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Abstract—The growing demand for high-performance, real-
time computation in data-intensive applications is increasingly
constrained by the Von Neumann bottleneck. In-memory com-
puting (IMC), particularly through memristor-based technologies
such as Memristor-Aided loGIC (MAGIC), offers a promising
solution by enabling logic operations directly within memory
arrays. While prior research has demonstrated basic Boolean
logic with memristors, arithmetic operations such as multiplica-
tion remain latency-bound due to sequential logic execution and
inefficient crossbar utilization. This work introduces a scalable
and efficient MAGIC-based Wallace Tree multiplier architecture
tailored for in-memory computing. By integrating an optimized
3:2 compressor and leveraging a state-of-the-art synthesis-to-
micro-operation mapping tool, our approach significantly reduces
latency and improves parallelism within memristor crossbars.
Experimental evaluations across 4- to 64-bit unsigned Wallace
Tree multipliers show consistent improvements in speed and
scalability. The proposed architecture presents a practical and
fully scalable design for next-generation in-memory arithmetic
systems.

Index Terms—In-Memory Computing, Wallace Tree Multi-
plier, Memristor, MAGIC Design Style, Low-Latency Arithmetic

[. INTRODUCTION

Traditional von Neumann architectures face inherent data
movement bottlenecks due to separate memory and processing
units. In-memory computing (IMC) using memristor-based
crossbars addresses this challenge by enabling computation
directly within the memory, thereby offering high density
and energy-efficient operations. The Memristor-Aided loGIC
(MAGIC) design style [1] supports Boolean operations such as
NOR and NOT using only memristors, providing a compact
and efficient computation model. Although significant progress
has been made in optimizing basic logic operations through
MAGIC [?], [2]-[5], implementing efficient arithmetic units
remains a major challenge. Multipliers, in particular, are com-
putationally demanding and are fundamental components in
microprocessors, Digital Signal Processors (DSPs), embedded
systems [0], and Convolutional Neural Networks (CNNs) [7].
However, existing memristor-based implementations still suf-
fer from high latency, area overhead, and limited scalability
in memristor-based implementations.

To address these challenges, we propose a novel MAGIC-
based Wallace Tree multiplier optimized for in-memory im-
plementation. The Wallace Tree is selected over the traditional
array and Dadda designs due to its lower computational depth
and higher parallelism [8], [9], making it ideal for memristive
crossbars. Our work introduces the first MAGIC-compatible
implementation of a CMOS 3:2 compressor [10], which is em-
ployed in the partial product reduction stage. This innovation

reduces both latency and memristor count. These compres-
sors are integrated using an automatic mapping method [ 1]
that converts Boolean logic into crossbar-compatible micro-
operations. Unlike the As Late As Possible (ALAP) scheduling
in [11], which delays operations to optimize resource usage
and power, we adopt an As Soon As Possible (ASAP) strategy
to enable faster execution, increased parallelism, and reduced
latency. We evaluate the proposed architecture on unsigned
multipliers with operand widths ranging from 4 to 64 bits.
The results show a significant reduction in latency compared
to existing designs [6], [12]-[16], establishing the practicality
and scalability of our method. The main contributions of this
work are:

o We design a low-latency MAGIC-based in-memory un-
signed Wallace Tree multiplier that incorporates opti-
mized 3:2 compressors to improve structural regularity
and minimize mapping latency.

« We extend a state-of-the-art automatic mapping method-
ology to incorporate high-performance unsigned Wallace
Tree multipliers into MAGIC-based crossbar arrays at
the micro-operation level, achieving enhanced parallelism
and lower latency.

« We evaluate the proposed architecture by implementing
unsigned Wallace Tree multipliers with input widths rang-
ing from 4 to 64 bits, generating detailed micro-operation
schedules for comprehensive performance analysis.

The rest of this paper is organized as follows. Section II pro-
vides the necessary preliminary and related work. In Section
III, we describe the synthesis and mapping process; Section
IV then details the proposed MAGIC-based Wallace Tree
multiplier. In Section V, the experimental results are discussed,
followed by concluding remarks in Section VI

II. PRELIMINARY AND RELATED WORKS
A. MAGIC Design Style

Memristor-Aided loGIC (MAGIC) design style, proposed
in [17], uses memristor resistance states to represent logic
states, enabling efficient Boolean computation within crossbar
arrays. MAGIC supports all basic logic gates; however, only
NOR and NOT can be directly mapped to crossbar rows or
columns. Since NOR is a universal gate, any logic function
can be constructed using a sequence of NOR gates. A MAGIC
operation involves two steps: (1) initialization, where the
output memristor is preset based on the gate type (Rsf
(0) for non-inverting gates and R,, (1) for inverting ones);
and (2) evaluation, where an input voltage (V;,,) triggers the
output to switch based on input logic states. Fig. 1(a) shows
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Fig. 1. MAGIC implementation of 2-inputs NOR gate (a) row-wise mapping
(b) column-wise mapping.

a 2-input NOR gate using one row and three columns. The
symmetric crossbar structure also enables column-wise NOR
operations, as shown in Fig. 1(b). Complex functions can be
composed of NOR and NOT gates and mapped using existing

techniques [4], [5], [18], [19].
B. Wallace Tree Multiplier

The Wallace Tree multiplier is a widely used architecture
in high-performance processors and memory units due to its
efficiency in accelerating multiplication operations [8], [9].
It performs the multiplication of two n-bit operands through
three principal stages:

1) Partial Product Generation (PPG): Each bit of the
multiplier is logically ANDed with each bit of the mul-
tiplicand, resulting in n? partial products.

2) Partial Product Reduction (PPR): The partial products
are systematically reduced using a parallel tree structure
composed of half adders and full adders, grouped by
their respective weight positions. The resulting carry and
sum outputs are then propagated to the next level of the
reduction tree.

3) Carry Propagation Addition (CPA): The final two rows
of partial products are summed using a fast carry-
propagate adder, which constitutes the critical path and
determines the overall latency of the multiplier.

By leveraging parallelism in the reduction stage, the Wallace
Tree architecture minimizes the depth of the critical path and
achieves significant improvements in speed, making it well-
suited for integration in high-speed arithmetic units.

C. Compressor 3:2

A compressor in digital circuits is a logic component
designed to perform multi-input addition while minimizing the
number of output signals [20]. This is achieved by generating
a compact sum along with associated input and output carry
bits. Specifically, an m:n compressor (where n < m) takes m
equally weighted partial product bits as inputs and generates
their sum as an n-bit output, along with carry. Consider two
unsigned 7 bit inputs, A = 37" 4,27 and B = 3.1} B;2".

The product P between A and B is calculated as:

n—1n—1

P=AB=py 122" etpy = Y > AB2 (1)
i=0 j=0

X1 X2 X3

L

3:2 Compressor

b

Sum  Carry

Fig. 2. The schematic of 3:2 compressor.

The computation of P involves summing partial products
A;B;, each weighted by 277, To improve structural regularity,
reduce latency, and lower energy consumption during the
partial product reduction phase, compressors are employed
instead of traditional full adders [21], [22]. The 3:2 compressor
is one of the most widely used compressors in digital circuit
design. As shown in Fig. 2, it takes three input bits and outputs
a sum and a carry bit, making it a key component in efficient
multiplier architectures.

D. Related Works

Several studies have explored memristor-based multipliers
using logic primitives such as MAGIC, Majority, and IM-
PLY [6], [12], [16], [23], [24]. However, many of these designs
are not well-suited for integration with memory arrays due
to their lack of support for automatic generation of micro-
operations, which limits both scalability and programmabil-
ity. For example, IMPLY-based logic often requires strictly
ordered operations and additional control circuits, making it
difficult to implement efficiently in memory arrays designed
for fast, parallel processing. While some studies evaluate
gate counts and computation cycles on memristive crossbars,
they typically rely on manual or semi-automated mapping
techniques and do not fully address the challenges of micro-
operation scheduling. For instance, [16] uses the SIMPLER
tool [5] for gate-level synthesis but does not provide analy-
sis at the crossbar level. Similarly, [6] proposes an energy-
efficient in-memory Wallace Tree multiplier using majority
logic in SOT-MRAM, yet it lacks a method for extracting
micro-operations. Other works [12], [23], [24] use IMPLY
logic, but face limitations in scalability and practical system
integration. For example, [!3] maps IMPLY logic to crossbars
but requires significant architectural modifications, such as
additional control switches and a work resistor (R).

III. THE SYNTHESIS AND MAPPING PROCESS

This section outlines the complete framework for the syn-
thesis and mapping of Wallace Tree multipliers in MAGIC-
based memristor crossbar. As illustrated in Fig. 3, the process
involves two main stages: synthesis and mapping. In the
synthesis stage, Boolean functions for unsigned Wallace Tree
multipliers (ranging from 4 to 64 bits), described in Verilog,
are first formally verified using the RevSCA-2.0 framework
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Fig. 3. The overall synthesis and crossbar-level mapping process in MAGIC-
based logic design.

[25], a word-level verification method based on symbolic
computer algebra. The verified designs are then synthesized
into NOT and NOR gate netlists using the ABC synthesis
tool [26]. The gate library used includes MAGIC-compatible
primitives: NOT (Y = —A), NOR (Y = —A.—-B), buffer
(Y = A), constant zero (Y = CONSTO0), and constant one
(Y = CONST1). Although ABC [26] optimizes the gate
counts, it does not consider in-memory logic constraints such
as placement or timing [5]. In the mapping stage, an ASAP
scheduling strategy is applied as detailed in Algorithm 1, to
assign logic gates to their earliest possible execution level
based on input dependencies. In contrast to the previously
adopted ALAP scheduling approach in [ 1], this method pro-
motes faster execution, higher parallelism, and reduced overall
latency.

A case study of a 4-bit Wallace Tree multiplier with a ripple-
carry adder in the final stage shows that ASAP scheduling
achieves a total latency of 271 cycles, consisting of 153 read
cycles, 88 write cycles, and 30 evaluation cycles. In contrast,
ALAP scheduling results in a higher total latency of 296
cycles, with the same 153 read cycles but increased write
and evaluation cycles—101 and 42 respectively. The increased
latency under ALAP scheduling is due to higher logic levels
and reduced concurrency, which delay operations and increase
write and evaluation cycles, resulting in overall performance
degradation. The resulting scheduled netlist is then mapped to
the crossbar using the mapping tool proposed in [1 1], allowing
a row-wise parallel evaluation of the gates within each level.
The corresponding micro-operations are then generated and
saved in a .m file. For further details on the synthesis and
mapping processes, we refer the reader to [11].

Algorithm 1 ASAP Scheduling Algorithm

1: Input: Logic netlist G(V, E) with gates V' and dependen-
cies
Input: Primary inputs P/ C V
Output: Level assignment L(g) for each gate g € V
for g € V do
L(g) + undefined
end for
for all g € PI do
L(g) < 1
end for
Perform topological sort on G to obtain ordered list S =
[917927 s 7971]
11: for all g € S do
12z if g € PI then

B A A S

—_

13: continue

14:  else

15: Let Pred(g) ={p eV | (p = g) € E}
16: L(g) + 1+ max{L(p) | p € Pred(g)}
17: end if

18: end for

19: return Level assignment L(g) for all g € V

IV. THE PROPOSED MAGIC-BASED WALLACE TREE
MULTIPLIER

A. Architectural Design

Fig. 4 illustrates the structure of a 4x4 Wallace Tree
multiplier, where intermediate computations C;; and S;; are
labeled for various % and j. Multiplying two 4-bit numbers
generates four shifted partial products, which are then summed
to yield an 8-bit result. At each reduction stage, full adders
(or half adders) compress three (or two) bits into a sum and
carry, which propagate to the next level. Partial products P;;
are generated using AND gates and grouped into sums S;;
and carries C;; as shown in Fig. 4. The critical path of a
full adder (defined as the longest delay through logic gates)
determines the overall delay. Let txor, tanp, and tor denote
the delays of XOR, AND, and OR gates, respectively. The
Sum output delay is ts = 2txor, and the Carry delay is
tc = tanp + tor. Since XOR gates are typically slower,
the overall delay is approximated as tcitca ~ 2txor. A 3:2
compressor, functionally equivalent to a full adder, can offer
reduced delay and lower power consumption.

Two optimized CMOS-based 3:2 compressor architectures are
proposed in [10], as illustrated in Fig. 5. The first design
(Fig. 5(a)) utilizes two XOR gates and a 2 : 1 multiplexer,
resulting in a critical path delay equivalent to two XOR
gates. The second design (Fig. 5(b)) employs XOR-XNOR
modules along with two multiplexers, achieving a shorter
critical path comprising one XOR-XNOR module and a single
multiplexer through improved internal signal routing. Both
compressor architectures have been synthesized and success-
fully mapped to memristive crossbar arrays using the MAGIC-
based methodology presented in [!1]. As shown in Table I,
the second design outperforms both the conventional full
adder and the first compressor design by achieving lower
total latency (L) (calculated as the sum of read, write and
evaluation latencies) and requiring fewer memristors (#Mem),
while maintaining the same crossbar size (CBS). Accordingly,
we adopt the second design for partial product reduction
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Fig. 4. The schematic of 4x4 Wallace tree multiplier.
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stage in the Wallace Tree multiplier. The implemented logic
functions are as follows [10]:

Sum = (z1 ® x2) - T3 + (71 ® x2) - T3 (2)
Carry = (x1 ® x2) - w3 + (21 D z2) - 71 (3)

As illustrated in Fig. 4, the partial product reduction phase
(Stage 2, consisting of two sub-stages I and II) employs 3:2
compressors (red rectangles) to perform parallel additions,
where sums and carries propagate to the next sub-stage. In
sub-stage II, the non-grouped partial products (P;;) are added
to the sums and carries from sub-stage I. Each sub-stage
executes four parallel additions, and the final stage (Stage 3)
completes the operation using a 4-bit adder (indicated by the
green rectangle).

TABLE I
MAGIC-BASED SYNTHESIS AND MAPPING RESULTS FOR THE FULL
ADDER AND 3:2 COMPRESSOR DESIGNS FROM [ 10]

Design Ly #Mem CBS
Conventional Full Adder 37 48 4x21
3:2 Compressor (Design 1) 36 42 4x21
3:2 Compressor (Design 2) 34 39 4x21

L : total latency, #Mem : number of memristors, CBS : crossbar size.

B. Micro-operation Generation of MAGIC-based 3:2 Com-
pressor

Figure 6 presents the MAGIC-based implementation of the
3:2 compressor used in the partial product reduction stage
of the proposed Wallace tree multiplier. It includes a NOR
gate tree as shown in Fig. 6(a) generated using the proposed
ASAP scheduling algorithm. The corresponding crossbar-level
realization is illustrated in Fig. 6(b), which highlights the
mapping of logic operations across the crossbar. The asso-
ciated micro-operations are provided in Listing 1, where the
netlist is organized into seven topologically sorted levels, with
each line commented using the # symbol for clarity. The
compressor operates without any intermediate buffer, taking
three inputs (x1, 2, and x3) and generating two outputs:
carry, located at crossbar position 0 x 20, and sum, at 1 x 14
in the crossbar. The implementation uses a 4 x 21 crossbar
and completes in 34 cycles, comprising 13 read cycles, 14
write cycles, and 7 evaluation cycles. The 4 x 4 Wallace
tree multiplier integrates eight such 3:2 compressors organized
across two hierarchical reduction stages, as depicted in Fig. 4.
This demonstrates the scalability of the proposed methodology,
enabling systematic and efficient implementation of larger bit-
width multipliers by composing modular compressor blocks
within a crossbar framework. The micro-operations for the
3:2 compressor, implemented in MAGIC logic from a NOR2-
based netlist, are described below:

1) AtLevel O, three primary inputs are inverted, and a NOR2
gate operates on two of them. To implement this, NOT
gates are placed in rows O to 2, each processing one of
the inputs /X;, /X9, and /X3, using columns O and 1
for input and column 2 for output. A NOR?2 gate is placed
in row 3 to compute the NOR of /X; and /X5, sharing
the same columns for input and output. All gates share
columns to enable parallel execution and are evaluated
simultaneously once mapped.

2) At Level 1, two NOR2 gates take the primary inputs
along with the memristor values from the previous level.
Specifically, the first gate reads the primary input /X5
and the memristor value in row 0, column 2 (—X), while
the second gate reads the primary input /X; and the
memristor value at row 1, column 2 (—X5). Once the
input mapping is complete, each gate is evaluated.

3) Level 2 contains a single NOR2 gate that reads inputs
from Ox5 and 1x5. The output memristor is initialized to
True, and the gate evaluation follows.

4) Level 3 consists of single NOT and NOR2 gates. The
first gate takes its input from 0x8, and the second gate
takes its inputs from 0x8 and primary input / X3. After
initialization, the output memristors are initialized to
True, and the gates are evaluated accordingly.

5) Level 4 consists of two NOR?2 gates. The first gate takes
inputs from 2x2 and 0x10, then copies them to location
0x12 and 0x13. The second gate reads inputs from 3x2
and 1x11, and writes them to 1x12 and 1x13. Output
memristors are initialized to True, and the gates are
evaluated accordingly.

6) At Level 5, a single NOR gate is used. It reads its input
from 0x14 and 1x11, then writes to 0x15 and 0x16. Once
initialized, the gate proceeds to evaluation.

7) Level 6 consists of a single NOT gate, which reads its
input from O0x17 and then writes to Ox18 and 0xI9.



The output memristors are initialized to True, and gate
evaluation follows.

1 |name CMP_3_2

2 | input X1, X2, X3

3 |output Sum, Carry

4

5 |Outputs are placed at:

6 |Carry -> 0x20

7 | Sum -> 1x14

8

9 |Buffers are placed at:

10

11 | #Level O

12 |0 False 0 /X1 1 /X1 2 True

13 |1 False 0 /X2 1 /X2 2 True

14 |2 False 0 /X3 1 /X3 2 True

15 |3 False 0 /X1 1 /X2 2 True

16 |#Level 1

17 |0 False 3 /X2 4 0x2 5 True

18 |1 False 3 /X1 4 1x2 5 True

19 | #Level 2
20 |0 False 6 0x5 7 1x5 8 True
21 | #Level 3
22 |0 False 9 0x8 10 0x8 11 True
23 |1 False 9 /X3 10 0x8 11 True
24 | #Level 4
25 |0 False 12 2x2 13 0x10 14 True
26 |1 False 12 3x2 13 1x11 14 True
27 | #Level 5
28 |0 False 15 0x14 16 1x11 17 True
29 | #Level 6
30 |0 False 18 0x17 19 0x17 20 True

Listing 1. Compressor 3:2 Mico-Operation File

V. EXPERIMENTAL EVALUATION

This section presents the experimental results. The circuits
are designed in Verilog, synthesized using the ABC tool [26],
and subsequently mapped using the proposed tool from [11].
All experiments are conducted on a system with an Intel i7-
4750U CPU (1.70 GHz) and 40 GB of RAM.

A. Benchmarking Synthesis

Table II summarizes the synthesis and mapping results for
seven unsigned Wallace Tree multiplier architectures across
multiple bit-widths (4 to 64 bits). The evaluated designs
include: Ripple Carry (RC), Carry Look-Ahead (CL), Lander-
Fischer (LF), Kogge-Stone (KS), Brent-Kung (BK), Carry-Skip
(CK), and Serial Prefix Adder (SE). Each design is analyzed
in terms of read latency (L), write latency (Lyy), evaluation
latency (Lg), and total latency (Lt = Lpr + Lw + Lg),
along with the number of memristors (#Mem) and crossbar
size (CBS). Let GG denote the total number of gates in the
NOT/NOR netlist and L the number of logic levels. In this
context, reading latency refers to sequentially accessing all
G gates in the netlist, which requires G cycles in total.
Writing latency corresponds to initializing the outputs of all
gates and writing all gate inputs in parallel across levels,
leading to 2L cycles. Finally, evaluation latency denotes the
actual computation of logic values across the crossbar, which
proceeds level by level and therefore requires L cycles. All
these latencies are expressed in clock cycles.

For 4- to 64-bit designs, WT-LF and WT-CK achieve
low latency (228-40,128 cycles), reduced memristor usage
(350-34,048), and compact crossbars (9 x 70-3341 x 68),
demonstrating high efficiency and scalability. In contrast, WT-
RC exhibits the highest latency (271-46,720 cycles), the
highest memristor count (404-39,168), and the largest crossbar

TABLE 11
SYNTHESIS AND MAPPING RESULTS FOR PROPOSED MAGIC-BASED
UNSIGNED WALLACE TREE MULTIPLIER

Mapping Results

Designs  Bit Size Lp Lw Lg Lt #Mem CBS

WT-RC 153 88 30 271 404 8x88

WT-CL 138 70 24 232 365 10x70
WT-LF 133 70 25 228 350 9x70

WT-KS 4 153 72 26 251 400 9x72

WT-BK 137 70 25 232 360 9x70

WT-CK 133 70 25 228 350 9x70

WT-SE 153 78 28 259 400 9x78

WT-RC 612 176 60 848 612 39x87
WT-CL 552 140 48 740 552 39x87
WT-LF 532 140 50 722 532 30x65
WT-KS 8 612 144 52 808 612 30x65
WT-BK 548 140 50 738 548 30x65
WT-CK 532 140 50 722 532 30x65
WT-SE 612 156 56 824 612 30x65
WT-RC 2448 704 240 3392 2448 190x87
WT-CL 2208 560 192 2960 2208 190x87
WT-LF 2128 560 200 2888 2128 148x68
WT-KS 16 2448 576 208 3232 2448 148%68
WT-BK 2192 560 200 2952 2192 148x68
WT-CK 2128 560 200 2888 2128 148%68
WT-SE 2448 624 224 3296 2448 148%x68
WT-RC 9792 2112 720 12624 9792 902x87
WT-CL 8832 1680 576 11088 8832 902x87
WT-LF 8512 1680 600 10792 8512 704x68
WT-KS 32 9792 1728 624 12144 9792 704x68
WT-BK 8768 1680 600 11048 8768 704x68
WT-CK 8512 1680 600 10792 8512 704x68
WT-SE 9792 1872 672 12336 9792 704x68
WT-RC 39168 5632 1920 46720 39168  4284x87
WT-CL 35328 4480 1536 41344 35328  4284x87
WT-LF 34048 4480 1600 40128 34048  3341x68
WT-KS 64 39168 4608 1664 45440 39168  3341x68
WT-BK 35072 4480 1600 41152 35072  3341x68
WT-CK 34048 4480 1600 40128 34048  3341x68
WT-SE 39168 4992 1792 45952 39168  3341x68

L :read Tatency, Ly : write Tatency, Lg : evaluation latency, Lp : total

latency, #Mem : number of memristors, CBS : crossbar size.

(8x88-4284 x 87), indicating lower efficiency. With increasing
bit-width, WT-LF and WT-CK offer better scalability and
lower latency. However, this latency reduction increases the
crossbar size in one dimension due to row-wise operations,
but using both row- and column-wise logic could improve
area efficiency. To better show these results, Fig. 7 compares
total latency across all bit-widths and multiplier architectures.
The x-axis represents multiplier types, and the y-axis shows
latency in cycles, including a zoomed-in view for 4-bit and 8-
bit designs. LF and CK multipliers achieve lower latency due
to their parallel prefix structures, while RC and CL scale less
efficiently under MAGIC-based synthesis due to sequential
carry propagation. These results highlight the superior scal-
ability of prefix-based Wallace Tree multipliers.

B. Comparison with Existing Multipliers

Table III compares the proposed 4 x 4 and generalized
n X n MAGIC-based Wallace Tree multipliers, using the LF
adder at the CPA stage, with existing in-memory multiplier
architectures. The analysis focuses on latency (cycles) and
resource usage (cell count), with improvements reported as
ratios relative to existing designs. Our architecture supports
complete parallelism at each logic level, with the crossbar
dimensions determined by the circuit’s most complex level.
Specifically, the number of rows corresponds to the maximum



_______________________
--------------

% R R

@ ()

Fig. 6. MAGIC-based 3:2 compressor for the reduction stage of Wallace tree multiplier. (a) NOR gate tree (b) Crossbar mapping.

TABLE III
COMPARISON OF PROPOSED DESIGN WITH EXISTING MULTIPLIERS
Multiplier Logic Design 4 x4 Improvement vs nxn
#Cycle #Cells #Cycle #Cells #Cycle #Cells
Shift and Add [12] IMPLY Gate 195 200 1.98 0.88 15n2 —11ln — 1 1502 —9n — 1
Semi-Serial Adder Based [13] IMPLY Gate 102 38 1.04 0.16 (logy n)(10n + 2) + 4n + 2 2n% +n+2
MultPIM [14] Minority + NOT 139 49 1.41 0.21 n(logy n) + 14n + 3 14n —7
2 5
Wallace Tree [6] Majority Gate 3 128 032 056 6 (]0g2 (T)) + 4 (logy (2 (n — logy 1)) + (n — 2) (logy n. — 2) + 10 8n? + 48log, (2)
Full Precision Fixed Point [15] NOR Gate 158 75 1.61 0.33 13n2 — 14n + 6 20n —5
Wallace Tree (WT-LF) SIMPLER [16] NOR Gate 140 144 1.42 0.64 NA NA
Conventional Design NOR Gate 132 405 13 1.8 (S Gy +4L (maxg<;<£(G1)) x (L x 3)
Proposed Design NOR Gate 98 225 - - (St Gy +4L (maxo<i<1(G1)) % (L x 3)
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Fig. 7. Latency comparison across different unsigned Wallace tree multiplier.

number of gates in any logic level. Each gate occupies n + 1
columns, n for inputs and one for output, where n represents
the maximum gate fan-in. For a NOT/NOR-based netlist with
G gates distributed across L levels, the total number of read
cycles is Zf;ol G, where (G; denotes the number of gates at
level [. At each level, gate inputs and outputs are written to
the crossbar simultaneously and logic evaluation is completed

in L cycles. Compared to IMPLY-based designs such as Shift-
and-Add [12] (195 cycles) and the Semi-Serial Adder [13]
(102 cycles) for 4x4 multiplication, which inherently process
bits sequentially, our fully parallel implementation achieves
significantly lower latency at 98 cycles, albeit with increased
area due to the larger crossbar.

Compared to MultPIM [14], which uses a minority + NOT de-
sign and completes execution in 139 cycles using 49 cells, our
approach achieves significantly faster performance. Although
majority-based Wallace Tree designs [6] demonstrate low
latency (32 cycles), they operate at the logic abstraction level
and do not account for crossbar-specific constraints. In con-
trast, our method provides a fully mappable micro-operation-
level implementation. Compared to other NOR-based designs
such as Full-Precision Fixed Point [15] (158 cycles, 75 cells)
and the SIMPLER-based Wallace Tree [16] (140 cycles, 144
cells), the proposed method consistently outperforms in both
latency and scalability by leveraging fast 3:2 compressors
and structured micro-operation scheduling. In addition, we
used GENMUL [27], an open source multiplier generator that
implements a conventional design that uses full adders for
the partial reduction stage of the product. The simulation
results demonstrate that our design achieves lower latency
and reduced area compared to conventional implementations,
confirming its performance benefits. Moreover, while many
previous designs exhibit latency growth on the order of O(n?)
or worse latency that escalates rapidly for larger multipliers,
our method demonstrates a much more gradual increase in
latency with increasing size, enabling efficient implementation
of larger multipliers. It achieves 25% lower latency on average,
with a trade-off in area overhead.



VI. CONCLUSION

This paper presents a scalable, high-performance Wallace
Tree multiplier for memristor-based in-memory computing
using the MAGIC design style. By incorporating an opti-
mized 3:2 compressor and a state-of-the-art mapping tool,
the proposed approach addresses key limitations in latency,
crossbar efficiency, and scalability in existing approaches.
The proposed design approach is evaluated for 4- to 64-
bit operands and is directly mapped to executable micro-
operations in memristor crossbars, enabling highly parallel
in-memory multiplication. Although this parallelism incurs
some area cost, it offers significant performance benefits for
compute-intensive applications. Experimental results demon-
strate a 25% average reduction in latency, making the de-
sign suitable for next-generation processing-in-memory (PIM)
platforms. Future work will explore hybrid row/column logic,
gate reuse, and hierarchical mapping strategies to improve
area efficiency, as well as extend the architecture to support
signed multiplication, floating-point operations, and approxi-
mate computing. As memristors evolve, such architectures will
help unify logic and memory for energy-efficient design.
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