
The Future is Hybrid: Next Generation Data
Structures for Formal Verification

(Invited Paper)

Rolf Drechsler∗†
∗ Group of Computer Architecture

University Bremen
Bremen, Germany

drechsler@uni-bremen.de

Christina Plump†
† Cyber-Physical Systems

DFKI Bremen
Bremen, Germany

christina.plump@dfki.de

Martha Schnieber∗
∗ Group of Computer Architecture

University Bremen
Bremen, Germany

schnieber@uni-bremen.de

Abstract—Trust in electronic devices is dependent on their safe
and reliable behavior. An integral part is the correct design of the
hardware. While classically simulation-based approaches have
been applied, only through formal proof techniques complete
correctness can be guaranteed. The core of these formal ap-
proaches, and responsible for time and space complexity, is the
choice of the underlying data structure to represent the functional
behavior. A significant class of data structures are graph-based
function representations, like BDDs, KFDDs or *BMDs. These
have shown excellent properties – provability in polynomial time
and space – for some function classes , e.g., adders. Experimental
studies have validated these properties, and formal proofs can
guarantee this behavior. Unfortunately, these properties often
cannot be generalized to varying function classes. One reason is
that graph-based representations are usually tailored for either
bit-level or word-level functions. However, designing hybrid data
structures that can represent both types in parallel might allow
formal proofs for even larger functional classes.

In this paper, we demonstrate how to design these hybrid
data structures, overcoming limitations of current formal ver-
ification approaches. We introduce a generalized concept on
decompositions and graph-based function representations based
on Kronecker matrices with an extended element space and
dimension. It is shown how these extensions allow the repre-
sentation of hybrid function classes, paving the way for more
trust in electronic devices.

Index Terms—Binary Decision Diagrams (BDD), Formal Ver-
ification, Hybrid Representation Forms

I. INTRODUCTION

In the past decades, electronic devices and digital circuits
have become ubiquitous in every day life. The complexity and
size of digital circuits have grown significantly, increasing the
need to systematically ensure correctness. If digital systems are
not verified and errors are not detected prior to distribution, the
consequences can be tremendous as multiple examples have
shown over the years, e.g., the Intel Pentium bug in 1994,
costing 475 million [1], Intel’s Sandy Bridge chipset in 2011,
costing 1 billion [2], or a security flaw in Apple’s M-Series
CPUs [3], which was recently discovered this year.

At the heart of every electronic device lies the Processing
Unit, controlling its behaviour and performing all compu-
tations. As more and more Processing Units with a rising

This work was supported by the German Research Foundation (DFG) within
the Reinhart Koselleck Project PolyVer (DR 287/36-1).

complexity are being developed nowadays, their verification
is crucial to avoid costly errors. Thus, verification techniques
have been developed in research and industry. Classically,
there are several different techniques for achieving verified
chips: they can be simulated, emulated, or formally verified.
A mere simulation or emulation of chips results in low
verification coverage, as only a few cases can be simulated
and compared to the specified behavior for the PU. Thus,
simulation and emulation can never completely ensure a
PU’s correctness. However, the Formal Verification (FV) of
a chip proves its 100% correctness. One of the central tasks
is equivalence checking, which is widely used and well-
accepted in the industry. Thus, several commercial tools exist
based on multi-engine solvers [4], but resources in terms
of runtime and memory requirements are unknown prior to
the actual verification process. This is not surprising since
the underlying theoretical problem has been well analyzed
and proven to be coNP-complete and, as such, generally
requires exponential time and space. Even worse, equivalence
checking for sequential circuits is EXPSPACE-complete [5]
and, therefore, even more complex. Thus, while developing
arbitrary PUs, it is impossible to predict whether or not a
formal verification will be possible within given resources due
to the unpredictability of resources. This trade-off between
time and coverage has been a longstanding challenge for
ensuring systems’ correctness.

Nonetheless, using the right data structure to represent the
circuit allows performing formal verification in reasonable
(i.e., polynomial) time. In formal verification, data structure
refers to the formal representation of a function. To formally
verify a circuit, data structures can be leveraged by comparing
the data structure instance representing the specified function
with the data structure instance synthesized from the circuit
itself (see Figure 1).

A significant class of data structures are graph-
based function representations, like Binary Decision
Diagrams (BDDs) [6], Kronecker Functional Decision
Diagram (KFDDs) [7], or Multiplicative Binary Moment
Diagrams (*BMDs) [8]. It has been shown that they have
excellent properties for certain function classes, e.g., BDDs
can verify adders in polynomial resources [9]–[11]. However,

Specification Circuit

Data Structure Data Structure
Equivalence?

Equivalence?

synthesisformalization

Fig. 1. Importance of Data Structures in Formal Verification

generalising these properties to varying function classes
proves challenging. For example, while showing polynomial
resources for adders, BDDs show exponential behaviour
for multipliers [12]. *BMDs, however, allow polynomial
upper bounds for specific types of multipliers [13]. These
differences in verification effort stem from the fact that, for
example, adders are bit-level functions, while multiplication
can be represented more efficiently as a word-level function.

However, with the rise of new types of processing units, e.g.,
GPUs or AI-accelerating PUs like Google’s TPU [14], com-
plex modules are becoming more crucial for these PUs, like
Multiply-Accumulate functions (MACs) which are essential for
many graphics or AI-related computations. Computations on
neural networks, for example, consist mainly of MACs. These
now require a data structure for verification, that can deal
with both: addition and multiplication, and hence, requires the
combination of bit-level and word-level representations.

In this paper, we showcase how the design of hybrid data
structures can overcome these barriers and allow data struc-
tures that are capable of representing both bit- and word-level
functions simultaneously. We generalise hybrid data structures
from the literature like Kronecker Multiplicative Binary Mo-
ment Diagrams (K*BMDs) [15] to show how extending a
matrix representation format can lead to hybrid data structures
that may allow polynomial verification in the future.

In the remainder of this paper, we will first remind the reader
of different classes of graph-based data structures in the back-
ground section. In Section III, we refer to Kronecker products
of non-singular matrices as a way of representing these graph-
based structures. We then use this concept to generalise these
graph-based data structures to work on hybrid functions in
Section IV and conclude our approach in Section V.

II. BACKGROUND

In this section, we shortly introduce classic bit-level and
word-level diagrams.

A. Bit-level diagrams

At the beginning of all considerations regarding graph-based
representations of functions, are BDDs, the basic data structure
introduced by Bryant [6] in the mid-80s.

Definition 1. BDDs are directed, acyclic graphs with a root
G = (V,E), with a set of nodes consisting of non-terminal
and terminal nodes V = T ∪ N . Non-terminal nodes v are
labeled with a variable label(v) ∈ {x1, x2, . . . , xn}, while

x1

x2 x2

x3x3

0 1

Fig. 2. A reduced BDD with natural order for the XOR-function

terminal nodes are labeled from the set of Boolean values
label(t) ∈ B.

BDDs use the Shannon decomposition to represent Boolean
functions f : Bn → B, which works as follows:

f(v) = xi · flow(v) + xi · fhigh(v)
= xi · fxi=0(v) + xi · fxi=1(v)

where label(v) = xi and fxi=b(v) represents the function
at the node v where xi is set to b ∈ B, i.e., the positive or
negative cofactor of the function.

BDDs are called ordered, if the variables {x1, . . . , xn}
are only used as labels in the same order, i.e., there ex-
ists a mapping π : {1, . . . , n} → {x1, . . . , xn} such
that π−1(label(low(v))) > π−1(label(v)) (equivalently for
high(v)) for all non-terminal nodes v with non-terminal
children low(v), high(v).

Two nodes which have identical children, i.e., nodes v1, v2
with low(v1) = low(v2) and high(v1) = high(v2) are called
isomorphic and can be merged. A node whose children are
identical, i.e., a node v with low(v) = high(v) corresponds to
an irrelevant variable (setting label(v) to either 0 or 1 results
in the same function), is thus called redundant and can be
removed [6].

A BDD that is ordered and has no isomorphic or redundant
nodes (called reduced) is a canonical representation of its
described Boolean function (given the respective order), which
is one of the reasons why BDDs are widely used as a data
representation structure for equivalence checking.

Figure 2 shows a reduced BDD for the XOR-function
f(x1, x2, x3) = x1 ⊕ x2 ⊕ x3 and the inner functions rep-
resented by the nodes in the BDD.

However, the Shannon decomposition is not the only single-
variable decomposition for Boolean functions. It has been
shown in [16] that besides the Shannon decomposition only
two more relevant single-variable decomposition types exist
for Boolean functions when considering complemented edges:
the positive and negative Davio decomposition. In [7], a

x1

x2

x3

1

Fig. 3. A reduced KFDD with natural order for the XOR-function

decision diagram type has been introduced that allows all three
decomposition types, KFDDs.

Definition 2. KFDDs are directed, acyclic graphs with a root
G = (V,E), with a set of nodes consisting of non-terminal
and terminal nodes V = T ∪ N . Non-terminal nodes v are
labeled with a variable label(v) ∈ {x1, x2, . . . , xn}, while
terminal nodes are labeled from the set of Boolean values
label(t) ∈ B. Additionally, they have a Decomposition Type
List (DTL), which maps variables to either the Shannon (S),
positive Davio (pD), or negative Davio (nD) decomposition.

The Davio decompositions work as follows (with identical
notation to the Shannon decomposition given above):

fpD(v) = flow(v) ⊕ xi · fhigh(v)
= fxi=0(v)⊕ xi · (fxi=0(v)⊕ fxi=1(v)) (1)

fnD(v) = flow(v) ⊕ xi · fhigh(v)
= fxi=1(v)⊕ xi · (fxi=0(v)⊕ fxi=1(v))

The notion of ordered is used equivalently to BDDs. Nodes
with identical children are also called isomorphic and can
be merged, and while the definition for redundance still
refers to equal cofactors, its graphic representation for nodes
that are decomposed with Davio differs from the Shannon
decomposition: An inner function with equal cofactors will
result in fhigh(v) = fxi=0(v)⊕fxi=1(v) = 0. Thus, for nodes
that are decomposed with Davio, it holds that they can be
removed when their high child is the 0-terminal.

Given an order and a decomposition type list, a reduced
and ordered KFDD is a canonical representation of the corre-
sponding Boolean function and therefore can be used as data
representation structure for equivalence checking as well.

Figure 3 shows a KFDD for the XOR-function with de-
composition type list (pD, nD, pD). One can easily see that
leveraging these different decomposition types can lead to size
reductions.

B. Word-level diagrams

Generally speaking, all arithmetic and logical functions can
be represented by Boolean functions. Nevertheless, for some
functions, it is more efficient to use a representation as a

x1

x0

y1

0 1 2 43 6 9

x0

y0 y0

y1y1

y0 y0 y0 y0

Fig. 4. A two-bit integer multiplication represented by an MTBDD

Pseudo-Boolean function (e.g., multiplication). For Pseudo-
Boolean functions, i.e., f : Bn → Z, one usually extends the
terminal set in the above listed definitions.

The most straight-forward way to do so, are Multi-Terminal
BDDs (MTBDDs) [17] or Algebraic Decision Diagrams
(ADD) [18]. They simply extend the above definition for
BDDs as follows:

Definition 3. An MTBDD or ADD is a binary decision
diagram whose terminal nodes can take on integer values,
i.e., G = (N ∪ T,E) with T ⊂ Z.

All above mentioned notions apply here as well.
Another method relates to applying a variant of the posi-

tive Davio decomposition: The moment decomposition. It is
defined as follows:

fM (v) = flow(v) + xi · fhigh(v)
= fxi=0(v) + xi · (fxi=1(v)− fxi=0(v)) (2)

Seeing ⊕ as Boolean difference, the relation of Equation (2)
and Equation (1) becomes obvious. Diagrams using this de-
composition are Functional Decision Diagrams (FDDs) [19]
or Binary Moment Diagrams (BMDs) [8].

Another option to extend BDDs to be capable of repre-
senting word-level functions, is the addition of edge val-
ues as has been done with Edge-Valued Binary Decision
Diagrams (EVBDDs) in [20]. Applying this idea to BMDs
simplifies these representations by sharing common subex-
pressions, yielding the concept of Multiplicative Binary Mo-
ment Diagrams. A simple example showing the advantage
of *BMDs over MTBDDs is multiplication. Figure 4 shows
the multiplication of two two-bit integers represented by an
MTBDD, while Figure 5 shows the multiplication represented
by a *BMD leveraging shared subexpressions and the linear
structure of the multiplication.

III. REPRESENTING DATA STRUCTURES THROUGH
KRONECKER PRODUCTS OF MATRICES

While the decomposition formulas presented in the last
section, are a good way to represent a singular decomposition
step, they are not as easily treatable, when having a look at
several (or all) decomposition steps for a given function.

x1

x0

y1

0 1 2

y0

2

Fig. 5. A two-bit integer multiplication represented by a *BMD

In [21], results from [22] are leveraged to derive a matrix
representation for function decomposition. It is shown that all
three decomposition types can be represented as(

flow(v)

fhigh(v)

)
= T ·

(
fxi=0

fxi=1

)
where T ∈ GL2(Z) =

{
A ∈ Z2×2|detA ̸= 0

}
.

We obtain the following matrices:

TS =

(
1 0
0 1

)
, TpD =

(
1 0
−1 1

)
, TnD =

(
0 1
1 −1

)
when interpreting ⊕ as Boolean difference again.

This representation allows a recursive definition using the
Kronecker product of matrices. As a quick reminder, the
Kronecker product of two matrices A, B, is defined as follows:(

a11 a12
a21 a22

)
⊗B =

(
a11B a12B
a21B a22B

)

=

a11b11 a12b11 a11b12 a12b12
a21b11 a22b11 a21b12 a22b12
a11b21 a12b21 a11b22 a12b22
a21b21 a22b21 a21b22 a22b22

Using this Kronecker product, they give a representation for

the terminals following every path as follows:
flow,low,...,low

flow,low,...,high

...
fhigh,high,...,low
fhigh,high,...,high

 = (T ⊗· · ·⊗T) ·

fx1=0,...,xn=0

fx1=0,...,xn=1

...
fx1=1,...,xn=0

fx1=1,...,xn=1

 (3)

In this formulation, the vectors have dimension 2n for a
function f : Bn → B, and the notation low, low, . . . , high
implies the choice of child throughout the decision tree.
As the Kronecker product of non-singular matrices is non-
singular as well, inverting Equation (3) is possible as well. The
Shannon decomposition matrix is the identity matrix, which
maps to the point-decomposition nature of the decomposition.
It additionally allows transferring this concept to MTBDDs
without any adaption.

To be able to use this concept on KFDDs, it is necessary
to allow T in Equation (3) to vary between TS , TpD, TnD. As

all matrices are from GL(Z), their Kronecker product is as
well and therefore, the transformation can be used as shown
above.

Example 1. Let’s have a look at the KFDD in Figure 3.
The variable ordering is natural and the decomposition type
list is given as (pD, nD, pD). We’ll first go through every
decomposition step on its own. First, we have cofactors of x1

with fx1=0 = 0 ⊕ x2 ⊕ x3, and fx1=1 = 1 ⊕ x2 ⊕ x3, so we
have:(

flow(vx1)

fhigh(vx1)

)
=

(
1 0
−1 1

)
·
(
0⊕ x2 ⊕ x3

1⊕ x2 ⊕ x3

)
=

(
x2 ⊕ x3

1

)
giving us the respective inner functions for the child-nodes.
To apply the negative Davio decomposition to nodes labeled
with x2, we first have to compute cofactors again:

flow(vx1),x2=0 = 0⊕ 0⊕ x3, flow(vx1),x2=1 = 0⊕ 1⊕ x3

for the left node, and

fhigh(vx1),x2=0 = 1, fhigh(vx1),x2=1 = 1

for the right node (which has already been reduced in Fig-
ure 3). Then, we have for the left node:(

flow(low(vx1
))

fhigh(low(vx1))

)
=

(
0 1
1 −1

)
·
(

x3

1⊕ x3

)
=

(
1⊕ x3

1

)
And for the right node:(

flow(high(vx1
))

fhigh(high(vx1))

)
=

(
0 1
1 −1

)
·
(
1
1

)
=

(
1
0

)
We can now see that the high child of the right node has

0 as cofactor, so it will be reduced (in the end) and does not
appear in the reduced KFDD.

Now, we proceed to the third level and thus the third
variable x3 which is again decomposed with using the positive
Davio decomposition. For the left-most path, we obtain the
following cofactors: flow(low(vx1)),x3=0 = 1 ⊕ 0 = 1 and
flow(low(vx1)),x3=1 = 1⊕ 1 = 0. This leads to:(

flow(low(low((vx1))))

fhigh(low(low((vx1))))

)
=

(
1 0
−1 1

)
·
(
1
0

)
=

(
1
1

)
This last equation shows that both children of the node labeled
with x3 end at the 1-terminal.

Using the adaption of Equation (3), however, we could
compute TpD ⊗ TnD ⊗ TpD, and multiply it with the vector-
representation of the XOR-function, i.e., (0, 1, 1, 0, 1, 0, 0, 1)T .
This results in (1, 1, 1, 0, 1, 0, 0, 0)T , which is exactly the
sequence of terminals in the respective KFDD before applying
reductions.

IV. GOING HYBRID - EXTENDING KRONECKER MATRICES

We have seen in the last sections that the matrix repre-
sentation is capable of capturing several graph-representation
forms that focus on a single class of functions, i.e., they are
either on the bit-level (BDDs, KFDDs), or on the word-level
(MTBDDs).

For specific circuit types, different hybrid graph representa-
tions have been introduced, one of the most generalised ones
being K*BMDs in [15]. K*BMDs leverage the advantages
of *BMDs by allowing multiplicative edges, but extend them
to (a) allow additive edge weights as well, and (b) allow all
three decomposition types. They thus allow the following three
decompositions:

< (a,m), fv >S = a+m((1− x)flow(v) + xfhigh(v))

< (a,m), fv >pD = a+m((flow(v) + xfhigh(v)))

< (a,m), fv >nD = a+m(flow(v) + (1− x)fhigh(v))

Adding a set of restrictions to the edge weights, the canon-
ical form can — once more — be ensured. Additionally, it
leads to the two important properties for the reduced K*BMDs
that make up for the additional required storage due to the
weights: First, there is only one terminal needed, i.e., the
0-terminal. Second, every variable has only one associated
node in the reduced K*BMD. Third, storing the low-edges
is not necessary, as they are normed to (0, 1), i.e., an additive
edge weight of a = 0 and an multiplicative edge weight of
m = 1. There also is a related form of K*BMDs that modifies
these edge restrictions and normalisation computations in
such a way that all weights are integer weights, making the
representation even more efficient.

The generalised concept of the decomposition formulas
shows that all introduced DDs can be subsumed by this graph-
representation. Figure 6 shows an example of the application
of K*BMDs to the following function:

if(x2 ⊕ x1 ⊕ x0) then Y · Z else 0

This function combines a subfunction that is most efficiently
represented on the bit-level (x2 ⊕ x1 ⊕ x0) (see the light
blue part) with a subfunction which is most efficiently rep-
resented on the world-level (Y · Z) (see the light gray part).
Please note, that — to improve readability — we have not
completely reduced this decision diagram. K*BMDs have a
decisive advantage over *BMDs: As they allow the Shannon-
decomposition, they are also capable of representing functions
that are solely on the bit-level. By restricting the multiplicative
weights to m = 1, only allowing a ∈ 0, 1, and restricting to
the Shannon decomposition, they are isomorphic to BDDs and
are therefore as well suited for bit-level functions as BDDs.
Word-level functions on the other hand can be represented at
least as well as with *BMDs, by restricting to positive Davio
decomposition. The greater expressive power, therefore, does
not come with a loss of representation efficiency for simpler
functions. In Figure 6, the bit-level representation is done for
the XOR part of the function, which is a classical bit-level
function. For the lower part, different values are used for the
edges, to model the word-level multiplication properties.

This showcases that hybrid data structures can be used to
efficiently represent functions on both levels.

To decompose a hybrid function into a K*BMD top-down, it
is necessary to compute the inverse affine-linear transformation
prior to the decomposition, i.e., given the ingoing function

x2

x1 x1

x0x0

y2

y1

y0

z2

z1

z2

0

B
it-
Le

ve
l

W
or
d-
Le

ve
l

Fig. 6. K*BMD as example of a hybrid data structure

fa,m
v at a node v, f(v) = (fa,m − a)/m must be computed

to apply the standard decompositions. Once the full K*BMD
is computed, normalisation and reduction steps have to be
performed to ensure canonicity. Please note, that it is possible
that a reiteration of reduction and normalisation is necessary,
i.e., a reduced K*BMD that undergoes a normalisation step
might become unreduced again (and vice versa). We reach a
canonical K*BMD exactly when there are no reduction steps
or normalisation steps possible.

Using the Kronecker matrix representation introduced in
the last section, K*BMDs can be decomposed with the same
technique by allowing all three decomposition type matrices
(TS , TpD, TnD), assuming neutral weights (i.e., a = 0,
m = 1) and allowing the function vector f(b) ∈ Z. Then,
it is possible to first compute the Kronecker product of the
respective decomposition matrices, apply it to the function
vector and obtain the terminals of the maximum K*BMD.
Then, the respective reduction and normalisation steps can be
applied to obtain a canonical representation.

We have therefore seen that the decomposition matrix tech-
nique which is applicable to many graph-based data structures,
such as BDDs, KFDDs and MTBDDs, can be generalised and
is thus also capable of capturing hybrid functions.

It is noteworthy that up until now, we have only used
2 × 2-matrices with entries from {1,−1, 0}. Starting from
these matrices, there are several extension possibilities which
might lead to new graph-based data representation structures.

One extension is allowing entries from different domains, e.g.,
Z, Q, R, or even C. In [23], it has been shown that using
complex entries enables Quantum Multiple-valued Decision
Diagrams (QMDDs), a representation form for quantum cir-
cuits. Introducing different domains for matrix entries works
comparably to multiplicative edge weights. Nevertheless, this
extension regularly requires careful constructions, for different
reasons: First, either one switches to transformation matrices
rather than decomposition matrices to allow the usage of
different multiplicative edge weights at the same decompo-
sition level (e.g., if several nodes are marked with the same
decision variable), or one requires a normalised form that
has only one node per decision variable. Second, to allow
canonical representations, one needs to define normalisation
factor matrices that extract common factors.

Another extension is dimensionality. First, this becomes
necessary as soon as more than a two-valued decision variable
is introduced. Second, we expect a dimensionality extension
to be helpful when representing finite state machines with
the help of decision diagrams. With the results of [24], this
approach seems promising for verifying sequential circuits.

V. CONCLUSION AND OUTLOOK

Handing over important tasks to electronic devices is only
possible, when the correctness of the underlying circuits can
be trusted. While simulation and emulation can give a solid
idea of the correctness of hardware, only formal verification
can ensure its functional correctness 100%.

With AI as rising technology, new functionalities have
become standard in modern processing units, like Multiply-
Accumulate functions when using neural networks. These new
functionalities pose a new challenge for formal verification.
While up until now, data structures that work either on the
bit-level (like BDDs for adders) or on the word-level (like
*BMDs for multipliers) have been used for formal verification
of said circuits, it becomes necessary to design hybrid data
structures that allow representing both bit- and word-level
functions efficiently.

We showcased the effectiveness of hybrid data structures
with the example of K*BMDs that are one example of a
data structure that can be used for both bit- and word-level
functions. Furthermore, we propose leveraging the Kronecker
product of matrix representations of existing data structures
like KFDDs, by extending their element space or dimension
to enable the design of new hybrid data structures that will
enable the efficient formal verification of complex functions.

REFERENCES

[1] V. Pratt, “Anatomy of the pentium bug,” in Theory and Practice of
Software Development (TAPSOFT), P. D. Mosses, M. Nielsen, and M. I.
Schwartzbach, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
1995, pp. 97–107.

[2] C. Arthur, “Intel warns of $1bn cost of chip fix,”
https://www.theguardian.com/technology/2011/jan/31/intel-warns-
cost-chip-fix, 2011.

[3] B. Chen, Y. Wang, P. Shome, C. W. Fletcher, D. Kohlbrenner,
R. Paccagnella, and D. Genkin, “GoFetch: Breaking constant-time cryp-
tographic implementations using data memory-dependent prefetchers,”
in USENIX Security, 2024.

[4] OneSpin, “Asic synthesis verification from rtl code to final netlist,”
https://onespin.com/products/360-ec-asic.

[5] G. Kovásznai, H. Veith, A. Fröhlich, and A. Biere, “On the complexity
of symbolic verification and decision problems in bit-vector logic,” in
Mathematical Foundations of Computer Science 2014, E. Csuhaj-Varjú,
M. Dietzfelbinger, and Z. Ésik, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2014, pp. 481–492.

[6] R. E. Bryant, “Graph-based algorithms for Boolean function manipula-
tion,” IEEE Transactions on Computers, vol. 35, no. 8, pp. 677–691,
1986.

[7] R. Drechsler and B. Becker, “Ordered Kronecker functional decision
diagrams-a data structure for representation and manipulation of Boolean
functions,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 17, no. 10, pp. 965–973, 1998.

[8] R. E. Bryant and Y. Chen, “Verification of arithmetic circuits with
binary moment diagrams,” in Design Automation Conference (DAC),
ser. DAC ’95, New York, NY, USA, 1995, p. 535–541. [Online].
Available: https://doi.org/10.1145/217474.217583

[9] R. Drechsler, “PolyAdd: Polynomial formal verification of adder
circuits,” in International Symposium on Design and Diagnostics of
Electronic Circuits & Systems (DDECS), 2021, pp. 99–104. [Online].
Available: https://doi.org/10.1109/DDECS52668.2021.9417052

[10] A. Mahzoon and R. Drechsler, “Polynomial formal verification of
prefix adders,” in Asian Test Symposium (ATS), 2021, pp. 85–90.
[Online]. Available: https://doi.org/10.1109/ATS52891.2021.00027

[11] ——, “Polynomial formal verification of arithmetic circuits,”
Foundations and Trends® in Electronic Design Automation,
vol. 14, no. 3, pp. 171–244, 2024. [Online]. Available:
http://dx.doi.org/10.1561/1000000059

[12] R. E. Bryant, “On the complexity of VLSI implementations and graph
representations of Boolean functions with application to integer multipli-
cation,” IEEE Transactions on Computers, vol. 40, no. 2, pp. 205–213,
1991.

[13] M. Keim, R. Drechsler, B. Becker, M. Martin, and P. Molitor,
“Polynomial formal verification of multipliers,” Formal Methods
Syst. Des., vol. 22, no. 1, pp. 39–58, 2003. [Online]. Available:
https://doi.org/10.1023/A:1021752130394

[14] Google, “Introduction to cloud TPU,”
https://cloud.google.com/tpu/docs/intro-to-tpu.

[15] R. Drechsler, B. Becker, and S. Ruppertz, “The K*BMD: A verification
data structure,” Design & Test of Computers, vol. 14, no. 2, pp. 51–59,
1997.

[16] B. Becker and R. Drechsler, “How many decomposition types do
we need? [decision diagrams],” in Proceedings of the 1995 European
Conference on Design and Test, ser. EDTC ’95. USA: IEEE Computer
Society, 1995, p. 438.

[17] E. M. Clarke, M. Fujita, and X. Zhao, “Multi-terminal binary decision
diagrams and hybrid decision diagrams,” 1996. [Online]. Available:
https://api.semanticscholar.org/CorpusID:13175959

[18] R. Bahar, E. Frohm, C. Gaona, G. Hachtel, E. Macii,
A. Pardo, and F. Somenzi, Formal Methods in System Design,
vol. 10, no. 2/3, p. 171–206, 1997. [Online]. Available:
http://dx.doi.org/10.1023/A:1008699807402

[19] U. Kebschull, E. Schubert, and W. Rosenstiel, “Multilevel logic synthesis
based on functional decision diagrams,” in Proceedings The European
Conference on Design Automation. IEEE Computer Society, 1992, pp.
43–44.

[20] Y.-T. Lai and S. Sastry, “Edge-valued binary decision for multi-level
hierarchical verification,” in [1992] Proceedings 29th ACM/IEEE Design
Automation Conference, 1992, pp. 608–613.

[21] E. Clarke, M. Fujita, and X. Zhao, “Hybrid decision diagrams. overcom-
ing the limitations of MTBDDs and BMDs,” in Proceedings of IEEE
International Conference on Computer Aided Design (ICCAD), 1995,
pp. 159–163.

[22] D. E. Muller, “Application of Boolean algebra to switching circuit design
and to error detection,” Transactions of the I.R.E. Professional Group
on Electronic Computers, vol. EC-3, no. 3, pp. 6–12, 1954.

[23] P. Niemann, R. Wille, D. M. Miller, M. A. Thornton, and R. Drechsler,
“QMDDs: Efficient quantum function representation and manipulation,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 35, no. 1, pp. 86–99, 2016.

[24] C. Dominik and R. Drechsler, “Polynomial formal verification of sequen-
tial circuits,” in Design, Automation & Test in Europe (DATE), 2024.

