
Domain-driven correlation-aware recombination and
mutation operators for complex real-world

applications
Christina Plump∗, Bernhard J. Berger∗, Rolf Drechsler∗†

∗Institute of Computer Science, University of Bremen, Bremen, Germany
†Cyber-Physical Systems, DFKI GmbH, Bremen, Germany

Email: {cplump, berber, drechsle}@uni-bremen.de

Abstract—Evolutionary algorithms are a very general method
for optimization problems that allow adaption to many different
use cases. Application to real-world problems usually comes with
features as constraints, dependencies and approximations. When
a multidimensional search space comes with strings attached—
namely dependencies between its dimensions— an expression in
two ways is possible: Restrictive—as equalities or inequalities—
or vague—as correlations between dimensions, for example.
Correlations between dimensions are not as easy to grasp as
constraints. Therefore, well-known techniques as death penalty
or penalty functions do not apply directly. We propose new
mutation and recombination operators that incorporate domain
knowledge to increase the offspring fraction that adheres to these
correlations. We evaluate our approach with several benchmark
functions and different assumptions on the dependencies of the
search space. We compare the likelihood of valid (in terms of
adhering correlations) outcomes of algorithms using standard
mutation and recombination operators to those with the proposed
operators. We find that the correlation-aware operators preserve
population’s features in terms of dependencies.

I. INTRODUCTION

Technologies advance faster than ever. From crash-resistant
cars to climate-neutral houses, discoveries are made every
day and steadily change our lives [1], [2]. These discoveries,
however, are in dire need of complex and high-performing
materials. Unfortunately, the development of new structural
materials with a given set of properties (e.g. tensile strength,
young’s modulus, hardness) is a cost-intensive and time-
consuming process. Unsurprisingly, most breakthroughs in this
area have been mere luck through try and error. Ellendt et
al. proposed an innovative approach to constructing a guided
process that significantly decreases time and cost [3]. It builds
on the synthesis of material science and computer science.
Material scientists develop novel testing methods (so-called
micro descriptors), analogously to the established ones, but
applicable on much smaller specimens [4]. Figure 1a shows
an exemplary specimen for a tensile test—this is a standard
test procedure for steal—and about 1300 micro samples that
roughly have the same mass as the specimen. Computer
scientists modify and apply machine learning techniques and
optimisation algorithms to perform a guided search towards
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Fig. 1. Information about application domain

the development process necessary for a given set of material
properties. Figure 1b depicts the main structure in terms of
prediction and optimisation. First, two predictions need to be
trained: From P , the set of parameters producing all possible
structural materials, to D , the vector space containing the
micro descriptors, and from D to M , the set containing all
combinations of material properties. Given a specification of
material properties m ∈M , a concatenated search optimises
first micro-descriptors d to match m (search 1), and finally
parameters for the creation of structural materials whose
corresponding micro descriptors match d (search 2). As the
experiments on micro samples are faster and cheaper, the
second part of the search can be supported by much more
training data than the first.

The proposed method of Ellendt et al. then works as fol-
lows [3]: Given a set of desired material properties (potentially
with error margins) m ∈M , search 1 is performed, yielding
d ∈ D . Then several instances of search 2 are performed,
leading to several suggestions on parameter configurations for
the structural material in question. The cost- and resource
efficiency of the developed micro descriptors then allows a
high throughput screening(see the one presented by Bader et
al. [5]). Due to this high throughput screening, not only the
parameter configurations found through search 2 can be tested,
but also such that are close in either on of their dimensions.
Those that fit d ∈ D best, are then chosen for review on a
macro scale, leading to a significant decrease in resources and



time needed for the discovery of a structural material with
specified material properties.

There are three main areas for data scientists to come in:
First, there is the classic machine learning part. Both predictive
functions require machine learning techniques to be determined.
With trained functions at hand, the second area comes to play:
Find an input to the prediction, whose output best matches
the desired target. Hence, a classical optimisation task, such
that evolutionary algorithms seem like the right choice. Third,
incorporating expert knowledge is a challenging but crucial
task. Expert knowledge covers meta-information on training
data. Additionally, it collects scientists’ experience relevant to
the search for new materials, e.g. whether an alloy is hazardous
to health or a material behaves similarly to another. Our work
deals with areas two and three.

Customising an evolutionary algorithm to a given domain
and optimisation problem is almost always a challenging task.
In this particular case, we encountered several intriguing issues.

The two respective search spaces are very different: On the
one hand, we have D ⊆ Rm equipped with constraints and
dependencies. However, these dependencies are far from what
we usually would call a correlation. They can be anything
from a well reasoned, analytically defineable dependency to an
experience-based gut feeling. Additionally, they do not need to
be linear at all. Hence, we refrain from treating them cardinally,
but rather categorically.

On the other hand, the search space P is a bit more
complicated: An alloy follows a series of treatments (thermal
and mechanical) to form a structural material. Therefore P is
a cartesian product of [0, 1]l (the percentages of used alloys),
the set containing all heat treatments and the set containing
all mechanical treatments. As the latter represent processes
with circular subprocesses, a standard real-valued encoding
is inapplicable here. Still, there are dependencies, e.g. some
alloys only allow lower heating temperatures. Again, these
dependencies are categorical, rather than cardinal.

For the most part, this application’s constraints are derived
from nature laws (e.g. a length always will be non-negative),
thus unchangeable. However, as these experiments’ design is
still progressing, and there might be new experiments or micro-
descriptors discovered, it is necessary to include this knowledge
in a configurable manner. On the other hand, dependencies
are pure expert knowledge, derived either from literature or
experiment designing scientists. Again, as these experiments
are still new research and different structural materials will be
studied, knowledge about relations between micro-descriptors
might change. Thus, we expect to see many changes in these
dependencies.

Therefore, we derived mutation and recombination operators
that include this categorical knowledge about relations between
variables without being too strict about it. We ensure that
dependent variables are changed according to the direction
of their dependency but do not explicitly use the given value.
Additionally, to ensure sustainability and the capability of
adding new experiments or derived micro-descriptors, we
defined a domain-specific language (DSL) and captured the

necessary meta-information in DSL-compliant files.
We evaluated our approach on four well-known benchmark

functions comparing our newly designed operators with their
standard counterparts. We compare the correlation matrix
computed from the initial population, with the correlation
matrix that results when adding the result to the initial
population’s set. We sample the initial population from different
distributions. We found that our operators are more likely to
produce valid, i.e. obeying the dependencies, search results
than standard operators.

Incorporating correlations into recombination and mutation
operators is in itself not a new idea. Several work has been
done in that area, especially in evolutionary strategies (see Li et
al. [6] for a survey from 2020). Great progress has been made
with self-adapting algorithms that iteratively change their step
sizes (and other parameters) depending on the current status
of the population (see Kramer [7] as well as Garcı́a-Pedrajas
et al. [8]). However, our work differs in two key aspects: First,
we do not only work on real-valued encodings (as is inherent
to evolutionary strategies) but also on bit encodings. Second
and even more importantly, we consider categorical relations,
that differ twofold from standard correlations: They contain
every form of relation - not only linear (as is the case for
correlations) and additionally, their numeric value should not be
understood cardinally as they don’t adhere to a rational or even
an interval scale. Furthermore, we can not allow our relations
to change during one algorithm as they represent physical
laws and thus must be obeyed [9]. For genetic algorithms,
Kundu et al. demonstrated the effectiveness of correlation-aware
selection operators [10]. They incorporated the knowledge
about the correlation between the current best individual and the
other indiviuals in the population into their selection process.
The presented approach here, however, does not guide the
selection process in itself through knowledge about relations
between individuals, but the recombination and mutation phase
instead. Thus, it guides the way new individuals are created.
Additionally, we focus on relations between different input
dimensions, that are rather categorical than cardinal.

This paper’s remainder is structured as follows: In Section 2,
we formally describe the given optimisation problem and
give an example to further illustrate the situation. Section 3
introduces the adapted operators in a reproducible manner,
while Section 4 explains the practical implementation and
incorporation of domain-specific knowledge. Finally, Section 5
demonstrates and discusses our evaluation’s results and Sec-
tion 6 concludes this article with an outlook.

II. BACKGROUND AND PROBLEM DESCRIPTION

Drechsler et al. proposed the formal methodology to the
high-throughput approach from Ellendt et al. [3] in Drechsler
et al. [11], which was in part implemented by Huhn et al. [12]
and Drechsler et al. [13] using a recursive least squares kernel
estimation [14]. The following section defines the domain-
specific terms, gives an example and specifies the optimisation
problem.



(a) Schematic depiction of
a micro-compression test (de-
rived from [15])

(b) Schematic depiction of a
laser shockwave indention test
(derived from [16])

Fig. 2. Exemplary novel testing methods developed for a high-throughput
approach

Definition 1 (Experiment): An experiment E is a procedure
carried out on a testing specimen. It has parameters pj,E
that determine the exact specification of the procedure, and
descriptors di,E that contain the experiment’s results. Each
parameter and each descriptor may have constraints of the
form g(di,E) = d, g(di,E) ≥ d or even g(di,E , dj,E , ...) = d.
Furthermore, there may be bivariate relations between de-
scriptors of the experiment or other experiments of the form
rel(di,E , di,E′) = c, where E can be different or equal to E′

and c ∈ [−1, 1]. We distinguish experiments on micro samples
and such on macro specimen with the respective index. E is
the set containing all experiments.

Let’s illustrate this with a small example:
Example 1 (Micro Compression and Laser Shockwaves):
The experiment Micro compression test [15] presses an

indenter onto a specimen and then releases the pressure. The
applied force and the indention on the specimen are measured
at an equidistant rate. Parameters for this experiment are
pressure and specimen size. The descriptors for this experiment
are derived from the force-distance-diagram and compute the
indention depth and several mechanical works. Between these
mechanical works, some constraints hold. The experiment
Laser Shockwave Indention [16] pushes a shockwave onto an
indenter through a laser, which then presses the indenter onto
an embedded micro sample cut in half. Descriptors in this case
are indention area, indention diameter, the resulting pile-up and
theoretical depth from diameter. Again, there are constraints
between these descriptors. Additionally, there is a negative
relation between plastic work (derived from microcompression)
and indention diameter(derived from laser shock wave). Two
data description files capture all of this information. Listing 1
shows the data description file for laser shockwave and Listing 2
for microcompression. For brevity we do not display units
here as is done in the actual data description file and leave
out descriptors without constraints. One can see the singular
constraints, the bivariate ones, and the relation between the
abovementioned descriptors.

Now we’re ready to formally define D :
Definition 2 (Search Space of Micro Descriptors): The search

space of all micro descriptors D consists of all available micro-
descriptors, i.e.

D =
⊕

E∈Emicro

DE (1)

Listing 1. Data Description File for Laser Shockwave
1 experiment ” l a s e r shockwave ” {

f r e e q u o t i e n t parameter ” spec imen d i a m e t e r ”
§ ” spec imen d i a m e t e r ” >= 0 ;

measuringmethod LiSe {
q u o t i e n t d e s c r i p t o r ” i n d e n t i o n area ”

6 § ” i n d e n t i o n d e p t h ” >= 0 ;
q u o t i e n t d e s c r i p t o r ” i n d e n t i o n d i a m e t e r ”

§ ” i n d e n t i o n d i a m e t e r ” >= 0 ;
q u o t i e n t d e s c r i p t o r ”measured d e p t h ”

§ ”measured d e p t h ” >= 0 ;
11 § ” i n d e n t i o n area ” = ” i n d e n t i o n d i a m e t e r ” / 2 * 3 . 1 4 ;
}
/ * r e l a t i o n between e x t r a−e x p e r i m e n t a l d e s c r i p t o r * /
§ r e l ( ” m i c r o c o m p r e s s i o n . p l a s t i c work” ,

” i n d e n t i o n d i a m e t e r ” ) = −0.6;
16 }

Listing 2. Data Description File for Micro Compression
experiment ” m i c r o c o m p r e s s i o n ” {

f r e e q u o t i e n t parameter ” f o r c e ”
§ ” f o r c e ” >= 0 ;

4 f r e e q u o t i e n t parameter ” spec imen d i a m e t e r ”
§ ” spec imen d i a m e t e r ” >= 0 ;

measuringmethod F o r c e D i s t a n c e {
q u o t i e n t d e s c r i p t o r ” i n d e n t i o n d e p t h ”

§ ” i n d e n t i o n d e p t h ” >= 0 ;
9 q u o t i e n t d e s c r i p t o r ” m e c h a n i c a l work”

§ ” m e c h a n i c a l work” >= 0 ;
q u o t i e n t d e s c r i p t o r ” p l a s t i c work”

§ ” p l a s t i c work” >= 0 ;
[ . . . ]

14 }
/ * r e l a t i o n between e x t r a−e x p e r i m e n t a l d e s c r i p t o r * /
§ r e l ( ” l a s e r shockwave . i n d e n t i o n d i a m e t e r ” ,

” p l a s t i c work” ) = −0.6;
}

where DE =
{
d = (d1,E , ..., dnE ,E)

> |d ` CE

}
, and C con-

tains all constraints and relations. We basically flatten all
descriptors in one vector of dimension

∑
E∈Emicro

nE .
This search space is the origin of the second significant

mapping, i.e. the predictive function:
Definition 3 (Predictive Function): The predictive function

ψ : D −→M maps a collection of micro descriptors to their
corresponding material properties. That is: If the same structural
material is tested on a micro level with the newly developed
testing methods and is tested with standard procedures, the
predictive function maps these results to one another.

The optimisation problem (search 1) is strongly related to
the predictive function and can then be defined as follows:

Definition 4 (Optimization problem): Given m∗ ∈M , find
d ∈ D , s.t. ||ψ(d)−m∗|| → min! with all constraints g from
the experiments’ definition satistfied and rel obeyed.

III. METHODOLOGY

We transform the given search space in the problem domain
to a population by representing a d ∈ D with a genotype of
ntotal chromosomes, i.e.

genotype ≡ d

chromosome ≡ di
We adapt recombination and mutation operators for both

real-valued and bit encoding. As we argued in Section 1 the
search space U is not suitable for real-valued encoding. To



obtain operators for both searches, we carry out the adaption
for both encodings.

Our main methodology follows the principle (assuming
that each chromosome of a genotype is altered with a given
probability):

If a chromosome is altered, all related chromosomes
are altered according to their respective rel.

Please keep in mind, that the relations should not be taken
at face value, but rather for their general direction, i.e. a
rel(indentionDepth, plasticDeformation) = 0.8 must not
be interpreted like a correlation coefficient, but as There is a
strong, positive relation. Especially, it is not restricted to linear
dependencies.

A. Mutation operators

We adapted two standard mutation operators: One, the
GaussianMutator as standard mutator for a real-valued
encoding, and second, the SwapMutator as standard mutator
for a bit encoding. For both instances, we reciprocate the
mutation carried out on one chromosome to all dependent
chromosomes, either parallely (c ≥ 0) or inversely (c < 0).

1) GaussianMutator: In its standard (with fixed step size)
setting, the GaussianMutator takes a random value r ∼
N (0, σ) and adds it to the current value, cropping it to its
minimal and maximal values, if necessary. Please note, that the
following algorithms do not show the cropping process. The
adapted GaussianMutator works similarly, as shown in
Algorithm 1 and 2. If there is a strong correlation between two
chromosomes, the random value propagates to the correlated
chromosome (see line 5, Algorithm 2), respecting the sign of
the correlation factor. If the correlation is a weak one, the
random value adds to a new one to take it into account (see
line 7, Algorithm 2)).

Algorithm 1 Correlated Gaussian Mutator
Require: |gtp| = n {genotype of length n}
Require: v {gaussian random value}
Require: 1 ≤ c ≤ n {randomly chosen chromosome}
Require: t {category threshold}
Require: σ {standard deviation}

1: gtr ← gtp

2: propagate(i← c, r ← v)
3: return gtr

2) SwapMutator: The SwapMutator works on bit encod-
ings. It randomly chooses chromosomes from a genotype. For
each chromosome, it selects a bit of that chromosome and
flips it. Algorithms 3 and 4 show the correlation-aware swap
mutator. It flips the initially selected bit for a chromosome
by calling the propagate algorithm with the ⊥ parameter. The
propagate algorithm has five different propagation modes. First,
the ⊥-mode negates the given bit. Second, the �- and �-mode
sets the bit to false or true (see lines 4–7, Algorithm 4),
depending of the mode. This corresponds to a weak correlation
where the correlated chromosomes are changed the same way
or stay unchanged. The strong correlation is covered by the

Algorithm 2 Correlation Propagation of the Gaussian Mutator
Require: 1 ≤ i ≤ n {chromosome}
Require: r ∼ N (0, 1)

1: gtri ← r · σ + gtpi
2: for (j, f) ∈ correlationsOf(i) do
3: g ∼ N (0, 1)
4: if f ≥ t or f ≤ −t then
5: propagate(i← j, r ← sign(f) · r)
6: else
7: propagate(i← j, r ← sign(f) · (r + g)/2)
8: end if
9: end for

�- and �-mode. It looks for the next bit that can be flipped
into the given direction (see lines 8–13, Algorithm 4). The
propagation mode is chosen based on the correlation factor (f )
and the change kind (see lines 17–25, Algorithm 4).

Algorithm 3 Correlated Swap Mutator
Require: |gtp| = n {genotype of length n}
Require: 1 ≤ c ≤ n {randomly chosen chromosome}
Require: 1 ≤ g ≤ |gtpc | {randomly chosen gene}
Require: t {category threshold}

1: gtr ← gtp

2: propagate(i← g, d← ⊥)
3: return gtr

B. Recombination Operator

We adapted two standard recombination operators
for each encoding: For bit encodings, we adapted
SinglePointCrossover and UniformCrossover.
For real-valued encodings, we adapted MeanAlterer and
LineCrossover, where one actually is a special case of
the other. For recombination operators, we enforce the same
crossover for all dependent chromosomes. In this case we do
not need to explicitly encode the direction of dependence, it is
inherent to the recombination.

1) MeanAlterer: The MeanAlterer computes the average
between two chromosomes and uses this as offspring. Again,
we simply copy this behaviour to all dependent chromosomes
(see Algorithm 5)

2) LineCrossover: The standard procedure of an
LineCrossover is drawing a line through both parental
chromosomes and choosing a point on that line as offspring.
In our case, chromosomes are one-dimensional, therefore it
is basically a weighted average. Again, we remember the
random value deciding the position of the point on the drawn
line, and pass it to all dependent chromosomes. Algorithm 6
shows the idea in pseudo code.

3) SinglePointCrossover: A SinglePointCrossover
takes a random number g, cuts the chromosome at this bit’s
position into halves, and repeats this with the other parent.
Tails are switched and two offsprings are generated. The
correlation-aware single point crossover works slightly different



Algorithm 4 Correlation Propagation of the Swap Mutator
Require: 1 ≤ i ≤ |gtpc | {gene}
Require: d ∈ {�, �,⊥, �,�} {propagation rule}

1: k ← i
2: if d = ⊥ then
3: new ← ¬gtpci
4: else if d =� then
5: new ← false
6: else if d =� then
7: new ← true
8: else if d =� then
9: k ← findNearestIndex(i, false)

10: new ← true
11: else if d =� then
12: k ← findNearestIndex(i, true)
13: new ← false
14: end if
15: gtpck ← new
16: for (j, f) ∈ correlationsOf(i) do
17: if f ≥ t and new or f ≤ −t and ¬new then
18: propagate(i← j, d←�)
19: else if f ≥ t and ¬new or f ≤ −t and new then
20: propagate(i← j, d←�)
21: else if f > 0 and new or f > −t and ¬new then
22: propagate(i← j, d←�)
23: else if f > 0 and ¬new or f > −t and new then
24: propagate(i← j, d←�)
25: end if
26: end for

Algorithm 5 CorrelatedMeanAlterer
Require: |gtp1 | = |gtp2 | = n {equal-sized genotypes}
Require: 1 ≤ c ≤ |gtp1 | {randomly chosen chromosome}

for i = 1 to |gtp1 | do
if (i, ) ∈ correlationsOf(c) or i = c then
gtci ← mean(gtp1

i , gt
p2

i )
else
gtci ← gtp1

i

end if
end for
return gtc, gtp2

(see Algorithm 7 and 8). Only one of the chromosomes is
altered by receiving the tail of the other chromosome (compare
lines 2–6, Algorithm 8). The surviving parent of correlated
chromosomes is chosen depending on the correlation factor’s
sign. If two chromosomes are positivley correlated the same
parent survives.

4) UniformCrossover: The UniformCrossover swaps
randomly choosen genes between two parental chromosomes.
We implemented the correlation-aware uniform crossover simi-
lar to the correlation-aware single point crossover. Algorithm 9
and 10 shows its working. The correlation-aware uniform
crossover copies a gene according to the sign of the correlation

Algorithm 6 Correlated Line Crossover
Require: |gtp1 | = |gtp2 | {equal-sized genotypes}
Require: 0 ≤ p ≤ 1 {probability}
Require: 1 ≤ c ≤ |gtp1 | {randomly chosen chromosome}
Require: −p ≤ f1 ≤ 1 + p {random value}
Require: −p ≤ f2 ≤ 1 + p {random value}

for i = 1 to |gtp1 | do
if (i, ) ∈ correlationsOf(c) or i = c then
gtc1i ← f1 · gtp1

i + (1− f1) · gtp2

i

gtc2i ← f2 · gtp2

i + (1− f2) · gtp1

i

else
gtc1i ← gtp1

i

gtc2i ← gtp2

i

end if
end for
return gtc1 , gtc2

Algorithm 7 Single Point Crossover
Require: |gtp1 | = |gtp2 | {equal-sized genotypes}
Require: 1 ≤ c ≤ |gtp1 | {randomly chosen chromosome}
Require: 1 ≤ g ≤ |gtp1

c | {randomly chosen gene}
1: gtc1 ← gtp1

2: gtc2 ← gtp2

3: propagate(i← c, d← 1)
4: return gtc1 , gtc2

factor (see lines 2–6, Algorithm 10). As long as the correlation
is positive the swap direction stays the same for correlated
chromosomes (see line 9, Algorithm 10).

IV. IMPLEMENTATION

The implementation consists of two essential parts—first, the
data-description language and second, the correlated operators.
The data-description language is a domain-specific language
that trained domain-experts can write and is more appealing
to them than several configuration files. Domain-specific
languages require a well-defined grammar, a scanner and a
parser that turns a document conforming to the grammar into
an intermediate representation which then can be interpreted.

Algorithm 8 Propagation of the Single Point Crossover
Require: 1 ≤ i ≤ |gtp1 |
Require: d

1: s← |gtc1i | {number of genes in chromosome}
2: if d ≥ 0 then
3: gtc2ig...s ← gtp1

ig...s
4: else
5: gtc1ig...s ← gtp2

ig...s
6: end if
7: for (j, f) ∈ correlationsOf(i) do
8: propagate(i← j, d← d · f)
9: end for



Algorithm 9 Correlated Uniform Crossover
Require: |gtp1 | = |gtp2 | {equal-sized genotypes}
Require: 1 ≤ c ≤ |gtp1 | {randomly chosen chromosome}
Require: G {set of randomly chosen genes}
Require: 1 ≤ gl ∈ G ≤ |gtp1

c |
1: gtc1 ← gtp1

2: gtc2 ← gtp2

3: crossover(i← c, d← 1)
4: return gtc1 , gtc2

Algorithm 10 Propagation of the Correlated Uniform
Crossover
Require: 1 ≤ i ≤ |gtp1 |
Require: −1 ≤ d ≤ 1

1: for k ∈ g do
2: if d ≥ 0 then
3: gtc2ik ← gtp1

ik
4: else
5: gtc1ik ← gtp2

ik
6: end if
7: end for
8: for (j, f) ∈ correlationsOf(i) do
9: crossover(i← j, d← d · f)

10: end for

We implemented the data-description language using Eclipse
Xtext [17].

Eclipse Xtext belongs to the Eclipse modelling eco-system
which offers a wide range of tool support for designing and
creating models, languages, and corresponding graphical repre-
sentations. We integrated the correlation operators into Jenetics,
an extensible Java-library for evolutionary algorithms [18].
Figure 3 depicts the underlying principle of our implementation.
The evolutionary algorithm uses the data description file to
customize its operation and potentially initial population. It
then optimizes towards a given requirement profile (targets).
Its result is a correlation-aware individual, i.e. an individual,
which obeys the relations from the data description file. This
individual produces an predicted profile, which hopefully is
close to the given requirement profile.

evolutionary algorithm

correlated initial 
population

data description file

correlated 
recombinator

correlated mutator

correlation-aware 
individual

requirement profile predicted profile

Fig. 3. Schematic overview of methodology’s implementation

Algorithm 11 Standard Genetic Algorithm
pop0 ← popinitial
for i = 1 to i ≤ generations do
popsi ← select(popi−1, f(popi−1))
poppi ← select(popi−1, f(popi−1))
popoi ← mutate(recombinate(poppi ))
popi ← popsi ∪ popoi

end for

Algorithm 11 shows the standard genetic algorithm, Jenetics
provides. Survivors and parents are selected based on their
fitness, parents are recombinated and mutated to generate
offsprings. Finally, offsprings and survivors are combined
to form the next generation’s population. Then, the fitness
is computed for each individual, and the loop is repeated
until the specified number of generations is completed. We
customized the initial population selection, the recombination
operator, the mutation operator, and the fitness function in our
implementation. The complete implementation, including the
parser for the domain-specific language, consists of 30k source
lines of Java code.

V. EVALUATION

We investigate the following research question:
RQ 1: The population (and thus the result) of an evolutionary

algorithm are more likely to adhere to the relations specified in
a data description file when using correlation-aware operators
over standard operators.
We research this question on benchmark functions as well as
the real-time scenario posing the inspiration for this method.

We identify several possibly influencing parameters: The
target used for the fitness function (target), the initial popula-
tion’s features regarding dependencies (initial), the encoding,
the handling of strict constraints (bounded), and the relations
specified in the data description file. We also varied the
configuration of the applied evolutionary algorithm and the
benchmark function used for the fitness evaluation to widen the
data we base our statistical decision on. We give an overview
of our evaluation setup in Figure 4.

We plan to determine the relation preserving effect by
comparing two covariance matrices computed on the initial
and the final population. To do so, we calculate the sum of
absolute distances between both matrices. The smaller this
distance, the higher the relation preserving effect. We then
compare the distance for each setup with correlation-preserving
operators to its counterpart with standard operators, where
results above 0 favor the correlated operators and vice versa.
We use a Welsh’s t-test [19], comparing the means over 50 runs
using Satterthwaite’s degrees of freedom. Following up, we
compute wins to compare which method has a higher number
of statistically significant results [20]. That is, a method gains
a win if it significantly (α < 0.05) outperforms the other. For
setups, where none of both methods is significantly better, we
assign a win to the category borderline, i.e. for this setup no
method can be said to be outperforming the other.
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Fig. 4. Graphical representation of the evaluation variation

A. Benchmark Functions

All in all, we had four benchmark functions, three data
description files, eight EA-configurations (encoding included
and please compare Figure 4 for an overview of configurations)
and 50 targets. Factoring in the variations on constraint handling
and initial population, we obtain 19.200 distinct configurations.
All of them were evaluated once with correlation-preserving
operators and again with standard operators, making a total of
38.400 setups. Finally, we ran each setup 50 times, adding up
to 1.920.000 evaluations.

a) Functions: We used for different benchmark functions
following a classification of the properties modality and separa-
bility. These are the WeightedSphere Function for unimodality
and separability (ranges: [−5.12, 5.12]), the Rastrigin Function
for multimodality and separability (ranges: [−5.12, 5.12] and
a = 10), the Rosenbrock Function for unimodality and insepa-
rability (ranges: [−2.048, 2.048]), and the Ackley-Function for
multimodality and inseparability (ranges: [−20, 30]). We work
with n = 10.

b) Relations and Initial Populations: We used random
initial populations and pre-generated ones. The pre-generated
ones follow a multivariate normal distribution. The mean is
adjusted to the center of the benchmark function’s range and
the variances are determined to match the given range in a 3σ
deviation. We chose different covariances. One, with paired
correlations, varying between strong and weak, as well as
negative and positive correlations (type A). Another, with a
strongly correlated block for the first variables and none else
(type B). Last but not least, two correlated blocks for the first
and last variables, the latter being weaker correlated than the
first (type C).

We mirrored these correlations in the corresponding data
description files.

1) Results: For all 19.200 distinct configurations, we com-
puted the p-value of a Welsh’s t-test. Figure 5 shows the number
of setups where the correlated operators win the hypothesis
test (correlated), where the non-correlated operators win the
hypothesis test (non-correlated), and where no significant
decision can be made (borderline). Note, we have a confidence
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Fig. 5. Number of wins for correlated, non-correlated and borderline

level of 0.95. We see that the overwhelming majority of cases
is won by correlation-aware operators.

Figure 6 depicts the wins differentiated by the relation
specifications - configured through the data description file
as well as the initial population (when following a multivariate
normal distribution). There seems to be no notable difference,
only relation configuration B produces a slight improvement
for correlated. Next, we analyse the influence of encoding
and thus, the singular performance of our correlation-aware
operators. Figure 7 shows the number of wins, deviated for
encoding and selection operator. Since the left bar chart does
not differ much from the right bar chart, we can conclude
that both selection configuration perform more or less equally.
However, the bit-encoding (bit) seems to perform comparatively
better than the real-valued encoding (double). Nevertheless, for
both encodings the correlation-aware operators outperform
the standard ones. Figure 9 depicts the number of wins
depending on whether or not constraints were enforced and
differentiated for their encoding. We see no difference for
real-valued encoding (double), but a slight tendency towards
unbounded for bit-encoding. Again, this bar chart shows the
comparatively better response of bit-encoding to the correlation-
aware operators. Last, but not least, we compared the factors for
the inital population: In Figure 8 one can see, that reciprocating
correlated input data (training) is more complicated than with
random data.
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2) Discussion and threats-to-validity: Our results show
that the proposed correlation-aware operators significantly
outperform standard operators in preserving specified relations
of the input domain. They are independent of the given relations.
Interestingly, they seem to have a higher effect when employed
bit-encoding than with real-valued encoding. As we do not
expect this to be an actual effect of the encoding in itself, it
could be a hint, that our bit-encoding based operators work
better. The chosen selection operator did not seem to make
a difference. However, as we worked with a fixed parameter
setting in this case, we can not definitely draw this conclusion as
might see different responses with varying parameters of those
selection operators. Enforcing constraints on the other hand
seemed to hinder preserving the correlations. We assume, this
is due to the fact, that we crop constraint-violating individuals
to the closest allowed values, therefore possibly violating the
relation specifictions. All in all, we could positively answer
our research question and successfully investigated several
influencing parameters.

B. Application Domain

We additionally evaluated the proposed operators on data
from the given application from material sciences. We chose
three different setups to evaluate: One to find a set of micro
descriptors to yield a specified hardness (input dimension
was 13), one to yield a given tensile strength (input dimension
was 18) and one to yield an indention modulus (input dimension
was 10). We trained the predictive function ψ (compare
Figure 1b) using a kernel-based Support Vector Regression [14]
on supplied training data from experiments of material scientists.
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We kept the above setup but only used one relation specification
for each application setup, according to information supplied
by material scientist responsible for the experiments. Compare
Listing 1 and Listing 2 for an example of data description files
covering this domain specific knowledge.

1) Results: Figure 10 shows the results for the application
domain. Again, we can see that for the majority of cases,
the correlation-aware operators outperform the standard ones.
Please note that the chart displays the distribution of p-values
for all performed setup evaluations. That is, the total count of
setups yielding a p-value higher than 0.95 corresponds to the
number of wins for correlated displayed for the benchmark
functions, the total count setups yielding a p-value lower
than 1 − 0.95 = 0.05 corresponds to the number of wins
for non-correlated and all the ones in between correspond
the number of wins for borderline. We cross-checked the
returned individuals with material scientist to review whether
this might be valid combinations of micro-descriptors and this
was positively answered.

2) Discussion and threats-to-validity: Our evalution showed
for the application domain, that the correlation-aware operators
perform better than standard ones, however, not as good as for
the benchmark cases. This can be seen in the higher number
of wins for borderline, i.e setups where neither the standard
method nor our approach was significantly better than the other
one. We assume this is due to three reasons: First, we work
with an approximative fitness function that is not yet trained to
incorporate relations of input dimensions. Therefore, data might
tend to unwanted regions. Second, the specified constraints are
wide-kept. They are intentionally only based on nature laws.
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That is, even if a certain range is highly likely for a given
input variable, we nevertheless only enforce nature laws. Third,
as nature does not always behave in a simple manner, there
are relations that are only valid for given ranges of data, while
for ranges another relation is valid. This could be the reason
for the higher of borderline wins, as our correlation-aware
operators with range-insensitive data description files would
not perform as well in these cases. We plan to expand our
approach to incorporate this possibility in future work.

VI. CONCLUSION AND FURTHER RESEARCH

We developed two new correlation-aware mutation operators
and four new recombination operators to deal with categorical
relations between variables in the search space of evolutionary
algorithms. Additionally, we defined a data description language
to accomodate the need for configurability. Information in data
description files can be processed to adjust the evolutionary
algorithm. Our work is highly relevant for applied research
in material sciences as it paves the way to completing the
method introduced by Ellendt et al. [3]. Additionally, it is
straightforward to apply this to other real-world applications
that are based on experiments. The only necessary adaption is
the creation of different data description files in the specified
grammar. Classical experiences from the natural sciences come
to mind. We evaluated our approach on four well-known
benchmark functions in 19.200 distinct configuration setups
as well as in the given application domain. We saw overall
astoundingly good results, validating that our adjusted operators
can indeed preserve the structure of the search space. We plan
to extend our work towards range-based relations, i.e. when
relations only apply for a certain range, as well as input-output
and output-output relations.

VII. ACKNOWLEDGMENTS

We thank Heike Sonnenberg and Tobias Valentino for
supplying data and expert knowledge for our application
domain evaluation as well as Dr. Nils Ellendt for providing a
general insight to the domain.

REFERENCES

[1] M. Weber and J. Weisbrod, “Requirements engineering in automotive
development-experiences and challenges,” in IEEE Joint International
Conference on Requirements Engineering (RE), 2002, pp. 331–340.

[2] J. Garcı́a, G. Jones, K. Virwani, B. McCloskey, D. Boday, G. ter Huurne,
H. Horn, D. Coady, A. Bintaleb, A. Alabdulrahman, F. Alsewailem,
H. Almegren, and J. Hedrick, “Recyclable, strong thermosets and
organogels via paraformaldehyde condensation with diamines,” Science,
vol. 344, no. 6185, pp. 732–735, 2014.
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