
BEESM, a Block-based Educational
Programming Tool for End Users

Mazyar Seraj
Institute of Computer Science, University of Bremen
Cyber-Physical Systems, German Research Center for Artificial
Intelligence
28359 Bremen, Germany
seraj@uni-bremen.de, mazyar.seraj@dfki.de

Serge Autexier
Cyber-Physical Systems, German Research Center for Artificial
Intelligence
28359 Bremen, Germany
serge.autexier@dfki.de

Jan Janssen
Cyber-Physical Systems, German Research Center for Artificial
Intelligence
28359 Bremen, Germany
jan.janssen@dfki.de

ACM acknowledges that this contribution was authored or co-authored by an
employee, contractor or affiliate of a national government. As such, the Government
retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow
others to do so, for Government purposes only.

ACM.
NordiCHI’18,, September 29-October 3, 2018, Oslo, Norway
ACM 978-1-4503-6437-9/18/09.
https://doi.org/10.1145/3240167.3240239

Abstract
Visual programming as a technique to support users to
learn programming is an active field of research. Bringing
together the hot topic of Smart Environments and the visual
programming paradigm we present the Block-based End-
user programming tool for SMart Environments (BEESM).
The dedicated application domain engages users to get
interested in programming. BEESM allows to learn the
general purpose of programming and rapidly prototype
and customize applications in the context of smart envi-
ronments. This approach enables users to program smart
environments, microcontrollers and mobile robots one at
a time and in combination with each other. It provides a
block-based rapid programming tool as a hassle-free envi-
ronment for educators and engineers to make it compatible
with different smart devices and environments.

Author Keywords
Visual programming; end-user programming; smart environ-
ment; Google Blockly; user interface design.

ACM Classification Keywords
H.5.2 [User Interface]: Graphical user interfaces; D.2.6 [Pro-
gramming Environments]: Graphical environment.

Introduction
Inexperienced users and novice programmers, the targeted
users of BEESM, typically have difficulties to understand

https://doi.org/10.1145/3240167.3240239


the requirements of designing, executing and debugging
software programs [8, 10]. Learning and recalling code
syntax is hard because it requires a high cognitive load for
the targeted users. Furthermore, assembling and manip-
ulating code structures is error prone for different reasons
[2, 10]. Compared to the complexity of source code pro-
gramming, visual programming has a great potential to
facilitate programming for these users [8, 12]. In particu-
lar, block-based programming emerged as a form of visual
programming that reduces the cognitive load by encapsu-
lating the code into smaller code chunks and relying on
recognition of blocks instead of remembering the code syn-
tax. Furthermore, the blocks assist users to assemble the
code without basic errors as manipulation of code struc-
ture [2, 10]. For example, a string block can be plugged
into a length block, but not into a math arithmetic block.
Nevertheless, inexperienced users who are interested in
having an easy way to customize their programming ideas
into real-world environments face two issues while work-
ing with block-based educational programming tools. First,
the tools are not applied to real-world objects and environ-
ments. Second, although the tool can in principle be ap-
plied to the real and tangible objects, actually adapting it to,
for instance, mobile robots, microcontrollers or smart envi-
ronments requires to work and become familiar with many
other tools [6, 7, 10, 11].

This paper contributes the design and development of
BEESM, a Block-based End-user programming tool for
SMart Environments with having both aforementioned is-
sues in mind. This approach enables users to program
smart environments, microcontrollers and mobile robots
one at a time and in combination with each other. Having
a tool like BEESM helps users to have a short time span
between the development of ideas and their implementation
in real environments. This should leverage the interest of

users for programming and help them by adequate compu-
tational support.

State of the Art
This section introduces end-user programming techniques
and design principles and gives a brief overview of visual
programming in commercial and educational tools.

End-user programming (EUP) research aims at enabling
inexperienced users and novice programmers to learn and
make programs [7, 10, 13]. Regarding to the EUP systems,
six learning barriers which are design, selection, coordina-
tion, use, understanding and information were addressed
in [10]. The definition of these six barriers are based on
the concept of programming interface which includes pro-
gramming language constructs such as loops, conditionals,
operators, variables, functions, objects and libraries. With
this regard, EUP tools should be easy to learn, easy to use
and helpful to minimize the distractions of users’ goal and
the learning barriers [9, 10]. Block-based commercial and
educational programming tools for users resulted from ap-
plying a set of techniques and design principles for EUP
from [8, 9, 10, 12, 13].

Behavioral programming is a technique in which all inde-
pendent behaviors are wrapped into individual events which
are executed at run-time [5]. However, its expressivity is
limited as it does not, for instance, allow to program the
change of a status of a smart object depending on the sta-
tus of another object. Hence we disregarded this technique
in our approach. Trigger-action programming is another
type of end-user programming used to enable inexperi-
enced users to program a smart home objects [6]. A promi-
nent example is the trigger-action programming method
included in the “if this then that” (IFTTT) service. IFTTT
executes an action when an event occurs. Another form
of end-user programing is programming by demonstration



(PBD). Using PBD in the context of a smart home, inex-
perienced users are able to demonstrate a situation and
a desired behavior for smart devices using a set of exam-
ples [4]. These approaches allow users to apply changes
to smart objects, but they do not help to learn general pur-
poses of programming.

Visual programming
Visual or graphical programming was used to enable inex-
perienced users to understand and create programs with
little training [3]. Visual programming environments are in-
tended to reduce the complexity of programming for inexpe-
rienced users and novice programmers. Implemented in vi-
sual programming environments or editors such as Scratch
and mblock, they can be used to create interactive applica-
tions (using Scratch) and to program robots/Arduino (using
mblock) [1, 7]. Droplet is another block-based educational
tool helping to work with both blocks and text code and al-
lows users to become familiar with code syntax [1]. Visual
programming, in particular Google Blockly, has been used
in educational and commercial tools, such as UNC++Duino
[11] and CustomPrograms [7].

Overview of BEESM
BEESM is designed as a rapid block-based programming
tool for educational purposes to help inexperienced users
and novice programmers to program. It provides visual pro-
gramming in a web-based environment to program mobile
robots, microcontrollers and smart environments. In this
tool, in order to simplify programming for the users, BEESM
supports to encapsulate behaviors of smart objects in dif-
ferent functions and to present them as basic programming
primitives. BEESM can thus be used to program:

• Smart Environments: BEESM can be adapted and
applied to smart environments if they support the web
socket communication protocol and Remote Proce-
dure Call (RPC) technology.

• Mobile Robots: BEESM can be applied to any mobile
robot with autonomous navigation running on Robot
Operating System (ROS).

• Microcontrollers: BEESM can be applied to any mi-
crocontroller running on Arduino Software by generat-
ing Arduino code for them.

BEESM is primarily designed for users to enable them to
make programs. It includes different programming lan-
guage features like variables, conditionals, loops, prede-
fined functions and operators based on the visual editor
Google Blockly. BEESM provides visual programming for
the Hypertext Preprocessor (PHP) programming language
and Arduino code. It allows to program smart environments
and mobile robots using PHP. Furthermore, for Arduino pro-
gramming, it takes advantage of blocklyDuino which is used
in [11].

Primitives
In previous work, capabilities of smart devices were orga-
nized into primitives [6, 7, 11]. These primitives are defined
as a set of custom blocks implemented in BEESM to allow
users to work with them and see the reactions of smart ob-
jects in real-time. In this way, apart from predefined blocks,
a set of custom blocks are provided for all primitives with in-
puts, outputs and types of connections. In a smart environ-
ment, the smart objects have a set of primitive behaviors,
such as changeable status or being creatable by users.
Robot’s behavior and capabilities were implemented into
primitives. Each primitive can be called through a function
such as navigating the robot to a location. These primitives
generate PHP code syntax and enable users to work with
them in order to see the reaction of robots and smart de-
vices. Furthermore, primitive Arduino’s behavior is wrapped
in a set of blocks which generate Arduino code. Users can
then integrate these primitives into general purpose of pro-
gramming languages like variables, conditionals, loops,



functions, etc.

Graphical interface
BEESM is divided into three parts which are Smart Envi-
ronment, Mobile Robot and Microcontroller. Based on the
interaction techniques which are addressed in [9, 10, 13],
four panels were designed in all three parts. These panels
enable users having a full vision of the Blocks, code syntax,
output of the code, and a 2D view of the smart environment
(see Figure 1). The four panels are:

(a) Blockly UI includes a simple block-based workspace
and a toolbox that contains predefined and customized
blocks. The workspace is used to reduce the syntax
errors and provide the programming language con-
structs.

(b) A Code panel demonstrates the generated code by
blocks to users and enables them to edit the code
syntax. To this end, a simple version of programming
languages used to help users identify mistakes.

(c) An Output panel shows program’s output and errors
for debugging purposes.

(d) 2D graphical view of the smart environment and
robot’s position provides users a picture of how the
objects status are changed based on their program.

Compilation and execution
A useful feature of BEESM is the ability to run the code ei-
ther from Blockly workspace or from the Code panel. Users
can change the code by clicking on the Modify Code but-
ton and run it from the Code panel instead of the Blockly
workspace. However, the panel will be changed back to the
code generated by blocks, if the Generate Code button is
clicked again (see Figure 1). BEESM allows users to toggle
between blocks and code syntax to familiarize with it. This
enables users to program smart environments, microcon-
trollers, and mobile robots using both blocks or directly with
source code.

Figure 1: BEESM Graphical UI.

BEESM Architecture
As shown in Figure 2, BEESM is divided into the three lay-
ers which are Frontend, Middleware and Backend :

• The Frontend includes BEESM user interface. Users
can generate either PHP code or Arduino code using
a set of blocks or directly using code syntax. In the
Smart Environment and Mobile Robot parts, each
block generates PHP code based on their inputs and
outputs. Arduino code is generated in the Microcon-
troller part in order to upload the code directly to-
wards microcontrollers.

• The Middleware consists of three files containing a
set of wrapper functions for the primitive behavior of
smart objects, mobile robots and microcontrollers.
These wrapper functions help to execute correspond-
ing functions which are understandable for smart en-
vironments using OpenHab2 (a unified open-source
home automation tool), Robot Operating System
(ROS) and microcontrollers using CherryPy (an open-
source web-framework).

• The Backend consists of OpenHab2 and CherryPy
which includes exchangeable functions for the re-



Figure 2: BEESM Architecture.

spective environment. Currently, OpenHab2 contains
the functions for smart environments, and CherryPy
contains the functions for mobile robots based on
ROS. For microcontrollers, CherryPy is used as a
helper for Google Blockly to receive the generated
code via an HTTP request and upload it on microcon-
trollers.

Overall BEESM is a customizable tool to assist inexperi-
enced users and novice programmers to learn and build
PHP code in order to program smart environments and mo-
bile robots. Furthermore, Arduino code is used to program
microcontrollers. The code for program is generally done
by generating it for blocks which are at the top level of the
program. When the user runs the program, the generated
code is sent to our Backend through Middleware. In this
approach, smart environments can be controlled through
mobile robots and microcontrollers. They can communicate
with each other either directly or via Middleware. In an ed-
ucational tool, this helps educators to give different acces-
sibility to users based on their needs and prior knowledge.
BEESM backend consists of exchangeable functions for
corresponding environments. Educators and engineers can
change these functions to adapt and customize BEESM to
other smart environments and mobile robots. In the Micro-
controller part, the generated code is directly uploaded into

the board using our backend as a helper for Google Blockly.
BEESM architecture and its primitives provide a hassle-
free environment for educators and engineers. They are
able to use BEESM for educational purposes for different
smart environments and devices. BEESM can help users
via using graphical blocks to generate code syntax instead
of memorizing it. This approach reduces syntax errors and
eases the manipulation of code structures.

Future Work
This approach was tested on a smart ambient assisted liv-
ing lab flat, a TurtleBot3 as well as on Arduino Uno and
WEMOS D1 boards. A necessary feature that needs to
be added to BEESM is to enable users to control mobile
robots using different microcontrollers such as WEMOS
D1 boards. One of the most important future contribu-
tions is the evaluation of ease of use and expressiveness
of BEESM amid the users with and without prior program-
ming knowledge. Furthermore, BEESM does not yet pro-
vide real-time hints for debugging purposes to help users,
but developing such an implementation is future work.

Conclusion
We presented the design and development of BEESM, a
Block-based End-user programming application for SMart
Environments. BEESM allows inexperienced users and
novice programmers to rapidly prototype and experiment
with new applications for smart devices and environments.

In conclusion, BEESM is designed to support real-world
programs and educational tasks. BESSM is designed to
be a block-based rapid programming tool which provides
a hassle-free environment for educators and engineers to
make it compatible with different smart environments and
devices for educational purposes.



Acknowledgement
This work was funded by the German Federal Ministry for
Education and Research (BMBF), grant number 01FP1613.

REFERENCES
1. David Bau. 2015. Droplet, a blocks-based editor for text

code. Journal of Computing Sciences in Colleges 30, 6
(2015), 138–144.

2. David Bau, Jeff Gray, Caitlin Kelleher, Josh Sheldon,
and Franklyn Turbak. 2017. Learnable programming:
blocks and beyond. Commun. ACM 60, 6 (2017),
72–80.

3. Brian Broll, Akos Lédeczi, Peter Volgyesi, Janos Sallai,
Miklos Maroti, Alexia Carrillo, Stephanie L
Weeden-Wright, Chris Vanags, Joshua D Swartz, and
Melvin Lu. 2017. A visual programming environment for
learning distributed programming. In Proc. ACM
SIGCSE Technical Symposium on Computer Science
Education. ACM, 81–86.

4. Anind K Dey, Raffay Hamid, Chris Beckmann, Ian Li,
and Daniel Hsu. 2004. a CAPpella: programming by
demonstration of context-aware applications. In
Proceedings of the SIGCHI conference on Human
factors in computing systems. ACM, 33–40.

5. David Harel, Assaf Marron, and Gera Weiss. 2012.
Behavioral programming. Commun. ACM 55, 7 (2012),
90–100.

6. Justin Huang and Maya Cakmak. 2015. Supporting
mental model accuracy in trigger-action programming.
In Proc. ACM International Joint Conference on
Pervasive and Ubiquitous Computing. ACM, 215–225.

7. Justin Huang, Tessa Lau, and Maya Cakmak. 2016.
Design and evaluation of a rapid programming system

for service robots. In The Eleventh ACM/IEEE
International Conf. on HRI. IEEE Press, 295–302.

8. Andrew J Ko, Robin Abraham, Laura Beckwith, Alan
Blackwell, Margaret Burnett, Martin Erwig, Chris
Scaffidi, Joseph Lawrance, Henry Lieberman, Brad
Myers, and others. 2011. The state of the art in
end-user software engineering. ACM Computing
Surveys (CSUR) 43, 3 (2011), 21.

9. Andrew J Ko and Brad A Myers. 2006. Barista: An
implementation framework for enabling new tools,
interaction techniques and views in code editors. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. ACM, 387–396.

10. Andrew J Ko, Brad A Myers, and Htet Htet Aung. 2004.
Six learning barriers in end-user programming systems.
In Visual Languages and Human Centric Computing,
2004 IEEE Symposium on. IEEE, 199–206.

11. Cecilia Martinez, Marcos J Gomez, and Luciana
Benotti. 2015. A comparison of preschool and
elementary school children learning computer science
concepts through a multilanguage robot programming
platform. In Proc. ACM Conference on Innovation and
Technology in CS Education. ACM, 159–164.

12. Brad A Myers, Andrew J Ko, Sun Young Park, Jeffrey
Stylos, Thomas D LaToza, and Jack Beaton. 2008.
More natural end-user software engineering. In
Proceedings of the 4th international workshop on
End-user software engineering. ACM, 30–34.

13. Alexander Repenning and Andri Ioannidou. 2006. What
makes end-user development tick? 13 design
guidelines. In End user development. Springer, 51–85.


	Introduction
	State of the Art
	Visual programming

	Overview of BEESM
	Primitives
	Graphical interface
	Compilation and execution


	BEESM Architecture
	Future Work
	Conclusion
	Acknowledgement 
	REFERENCES 

