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Abstract—Resistive RAM (RRAM) is a non-volatile memory
technology with an abrupt switching property that enables it
to perform basic logic operations. RRAM also possesses analog
computational features by means of the so-called Multiply and
Accumulate (MAC) operation that can be performed in all memory
columns simultaneously. The MAC operation is particularly inter-
esting for neuromorphic computing as it enables highly parallelized
calculation of complex matrix-vector multiplications on standard
RRAM crossbars.

So far, several forms of universal logic are executed within RRAM
devices, which have been the basis for a variety of logic-in-memory
synthesis approaches. Recent research has addressed the mapping
of logical functions to RRAM crossbars using the MAC operation,
which allows for the facilitation of RRAM-based neuromorphic
architectures with a basic logical core. Recently, a few formal
verification methods have been introduced, which are tailored for
synthesis approaches using certain RRAM logic primitives, such as
in-memory styles based on the three-input majority operation and
NOR gates. This paper analyzes these methods and, for the first
time, proposes a verification method customized for MAC-based in-
memory computing. A case study has been conducted to compare
the proposed method with the existing methods, which reveals the
superior performance of our method.

Index Terms—In-Memory Computing, Multiply-and-
accumulate(MAC), Formal verification

I. INTRODUCTION

RRAM or the so-called memristors have been a subject of
interest in recent research due to their advantageous properties
enabling new computing paradigms and architectures. Logic-in-
memory computing has been explored by various methods [1]–
[3]. that allow to evaluate arbitrary logic functions on standard
RRAM crossbars by means of executing sequences of resistive
logic primitives. These methods allow to combine memory and
computational core and therefore alleviate the increasing issues in
the current computer architectures which are caused by dissimilar
progress rate of storage and processing units. However, current
logic-in-memory approaches are still inadequate for practical use

due to the resulting latency and complex control requirements
when compared to conventional CMOS-based logic.

In addition to logic-in-memory architectures, use of RRAM
is widely studied within neuromorphic architectures. Resistive
memories allow to efficiently perform complex matrix-vector
multiplications which are frequently required in neural networks
and can be manipulated to mimic the behavior of natural synaptic
architectures [4], [5].

Contrary to in-memory computing architectures, which use
logic switching property of RRAM, neuromorphic structures
exploit the analog computational features of RRAM crossbars.
Fast evaluation of matrix-vector multiplications is conducted by
setting conductivities of RRAM devices to desired values and
applying appropriate voltages to memory wordlines. Results of
this operation are then measured as currents flowing within each
crossbar column, which is known as Multiply and Accumulate
(MAC) operation [6].

Utilization of MAC or memristive logic primitives for computa-
tion on RRAM crossbars both require verification. Ensuring that a
computation executes the desired functionality is essential. While
manual inspection or simulation-based techniques are commonly
used for validation, they are primarily effective for small-scale
designs with limited inputs and outputs. As in-memory designs
grow larger and more complex, these methods become less
applicable. In such cases, equivalence checking becomes crucial,
providing the advanced verification needed to confirm the correct-
ness of crossbar mappings. This approach involves comparing
the function description of the traditional logic network with
the memristive operations on the crossbars to determine if they
achieve the same functionality. Recently, a few research works
have introduced formal verification for memristive in-memory
computing based on execution of logic primitives in RRAM
devices. However, formal verification of MAC-based computing
on RRAM crossbar has not been addressed yet. This paper, for
the first time, to the best of our knowledge, presents an approach979-8-3315-2916-1/24/$31.00 ©2024 IEEE



for the MAC-based computational style due to its significance for
both in-memory and neuromorphic architectures.

The rest of this paper is structured as follows. Section II ex-
plains the preliminary concepts required to understand the paper.
Section III describes the existing works on formal verification
of memristive logic-in-memory computing. The proposed method
is explained in Section IV, followed by the experimental results
and comparisons in Section V. Finally, Section VI concludes the
paper.

II. BACKGROUND

A. RRAM Crossbars

RRAM devices are among the most promising candidates for
realizing in-memory computing architectures to overcome the
longstanding problem of the memory wall. RRAM is a two-
terminal memristive device whose internal resistance can be
switched between a Low Resistance State (LRS or logic 1) and
a High Resistance State (HRS or logic 0). RRAM devices are
typically created in a crossbar structure, with each device formed
at the junction of horizontal (bitline) and vertical (wordline)
nanowires. Computation within RRAM devices has been per-
formed using different fundamental logic operations.

Memristor-Aided LoGIC (MAGIC) is a logic design proposed
to execute the NOR function within memristive crossbars [3].
MAGIC uses previously initialized input devices and realizes
NOR within an output device initially storing a known logic value
[7], [8]. Though all gates can be implemented using the MAGIC
design approach, only NOR and NOT gates can be mapped to
the RRAM crossbars. To map larger Boolean functions to the
crossbar, it is necessary to express them as NOR gates and NOT
gates first [7], [8].

In [9], a Resistive Majority Operation (MAJ) enabled by
RRAM devices was introduced. According to MAJ, the resistive
state of an RRAM device is switched from its current value
r to r̄ = pq̄ + pr + q̄r, where p and q̄ represent the values
applied to its top and bottom terminals, respectively. In [10], a
Programmable Logic-in-Memory (PLiM) architecture based on
the MAJ operation design is introduced, where RRAM devices are
used for both storage and computation, enabling the integration
of logic operations directly into the memory array.

Another work proposes a multi-objective algorithm for op-
timizing RRAM-based logic using Majority Inverter Graphs
(MIGs) [11]. This approach significantly reduces the number of
computational steps and improves efficiency in terms of both the
required number of RRAM cells and computational steps in MAJ-
based realizations.

In addition to performing the mentioned logic gates, RRAM
can also execute analog computations, enabling it to carry out
the MAC operation. MAC operations are widely employed in
numerous applications, including neural networks and neuromor-
phic computing, to speed up complex matrix multiplications.
RRAM crossbars offer an excellent platform for implementing
MAC operations thanks to their unique capabilities. Considering
that the resistive values of the RRAM devices in the crossbars
are initialized with a−1

j,k , m MAC operations can be conducted
simultaneously within m crossbars columns by applying the
voltages x1, . . . , xn to n rows.

The outputs are the currents in the crossbar columns, which are
the sum of the currents through each RRAM device, as shown
below:

ij =

n∑
k=1

aj,k · xk (1)

This can be expressed as I = Ax, where I = (i1, . . . , im)T ,
x = (x1, . . . , xn)

T , and the matrix A is defined as:

A =


a1,1 . . . a1,n

...
. . .

...

am,1 . . . am,n


Thus, within a single cycle, m MAC operations are computed

in parallel, each involving n multiplications. Some recent work
have also explored MAC-based computing for performing verifi-
cation within RRAM crossbars [12].

B. Boolean Satisfiability (SAT)

The Boolean Satisfiability Problem (SAT) is considered as one
of the classic NP-complete problems in computer science, for
which there is no known algorithm for solving it in polynomial
time [13]. The task here is to find out a possible set of variable
assignments for a given Boolean formula such that the formula
is evaluated to TRUE. If there exists such an assignment then the
formula is said to be satisfiable (sat); otherwise, it is unsatisfiable
(unsat) [14]. For solving any combinatorial problem, it must be
first encoded into Conjunctive Normal Form (CNF). A clause is
defined as disjunction of literals. A literal can be a variable either
in complemented or uncomplemented form. A formula is said to
be in CNF if it can be represented as conjunction of clauses, i.e.
conjunction of disjunction of literals.

Example 1: Let fn = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3) ∧ (x3).
A function fn is represented in terms of CNF in Example 1.

It has three clauses and three variables. The first clause has three
literals, the second has two literals and the third clause has a
single literal. One possible satisfying assignment for this function
is x1 = 1, x2 = 1, and x3 = 0.

III. VERIFICATION FOR IN-MEMORY COMPUTING

In this section, we discuss various in-memory verification
techniques that exist in the literature for Majority and MAGIC-
based logic design styles. The main idea behind in-memory
verification is to verify the correctness of the operations list
generated through automated crossbar mapping programs. For
executing any function on the crossbar we require a sequence
of steps to be performed; therefore, it is of vital importance to
verify the correctness of the same.

A. Verification for Majority-based mapping techniques

There exist many works in the literature that use Majority-based
in-memory logic design [11], [15], [16]. Although these works
particularly focus on delay and area optimization, they do not
focus on verification. Some recent works, however, have targeted
verification of Majority-based logic design [17]–[19]. In [17] the
authors verified the generated crossbar operations using formal
methods. The verification is performed in two steps, firstly the
proof of purity is carried out followed by proof of equivalence.
The authors have used CVC4, which is an open-source theorem



prover for Satifiability Modulo Theories (SMT), due to its perfor-
mance benefits. In [18], the authors propose an automated method
for verifying the list of crossbar operations generated by their
mapping tool. They have used the Z3 solver for verification. In
another recent work [19], the authors have performed verification
of adder circuits generated using automated mapping tool using
Binary Decision Diagram (BDD). They have also carried out
performance comparison with the Z3 solver.
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Mapping
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File

Tansformation
Parser
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Mini SAT
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Fig. 1: Majority-based verification methodology

Fig. 1 shows the overall verification methodology for Majority-
based mapping. From the input specification, the mapping tool
first generates a sequence of operations for crossbar mapping. The
goal is to verify the correctness of this sequence of operations.
To perform this, a transformation parser converts the list of
operations to an intermediate representation. Various intermediate
representations have been proposed in the literature, viz. ReRAM
Sequence Graph (ReSG) [18], ReRAM Matrix (ReMAT) [19],
etc. Then the input specification and the intermediate form are
fed to some specific proof engine like BDD, or SAT. Finally, the
outcome determines whether the two specifications are equivalent
or not.

B. Verification for Magic-based mapping techniques

The MAGIC design style is based on the execution of NOR
gate operations on the RRAM crossbar. There exist many works
in the literature that explore MAGIC -based designs for mapping
boolean functions to RRAM crossbars [8], [20]–[22]. The main
idea here is to first represent a function in terms of a netlist
of NOR gates, and then use a mapping algorithm to translate
this into MAGIC gate operations on the crossbar. Although some
methods discuss generating a list of crossbar mapping operations,
they are often very specific and lack a general representation of
the operations list. As a result, many of these methods rely on
manual inspection for verification.

A recent work [23] has explored the formal verification of a
particular MAGIC-based mapping method, viz. Simpler [22], for
the first time. This method essentially verifies the NOR operations
generated by Simpler against the original input specification in
Verilog. For both the input specifications and the NOR netlists,
first Boolean Satisfiability formulas are generated, and then the
Z3 SAT solver is used to verify the equivalence between the
two. This method claims to identify certain bugs in mapping
that were not considered in the Simpler method. Even though
this method provides a verification methodology for MAGIC-
based designs for the first time, it does not verify the functions
at the mapping-operation level. Hence further research is needed

to have a complete synthesis, mapping and verification strategy
for MAGIC-based designs [24].

IV. VERIFICATION FOR MAC-BASED IN-MEMORY
COMPUTING

In this paper, we proposed MAC Verification, which is the
first verification Methodology for the MAC-based mapping in
RRAM crossbars to the best of our knowledge. In general,
our method performs equivalence checking between the golden
reference Verilog file and the OR Inverter Graph (OIG) netlist
generated from the synthesis process. This section briefly presents
the process of mapping an arbitrary Boolean function onto the
crossbar. It then addresses the verification methodology in detail.

A. MAC-based Function Mapping in RRAM Crossbars

Fig. 2 shows the overall scheme of the MAC-based mapping
process on the crossbars. The process begins with the ABC
tool [25], which maps an arbitrary Boolean function to an OIG
using a designed library. The OIG is then levelized, and then,
a C++ framework is used to map it onto the crossbars. As
described in Section II-A, the preferred methodology for utilizing
the MAC operation is the Sum of Products (SoP). Thus, the OIG is
implemented as a fundamental function representation to leverage
these advantages.

Boolean Function
(.verilog)

Designed
Library

ABC Tool
OIG 
netlist

MAC-based

Crossbar Mapping

Fig. 2: MAC-Based Crossbar Mapping Overview

An OIG is a directed acyclic graph composed of three distinct
types of nodes. The first type, which has no outgoing edges,
represents a terminal node that acts as the primary output. The
second type, lacking incoming edges, functions as the primary
input. The third type consists of nodes with n incoming edges
(where n is 10 or fewer) and a single outgoing edge, representing
a Boolean OR operation.

The OR nodes are connected by two types of edges: a regular
edge that represents the actual functionality and a complementary
edge that represents its negation. More formally, an OIG is defined
as follows:

Definition 1: An OR Inverter Graph (OIG) over the primary
input variables X = {x1, x2, . . . , xn} and the primary output
variables Y = {y1, y2, . . . , ym} is a directed acyclic graph H =
(V,E) with the following characteristics:

• A finite set of nodes V = VX ∪ VH ∪ VY , where VX

and VY are terminal nodes that specify the primary input
nodes, and primary output nodes, respectively, and VH =
{vh1, vh2, . . . , vhk} are non-terminal nodes representing a
logical OR operation.

• An edge e ∈ E between a source node u ∈ V and a target
node v ∈ V can be either a regular edge or a complement
edge. Specifically, an edge e is represented as (u, (v × p)),
where u /∈ VY and v /∈ VX . Here, p denotes the type of
edge: p = 1 for a regular edge that signifies the actual
functionality, and p = 0 for a complementing edge that
indicates the negation of this functionality.



Listing 1: Half adder’s OIG netlist
module h a l f a d d e r ( a , b , sum , c a r r y ) ;

i n p u t a , b ;
o u t p u t sum , c a r r y ;
w i r e new n5 , new n6 , new n7 ;

OR200 g0 ( . A( b ) , . B( a ) , .Y( new n5 ) ) ;
OR211 g1 ( . A( b ) , . B( a ) , .Y( new n6 ) ) ;
OR200 g2 ( . A( new n6 ) , . B( new n5 ) , .Y( new n7 ) ) ;
NOT g3 ( . A( new n7 ) , .Y( sum ) ) ;
NOT g4 ( . A( new n5 ) , .Y( c a r r y ) ) ;

endmodule

The depth of OIG is determined by the total number of levels in
the graph. in this paper, the OIG graph is optimized to minimize
depth. Whenever possible, it prioritizes OR gates with larger fan-
in at fewer levels, rather than using OR gates with smaller fan-in
but more levels.

As a starting point, we use a Boolean function expressed in
Verilog as an input file. A custom-designed library is then applied
to accurately map each Boolean function onto an OIG graph
structure, utilizing the ABC tool. In the next step, a levelized
intermediate list for MAC-based mapping is generated. In the
next step, a levelized intermediate list for MAC-based mapping
is generated, which can be directly mapped onto the crossbars.

ba

level 1
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SumSumCarryCarry

^

^

^

^

Fig. 3: The OIG graph of Half adder

As an example, Fig. 3 illustrates the OIG graph of a Half-
Adder. It consists of three levels with three two-input OR gates
and two NOT gates. Listing 1 shows the corresponding netlist
for this graph. In the netlist, inputs, outputs, and wires are first
introduced, followed by the description of the digital gates. The
format for an OR gate is as follows: the first number after ”OR”
indicates the number of fan-ins (inputs) to the gate. This is
followed by a sequence of binary digits equal to the number
of fan-ins, which specifies how the inputs are connected. A ”1”
indicates a direct input connection to the gate, while a ”0” denotes
the negated input. Afterward, the name of the gate in the circuit is
provided, followed by the input variables in parentheses, and the
last variable within the parentheses represents the gate’s output.
For instance, the first OR gate is a two-input gate with negated
inputs, b̄ and ā, and its output is new n5 . For NOT gates, the
netlist simply specifies the input and its corresponding output.

B. Overall Verification Methodology

As the OIG can be directly mapped to the MAC-netlist to be
executed on the crossbars, in this paper, we focus on verifying the
OIG graph against our original Verilog benchmark. This choice
is crucial because the accuracy of the OIG graph directly impacts

the reliability of the entire process, ensuring that the subsequent
implementation steps are based on a solid foundation.

The overall verification methodology is depicted in Fig. 4,
which involves two representations of the same function: the
Verilog-based Boolean function, serving as the golden model, and
the parsed OIG graph representation, considered as the Design
Under Test (DUT). Initially, the OIG graph, which is a gate-level
representation is transformed into a behavioral-level representa-
tion. To verify functional equivalence between the golden model
and the DUT, an equivalence checker leveraging a SAT solver [26]
is used.

Boolean refrence 
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OIG Netlist

Equivalence/ 
Non-Equivalence
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Equivalence Checker
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File
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Fig. 4: Proposed verification methodology

The core concept of SAT-based equivalence checking involves
formulating the design equivalence problem as a Boolean satis-
fiability instance, which is then solved by an SAT solver. If the
solver finds a solution (SAT), it indicates a discrepancy between
the designs; otherwise, they are equivalent (UnSAT). From a
circuit perspective, the process begins by constructing a miter
circuit between the golden model and the DUT. This miter circuit
is then converted into a Boolean format suitable for the SAT
solver. The entire circuit is transformed into a Boolean formula
by traversing from inputs to outputs, progressively combining the
Boolean function presented by the gates. To make it compatible
with SAT solvers, the formula is converted into CNF using the
Tseitin transformation, which produces an equisatisfiable CNF
that remains linear in size relative to the original formula.

Fig. 5 shows the general structure of the miter circuit. The
corresponding inputs from the golden model and the DUT are
connected, ensuring that both circuits receive identical input
values. An XOR gate is added for each pair of corresponding
outputs to detect differences. The outputs of all XOR gates are
then combined using an OR gate. If the OR gate outputs a ’1’, it
indicates at least one difference exists.

To create this structure, an intermediate bench file is generated
for both the golden model and the DUT. A Python framework is
then used to produce a combined CNF, including the miter circuit,
which is fed into the SAT solver to determine whether they are
equivalent or not.

V. EVALUATION OF IN-MEMORY VERIFICATION EFFORT

In order to validate our proposed method, a framework has
been developed in Python 3.8. All experiments are applied to the
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Fig. 5: The layout of a miter circuit for SAT-based verification

ISCAS-85, and IWLS 2005 benchmark sets [27], [28], and are
carried out on a machine having an Intel(R) core(TM) i7 2.10
GHz processor and 8GB of main memory.
For all experiments, a timeout was assumed if the solver could not
succeed in solving an instance within 2 hours. Table I presents the
obtained results. The first three columns provide the benchmark
names along with the number of Primary Inputs (PI) and Primary
Outputs (PO). The next two columns show the performance of our
method in terms of the number of variables and clauses. The final
two columns report the runtime, in CPU seconds, required by the
Z3 solver to verify the equivalence between two functions. The
runtimes are given separately for cases where the functions are
equivalent and non-equivalent. For the considered benchmarks,
we first generate the OIGs and this is checked against the original
verilog representation of the function. The OIGs can be then
efficiently mapped to MAC operations.

To verify the proposed method’s accuracy for non-equivalent
cases, we modified the DUT by randomly inserting or deleting
logic operations in the crossbar file while keeping the golden
model unchanged. The SAT solver confirmed that the two func-
tions were not functionally equivalent.

As expected, the results demonstrate that the runtime for find-
ing equivalent cases is significantly higher than for non-equivalent
cases. This is because, in equivalent cases, the SAT solver must
check all possible states to verify functional equivalence, whereas,
in non-equivalent cases, the solver exits the process as soon as
the first difference is detected.

Based on the results shown in Table I, the SAT solver efficiently
determines solutions (i.e., SAT or UnSAT) for most benchmarks,
including large ones like c3540 and c7552. However, c6288,
which represents a 16-bit array multiplier circuit, requires sig-
nificantly longer run times. This is due to its substantially larger
number of clauses compared to other benchmarks. Specifically,
c6288 incorporates 240 full-adder and half-adder functions, re-
sulting in complex and extensive XOR networks. The complexity
of these networks leads the Z3 solver to explore a much larger
search space, which contributes to the notably increased solution
times for c6288.

Overall, our proposed formal verification approach effectively
identifies both equivalence and non-equivalence between the
original Boolean function and its corresponding OIG graph netlist.
The results also confirm that our method is scalable and effective.

VI. CONCLUSION

As verification is an important aspect in any design process in
this paper we propose a verification strategy for MAC-based in-
memory computing for the first time to the best of our knowledge.
We exploit the OIG graph to map functions into RRAM crossbar
efficiently. Firstly, the mapping tool generates the required OIG
netlist. The OIG netlist is then converted into behavioral level
representation which is verified against the golden response using
the state-of-the-art SAT solver. Experiments were conducted to
evaluate the performance of our verification strategy. Experiments
reveal that the performance of our MAC-based verification is
better in terms of runtime compared to other verification methods
based on Majority and Magic design styles.
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