Feed-forward learning algorithm
for resistive memories,” Journal of Systems Architecture, vol. 131,
p. 102730, 2022.

[19] Z. Jiang, Y. Wu, et al., “A compact model for metal–oxide resistive
random access memory with experiment verification,” IEEE Trans. on
Electron Devices, vol. 63, no. 5, pp. 1884–1892, 2016.

[20] Y. LeCun, “The MNIST database of handwritten digits,”
http://yann.lecun.com/exdb/mnist/, 1998.

[21] G. Cohen, S. Afshar, et al., “EMNIST: Extending mnist to handwrit-
ten letters,” in International Joint Conference on Neural Networks,
pp. 2921–2926, IEEE, 2017.

[22] H. Xiao, K. Rasul, et al., “Fashion-MNIST: a novel image
dataset for benchmarking machine learning algorithms,”
http://yann.lecun.com/exdb/mnist/, 2017.

[23] A. Krizhevsky, V. Nair, et al., “CIFAR-10,”
http://www.cs.toronto.edu/kriz/cifar.html, vol. 5, p. 4, 2009.


