
Improving evolutionary algorithms by enhancing an
approximative fitness function through prediction

intervals
Christina Plump∗, Bernhard J. Berger∗, Rolf Drechsler∗†

∗Institute of Computer Science, University of Bremen, Bremen, Germany
†Cyber-Physical Systems, DFKI GmbH, Bremen, Germany

Email: {cplump, berber, drechsle}@uni-bremen.de

Abstract—Evolutionary algorithms are a successful application
of bio-inspired behaviour in the field of Artificial Intelligence.
Transferring mechanisms such as selection, mutation, and re-
combination, evolutionary algorithms are capable of surmount-
ing the disadvantages of traditional methods as—for example,
hillclimbing—have. Adjusting an evolutionary algorithm to a
specific problem requires both, a good understanding of the
problem and deep knowledge of the effects of choosing one or
another operator in the algorithm. This becomes an especially
difficult task when the fitness function is not analytically given -
that is, exists only as an approximation, that is highly dependent
on the present training data. We propose using prediction
intervals to modify the fitness function such, that worse fitness
values are less penalized if they occur in a poorly fitted area. We
evaluate this with an example from material sciences as well as
four standard benchmark algorithms for evolutionary algorithms
using a Support Vector Regression for training the approximative
fitness function and find that our approach outperforms the naive
approximative function.

I. INTRODUCTION

Search, and optimisation problems are ubiquitous in every-
day life, industrial application and political decision making.
Finding an optimal solution to a given task has therefore
been the subject of decade-long research in mathematics, com-
puter science, engineering, economics—to name a few areas.
Evolutionary algorithms are one technique that has gained
widespread acceptance and attention since its development [1].
These are part of bioinspired approaches, like ant-colonisation
and neural networks, as they adopt the evolutionary process
seen in nature. As such, they find the optimal candidate in
a search space by recombining and mutating individuals of
the current population and selecting them for propagation
to the next generation based on their fitness value. When
the population converges, or the algorithm has produced a
fixed number of generations, the algorithm stops and yields
a potential optimum. Through its mutation and recombination
operators, evolutionary algorithms can leave local optima—
in contrast to, e.g. hillclimbing algorithms—and potentially
reach the global optimum. In general, evolutionary algorithms
surpass other techniques when used in unbecoming landscapes.
Unbecoming refers to properties like discontinuities, noisiness,

This work was partially founded by the German Research Foundation
(DFG) in subproject P02 – Heuristic, Statistical and Analytical Experimental
Design – of CRC1232 (project number 276397488)

or multimodality. All of these characteristics are obstacles to
usual algorithms. There are several intricate issues when ap-
plying evolutionary algorithms to real-world applications, e.g.
choice of individuals’ representation and design of operators.
However, the most crucial is the application’s fitness function.
That is because evolutionary algorithms require a large number
of evaluations of that fitness function. Thus, it has a relevant
impact on the algorithm performance and the quality of the
result. In many real-world applications, the fitness function is
either unknown or computationally expensive. For example,
this might be the case for experimental setups (unknown)
or complex numerical differential equations (computationally
expensive). The latter may be the case for many natural
sciences applications, e.g. predictions of weather phenomena
or predictions on earthquakes. The former, however, may be
the case when no analytical relationship is yet known, and
every connection has to be established through experiments.
Another reason is a potential setup, where the fitness depends
on subjective evaluation, as might be the case in music or
art. A well-known approach to tackling this issue is employ-
ing approximative fitness functions [2], [3]. When talking
about unknown fitness relations, this is the only possibility,
whereas, for computationally expensive functions, using the
correct evaluation is possible but has to be restricted due to
performance issues [4], [5]. These are only some example of
the wide variety of research that has been done in this area.

In this paper, we will focus on a situation that is quite
common in experimental setups: Scientist look for the best
input to produce specific output variables. For example, given
a specified set of material properties, search for the best pa-
rameter configuration necessary to create a structural material
compliant with these properties. However, there is no analytic
relationship known between material property and parameter
configuration. Therefore, experiments collect training data,
which serve as input to a machine learning algorithm that
predicts the relationship between dependent and independent
variables. Thus, the machine learning algorithm yields the base
for a fitness function targeting the abovementioned search.
There is no possibility to obtain more training data or to
reiterate the training process. However, statistical information
as goodness-of-fit, distribution of error, prediction mean, and
others are known. We propose incorporating this statistical

knowledge into the fitness function to heal some of the perks
inherent to approximative fitness functions. In doing so, we
achieve two merits: First, we drive the fitness evaluation closer
to the correct value, and second, we do not penalise poor
fitness values as much when they stem from a search space
area that has a low goodness-of-fit. For our approach, we
chose a Support Vector Regression to train the approximative
fitness function as it is the best fit for the application domain
that led to our approach. Several other machine learning
techniques could be employed, which we will investigate in
further research.

We evaluate our proposed method with several well-known
benchmark functions for evolutionary algorithms. To do so, we
compare the results of an evolutionary algorithm with an ap-
proximative fitness function to an evolutionary algorithm with
our adjusted approximative fitness function, hereby using the
actual fitness values (stemming from the true fitness function).
We analyse several influencing factors, like encoding, selection
operators and distribution of training data. Furthermore, we
apply our approach to an application from material sciences,
similar to the one described above.

The remainder of this paper is structured as follows: Section
2 gives necessary background information about support vec-
tor regression and the method to compute prediction intervals
for traceability. Section 3 introduces our approach, and Section
4 describes the implementation. In Section 5, we describe our
evaluation process and results in detail. Section 6 concludes
this paper and shows further research directions.

II. BACKGROUND

We will shortly revisit Support Vector Regression (SVR)
based on kernels and a technique to produce prediction inter-
vals, presented by Brabanter et al. [6] because we focus on
this learning technique in this paper.

A. Kernel-based Support Vector Regression

A standard prediction situation is given as follows: Let
T = {(x1, y1) , (x2, y2) , ..., (xn, yn)} a set of n data points,
composing the training data. x = (x1, ..., xm)> is an m-
dimensional vector and yi ∈ R. The goal is to learn a function
φ : X → Y that describes the functional relation the training
data follow. We follow Smola et al. [7] in our description of
kernel regression.

The easiest assumption for a function is a linear form. Then
φ can be written as follows:

φ(x) = 〈w,x〉+ b (1)

where w ∈ X , b ∈ R. This reformulates the search for φ to
a search for w, b. In ε-SVR as introduced by Vapnik [8] the
optimisation problem then becomes

minimize
1

2
‖w‖2 (2)

following |yi − 〈w,xi〉 − b| < ε (3)

This requires the existence of a function φ that explains the
training data with an error smaller than ε. As this might not

always be the case, one introduces slack variables that allow
a training point to dismiss the ε-constraint. The problem then
becomes:

minimize
1

2
‖w‖2 + γ

n∑
i=1

ζi (4)

following |yi − 〈w,xi〉 − b| < ε+ ζi (5)
ζi ≥ 0 (6)

The slack variables are added to the minimising function to
ensure that they are not overused.

Formulating Equation 6 as Lagrangian Problem, using la-
grangian multipliers αi, α

∗
i to state the dual problem, one

obtains the support-vector expansion:

φ(x) =

l∑
i=1

(αi − α∗i) 〈x,xi〉+ b (7)

Starting from this formulation it is easy to go from linear to
non-linear regressions: Equation 7 shows, that w is no longer
explicitly needed, but only the scalar-product with all training
points where (αi − α∗i) doesn’t vanish. At this point, one
exploits the so-called kernel-trick which allows computation
of a scalarproduct in the input space instead of the feature
space and simply substitutes 〈x,xi〉 by k(x,xi). Including
the kernel-function in the problem formulation and writing
the dual problem as matrix equation, we obtain


0 1 · · · 1
1 k(x1,x1) +

1
γ · · · k(x1,xn)

...
...

...
...

1 k(xn,x1) · · · k(xn,xn) +
1
γ



b
α1

...
αn

 =


0
y1
...
yn


(8)

to be solved for b and α. Equation 7 then becomes

φ̂(x) =

n∑
i=1

αik(xi,x) (9)

Depending on the training data, different kernels can be used.
Well-known kernels include the gaussian kernel, polynomial
kernel, laplacian kernel or sigmoid kernel. The gaussian
and laplacian kernel belong to the family of Radial Basis
Functions and thus behave similarly.

B. Goodness-of-Fit Measures

Given an estimated function, it is crucial to know, how good
the function describes the training data (and even better: is
able to estimate function values of new input data). There
are several known measures for that, called goodness-of-fit
measures.

1) k-fold cross-validation: One measure that is often used
to prohibit overfitting is a k-fold crossvalidation. We will use
this measure later on to categorise kernel-regressions. A k-fold
cross-validation divides the training data in k subsets, uses
k − 1 for estimating the function and the kth for testing, i.e.

computes
∑
i |yi − φ(xi)| for i ∈ {(k − 1) · n/k + 1, ..., n}.

This is repeated k times, i.e. each subset is used once for
testing. Finally, an average and a standard deviation are
computed [9], [10].

2) Confidence and Prediction Intervals: While k-fold
cross-validation gives an overall measure of the estimation’s
goodness-of-fit, it fails to provide information about the con-
fidence in the prediction for a given input. That’s where
confidence and prediction intervals come in. They draw a
lower and upper bound around the estimated output value
with a given confidence, which yields information about how
precise the estimation is.

Definition 1: The confidence interval for the mean of the
dependent variable, conditioned on given values for the inde-
pendent variables, that is E [Y |X = x] is (confidence niveau
of 1− α)

φ̂(x)± qα/2 · SE
[
φ̂(x)

]
where qα/2 is the respective quantile and SE denotes the
standard error (regardless of its computation).

A confidence interval can be interpreted as follows: When
drawing n times, the mean of these results will be in the given
interval in 1 − α % of the cases. Prediction intervals on the
other hand focus on a singular prediction and therefore have
an increased standard error:

Definition 2: The predicition interval for a new observation
of the dependent variable can be computed as follows:

φ̂(x)± qα/2 · SE
[

ˆφ(x) + ε
]

where qα/2 is the respective quantile and SE denotes the
standard error (regardless of its computation).

Prediction intervals give an estimate of how precise the
prediction is in terms of a single observation. Therefore, a
prediction interval will always be longer than a confidence
interval.

For non-linear regressions it is no trivial task to compute a
prediction or confidence interval. Brabanter et al. [6] proposed
a technique to compute approximate confidence and prediction
intervals for SVR.

Analogously to Definition 2 they construct a pointwise (1−
α) prediction interval as follows:

φ̂c(x)± z1−α/2
√
σ̂(x) + V ar

[
φ̂(x)|X = x

]
(10)

φ̂c(x) = φ̂(x) − bias
[

ˆφ(x)|X = x
]

is a bias-corrected
estimation of φ. z1−α/2 is the (1 − α/2)-quantile of the
standard normal distribution.

We will shortly discuss how to compute the estimated bias,
the estimated standard deviation as well as the variance. Most
of this is based on the assumption that φ̂ can be seen as a
linear smoother, i.e. φ̂(x) is a linear combination of training
output data yi. Hence, a matrix L can be constructed, where

each column contains the weights for the linear combination
of a training point:

L =

L(x1) · · · L(xn)


and L(xi) = (l1(xi), ..., ln(xi)) s.t.

φ̂(xi) =

n∑
j=1

lj(xi)yj

Given the dual representation from the kernel regression (see
Equation 12), L can be computed via

L =

(
K

(
Z−1 − Z−1 1n×n

c
Z−1

)
+

1n×n
c

Z−1
)

(11)

where Kij = k(xi,xj), Z = K + 1
γ In and c =∑n

i=1

∑n
j=1 zij . Similiarly, for a new observation x, one can

compute

L(x) =

(
K(x)

(
Z−1 − Z−1 1n×n

c
Z−1

)
+

1n
c
Z−1

)
(12)

where K(x) = (k(x,x1), ..., k(x,xn)).
With this linear smoother at hand, we have

bias
[

ˆφ(x)|X = x
]
= L(x)>(φ̂(x1), ..., φ̂(xn))− φ̂(x)

(13)
To compute the estimated standard deviation, we make use

of L and L(x) again. Furthermore, we need the estimation
residuals εi = yi − φ̂(xi). Then, with diag(A) containing the
diagonal entries of a matrix A and S(x) a linear smoother for
the standard deviation based on the residuals, we have

σ(x) =
S(x)>(ε21, ..., ε

2
n)

1 + S(x)> · diag(LL> − L> − L)
(14)

to estimate the standard deviation.
V ar

[
φ̂(x)|X = x

]
is the only unknown left from Equa-

tion 10. We obtain this again with the linear smoother L(x):

V ar
[
φ̂(x)|X = x

]
= L(x)>

σ
2(x1)

. . .
σ2(xn)

L(x)

(15)
We use this computation in our methodology presented in

Section III.

III. METHODOLOGY

In a perfect evolutionary world, encoding is simple, and
fitness functions are precise, analytically given and easy to
compute. Unfortunately, we have to deal with fitness functions
that are either entirely unknown, highly noised or not effi-
ciently computable. In this case, one uses surrogate functions
to allow the usage of an evolutionary algorithm. However,
surrogate functions differ from the true fitness function and
may lead the algorithm in the wrong direction when assigning
incorrect fitness values to individuals. When the surrogate
function depends on training data that does not follow a

uniform distribution, the function’s preciseness in a given
region depends on the training data’s density (and clearness)
for that region.

We consider the following situation: There is an unknown
functional relation ϕ between a multidimensional input vari-
able X and an output variable Y . The goal of the evolutionary
algorithm is to find a realisation of X that corresponds to a
pre-determined realisation of Y . This pre-determined realisa-
tion is denoted by yx. Through experiments (or simulations)
training data (X1, Y1), ..., (Xn, Yn) have been obtained and
therefrom a prediction technique calculated an estimate ϕ̃
of the relation ϕ. The prediction technique at this stage is
not subject to restrictions (e.g. Support Vector Regression,
Gaussian Processes, Neural Networks and others are possible).
This gives rise to the natural fitness function

f(X) = |ϕ̃(X)− y∗| (16)

where y∗ is the given realisation of Y and the objective is
to minimise the fitness value (i.e. realising ϕ̃(X) = y∗).
Comparing this to the natural fitness function, when ϕ is
known, we obtain∣∣∣f̃(X)− f(X)

∣∣∣ = |ϕ̃(X)− y∗| − |ϕ(X)− y∗| (17)

=

{
|ϕ̃(X)− ϕ(X)| if a · b > 0

|ϕ̃(X) + ϕ(X)− 2y∗| if a · b ≤ 0

(18)

where a = ϕ̃(X)− y∗ and b = ϕ(X)− y∗.
The approximative fitness function f̃ makes an estimation

error - the question is whether and how this affects the evolu-
tionary algorithm. We can summarize the possible outcomes
in a 2× 2 matrix (see Table I):

TABLE I
ESTIMATION EFFECTS ON EVOLUTIONARY ALGORITHM

good candidate bad candidate
overestimating (f̃ − f > 0) problematic unproblematic

underestimating (f̃ − f < 0) unproblematic problematic

We use the term good and bad referring to their actual
fitness and influence on further population development. For
example, a good individual would be one, not only with
a good fitness value (closer to zero) but also leading to a
more promising search space area. Overestimating the fitness
of a good individual is problematic, as this decreases the
likelihood of keeping its genetic information in the population.
Underestimating, on the other hand, is unproblematic, as
it only strengthens a positive effect. Overestimating a bad
individual is unproblematic for the same reason: It only
strengthens an intended effect. However, underestimating a
bad individual’s fitness is problematic, as it might lead to a
prolonged age in the population or even a genetic influence.
Generally speaking, in two out of four cases, the use of
an approximative fitness function (surrogate function) does
hinder the evolutionary algorithm, and in two, it does not.
However, it is unlikely to find a solution that fixes both

problematic situations and leaves unproblematic ones intact.
This problem is similar to hypothesis testing: The restriction
of both errors is impossible. Therefore, one has to decide on
one. As more fit individuals usually have a more decisive
influence on a population (are more likely to be chosen for
recombination, are more likely to have a higher age) than
bad individuals, we will prioritise them. The idea is that the
relative influence of a good individual on the further evolution
of the population is higher than the relative influence of bad
individual. Hence, we will focus on lessening the negative
impact of the overestimation of a good candidate and consider
that any changes might negatively affect the underestimation of
a bad candidate. However, we will make sure that the positive
effects of approximative fitness functions for good candidates
do not vanish.

Returning to the error analysis, we notice the following: In
general, approximative functions do not have constant predic-
tion errors. Instead, these errors depend on the approximated
value. Hence, we can write:

ϕ̃(X) = ϕ(X) + ε(X) (19)

Using this in Equation 18, we obtain∣∣∣f̃(X)− f(X)
∣∣∣ = {|ϕ̃(X)− ϕ(X)| if a · b > 0

|ϕ̃(X) + ϕ(X)− 2y∗| if a · b ≤ 0

(20)

=

{
|ε(X)| if a · b > 0

|2ϕ̃(X)− 2y∗ − ε(X)| if a · b ≤ 0

(21)

=

{
|ε(X)| if a · b > 0∣∣∣2f̃ − ε(X)

∣∣∣ if a · b ≤ 0
(22)

Generally, the higher |ε(X)|, the higher the effect described
in Table I. In our approach, we adapt the fitness function
such that high fitness values get smaller when caused by
an individual X with a high f̃(X). Roughly: When the
approximation is poor, high distances f̃(X) are less penalized.
When the approximation is good, fitness values should only
change marginally. Please keep in mind that this will not
solve both problems simultaneously, hence our decision to
focus on a better assessment for good candidates. As we
cannot compute ε(X)—because if we could, we would use
ϕ instead—we need other means of quantifying the goodness
of the approximation in a particular point. At this point,
prediction intervals come to mind. The length of a prediction
interval reflects the goodness of the prediction at that point.
The shorter the interval, the more precise the approximation.

Factoring in the confidence level of the prediction interval,
we can bound the actual fitness value ϕ(X):

ϕ̃(X)− y∗ − L

2
≤ ϕ(X)− y∗ ≤ ϕ̃(X)− y∗ + L

2
(23)

with probability 1 − α, where α is the confidence level for
constructing a prediction interval for X with length L

2 . With

this in mind and the analysis from Equation 22, we propose
the following adjusted fitness function:

f̃adj(X) =
|ϕ̃(X)− y∗|

L(X)
2

· |ϕ̃(X)− y∗| (24)

We can interpret Equation 24 as follows: If the approximate
distance is smaller than half the length of the prediction in-
terval in that point, we decrease the approximate distance (the
factor is smaller than 1). If it is worse than that, we increase
it (the factor is greater than 1). This logic applies to our
objective mentioned above: If we have a higher approximative
distance, but in a poorly fitted area, i.e. a larger prediction
interval, we decrease the distance such that the individual’s
evaluation will not be too bad. Additionally, when we have a
higher approximative distance in a well-fitted area, we increase
the fitness such that medium and large distances in well-fitted
areas face a penalisation.

IV. IMPLEMENTATION

We created a Java-based implementation of our proposed
approach for the evaluation. The implementation employs
Jenetics and SMILE and is written in Java. Jenetics is a highly
extensible evolutionary algorithm framework [11] which we
extended for our work. We implemented different encodings
and fitness functions. One of the fitness functions takes the
prediction intervals into account. As we focus on the prediction
method of Support Vector Regression for this paper, we
calculate the prediction intervals based on the algorithm by
Brabanter et al. [6]. SMILE, a Java-based statistic library sup-
porting different regression algorithms [12], helps us calculate
the regressions and the corresponding prediction intervals.

search phaselearning phase

training data

goodness
of fit

regression

support vector
regression

prediction intervals

evolutionary algorithm

quality estimation

164C99

approximative
fitness

individual

target

Fig. 1. Details on the Implementation

Figure 1 depicts a sketch of our approach’s implementation.
All steps or data shown in light blue or white symbolise the
original evolutionary algorithm’s steps using an approximative
fitness function. Dark blue elements represent extensions made
to the fitness function to take the prediction intervals into
account. The learning phase, which takes place before the
actual evolutionary algorithm, takes the training data and trains
a least square support vector regression, which we store for
later use. In this step, we additionally do a quality estimation
of the determined regression. This calculation results in extra
goodness of fit values which we store for later use, as well.
The search phase comprises the evolutionary algorithm. The
approximative fitness function takes a target specification as

its optimisation goal and finds an individual whose predicted
value is close to the target. Therefore, the approximative fitness
function uses the calculated regression to determine the fitness
of individuals. We added a factor using the prediction interval
length, which the algorithm calculates for each individual. The
calculation uses the goodness-of-fit values stored earlier.

To reduce the calculation time during the evolutionary
algorithm, we compute as much information necessary for the
prediction intervals as possible beforehand.

Algorithm 1 Computation during Learning Phase

1: Compute ŷi = φ̂(xi) ∀i ∈ {1, .., n}
2: Compute εi = ŷi − yi ∀i ∈ {1, .., n}
3: Compute L following Equation 11 and diag(LL>−L>−
L)

4: Store IM = Z−1 − Z−1 1n×n
c Z−1 and IV = 1n×n

c Z−1

5: Compute σ̂(xi) ∀i ∈ {1, .., n}

This leaves only the following for online computation:

Algorithm 2 Computation during Search Phase
Require: x, α

1: Compute K(x) following Equation 12
2: L(x) = K(x) ∗ IM + IV
3: Compute σ(x) following Equation 14
4: Compute l/2 = z1−α/2

√
σx +

∑n
i=1 l

2
i (x) · σ2(x)

The precomputation of IM and IV (see Algorithm 1, line
4) allows to have the most costly step (matrix inversion)
performed only once. The online computation then has only
n kernel computations and three matrix multiplications to
perform, making it more efficient.

V. EVALUATION

This section is structured as follows: We first present
the research questions to be investigated. We evaluate our
approach on four benchmark functions and three test cases
from a real-world scenario. For the analytical (benchmark) as
well as the application domain, we first describe the evaluation
setup, second show and describe the obtained results and third
discuss our results.

We aim to answer the central question:
RQ 1: Does the proposed adjusted fitness function perform

better as the normal approximative fitness function?
Because we identify the chosen target, the prediction’s

goodness-of-fit, the training data’s distribution and the evo-
lutionary algorithm’s configuration as influencing factors, we
additionally plan to investigate their influence on the perfor-
mance of our proposed adjustment of approximative fitness
functions. This results in the following research questions:

RQ 2: Does the encoding have a substantial influence on
the performance of the adjusted fitness function?

RQ 3: Does the distribution of training data have a sub-
stantial influence on the performance of the adjusted fitness
function?

TABLE II
EVALUATED BENCHMARK FUNCTIONS WITH PARAMETERS, RANGE (i ∈ {1, ...,m}), AND DIMENSION

Function Formula Range Dimension
WeightedSphere f(X) =

∑m
i=1 i

2X2
i Xi ∈ [−5.12, 5.12] m = 10

Rastrigin f(X) = 10m+
∑m

i=1

(
X2

i − 10 cos 2πXi

)
Xi ∈ [−5.12, 5.12] m = 10

Rosenbrock f(X) =
∑m−1

i=1

(
100

(
X2

i −Xi+1

)2
+ (1−Xi)

2
)

Xi ∈ [−2.048, 2.048] m = 10

Ackley f(X) = 20 + exp (1)− 20 exp (−
√

1
5m

∑m
i=1X

2
i)− exp (1

m

∑m
i=1 cos 2πXi) Xi ∈ [−20, 30] m = 10

RQ 4: Does the estimation quality of the regression influ-
ence the performance of the adjusted fitness function?

We first evaluate our approach on a set of four benchmark
functions, and second on a real-world application from mate-
rial sciences.

A. Benchmark-Functions

1) Description of Setup: The benchmark functions differ
from the real-world scenario in one relevant aspect: We know
the true function. To simulate an analogue situation as in the
real-world scenario, we use a three-level approach: First, we
construct training data: According to a specified distribution,
we generate input values and calculate corresponding output
values - according to the given function. Second, we noise
these output data using Gaussian noise: δi ∼ N (0, 1)), as
experimental data is seldomly perfect. Third, we use different
SVR to obtain the approximative functions. These approxima-
tive functions then serve as input for the different evolutionary
algorithms and different targets. As many factors influence
the performance of our approach, we used a combinatorial
approach using four categories. The first category contains the
different functions. The second category handles the distribu-
tion of training data. The third category considers different
goodness-of-fit of the respective SVR and the fourth consists
of various evolutionary algorithms (see Table III).

One setup specification (consisting of function, distribution,
goodness-of-fit, evolutionary algorithm and target) is opti-
mised ten times for each fitness function. We then compare
the mean of the true (benchmark) fitness over these ten runs
for the ones that followed an optimisation with the adjusted
fitness function to the ones that followed an optimisation with
the approximative fitness function, i.e. µ(f(bestIndadj)) and
µ(f(bestIndapp)). Please note the index at bestInd describes
the fitness function used for the evolutionary algorithm, this
bestIndividual resulted from, while an index on f would denote
the fitness function used to evaluate the fitness of this given
individual. Additionally, we compare the corresponding best
results of these ten runs. Thus, we use the true fitness function
to obtain an objective comparison but use the modified one for
the evolutionary process.

For each setup, we perform Welsh’s t-test [13] with
Satterwaite’s degree of freedom):

TABLE III
ENCODING, SELECTORS AND ALTERERS FOR EVOLUTIONARY

ALGORITHM (EA)

Encoding Selectors Mutator Recombinator
real-valued Elite/Tournament,

StochasticUniversal
Gaussian Mean, Arithmetic-

Crossover
naive bit Elite/Tournament,

StochasticUniversal
Swap SinglePointCrossover,

UniversalCrossover
gray bit Elite/Tournament,

StochasticUniversal
Swap SinglePointCrossover,

UniversalCrossover

t =
µ(f(bestIndadj))− µ(f(bestIndapp))√

σ2(f(bestIndadj))
n(runs) +

σ2(f(bestIndapp))
n(runs)

(25)

ν =

(
σ2(f(bestIndadj))

n(runs) +
σ2(f(bestIndapp))

n(runs)

)2
(
σ2(f(bestIndadj))

n(runs)

)2

n(runs)−1 +

(
σ2(f(bestIndapp))

n(runs)

)2

n(runs)−1

(26)

ν denotes the degrees of freedom we will use for the hypothe-
sis test. n(runs) = 10 for our setup. These distances and test
statistics, and corresponding p-values are the foundation of all
later analysis.

a) Functions: A classification of benchmark functions
for EA follows their main properties: modality and separa-
bility. We choose four functions, each for one combination
of these properties. We chose the WeightedSphere Function
for unimodality and separability, and for multimodality and
separability, we chose the Rastrigin Function. We chose the
Rosenbrock Function for unimodality and inseparability and
the Ackley Function for multimodality and inseparability. Ta-
ble II lists all functions formula expression, chosen parameters
(if necessary) and ranges for input variables.

b) Distributions: As the distribution of training data
affects the local goodness-of-fit of the regression made on
these training data, we used two different distributions for our
evaluation. First, we used an independent multivariate normal
distribution with a mean at the centre of the proposed range
for the given function. For example, when using the Ackley-
Function with range: −20 ≤ Xi ≤ 30, we set µ(Xi) = 5.0.
We set the standard deviation such that the ranges are in a 3σ
interval of the distribution.

Second, we used an independent multivariate uniform dis-
tribution to mirror an experimental design without any expert
knowledge beforehand. We choose lower and upper bound
according to the ranges of the respective function.

normal uniform

bit double gray bit double gray

-50

-40

-30

-20

-10

0

tr
u
e
 fi

tn
e
s
s

optimisation fitness adjusted approximative true

(a) Results of Ackley-function with m=10, n=1000

normal uniform

bit double gray bit double gray

-50000

-40000

-30000

-20000

-10000

0

tr
u
e
 fi

tn
e
s
s

optimisation fitness adjusted approximative true

(b) Results of Rosenbrock-function with m=10, n=1000

normal uniform

bit double gray bit double gray

-1000

-750

-500

-250

0

tr
u
e
 fi

tn
e
s
s

optimisation fitness adjusted approximative true

(c) Results of Rastrigin-function with m=10, n=1000

normal uniform

bit double gray bit double gray

-10000

-7500

-5000

-2500

0

tr
u
e
 fi

tn
e
s
s

optimisation fitness adjusted approximative true

(d) Results of WeightedSphere-function with m=10, n=1000

Fig. 2. Evaluation results for four benchmark functions comparing three optimisation modi through the true fitness value (m is number of dimensions, n is
number of training points

c) Goodness-of-fit of SVR: We expect different results
of our approach depending on the goodness-of-fit of the
approximative function. To compare like with like, we com-
pute three approximative functions for one setting (function,
distribution) and divide them into three groups: bad, average
and good. We base this classification on the results of a 10-fold
cross-validation. As we use different benchmark functions, we
obtain different areas of goodness-of-fit values. For example,
the WeightedSphere function has very small cross-validation
results, whereas the Rosenbrock function has much higher
cross-validation results. We address this with the use of a
relative classification: We, therefore, classify the best obtained
result as good, classify the worst obtained result, which is
still in a range of 100% of the best obtained result, as poor
and chose a result around the average of both values as
average. We use different kernels with different settings to
obtain approximations in these different classes. The kernels
we use are: Gaussian kernel, laplacian kernel and polynomial
kernel [14]. The meta-parameters ε, soft margin and tolerance
are kept identical to ensure comparability.

d) Evolutionary Algorithm: We use several different
evolutionary algorithms to obtain a more valid result. We
encode the problem domain with one chromosome for each
dimension, i.e. a genotype consists of m chromosomes. A
chromosome can hold the value information in three different
encodings: One, as a real-valued encoding (thus, only one gene
per chromosome), second as a naive bit-encoding (thus, 64
genes per chromosome), third as a gray-bit-encoding (again,
64 genes per chromosome). We use a gaussian mutator and

either the mean recombinator or an arithmetic crossover as
recombination operator for real-valued encodings. For bit-
valued encodings, we use a swap mutator together with a
single-point crossover or a uniform crossover. We either use
an elitism approach, where 40% of the population are chosen
with an elite selector, and the rest is chosen by a tournament-
selector, or a stochastical approach, where only a small portion
is chosen with an elite-selector, and the rest are chosen with a
stochastic-universal-selector. The combination of all variations
leads to a variety of configurations that cover many possible
characteristics of EAs. For an overview, see Table III. Please
note that we evaluated each of these algorithms with each of
the fitness functions. We used a population size of 100 and a
fixed number of 100 generations.

All in all, we ran 144 setups, each of them for 50 targets.
We ran each setup once for each modus to compare the three
optimisation modi true, approximative and adjusted. These
21.600 runs were repeated ten times for statistical reasons,
making a total of 216.000 runs.

2) Results: First, to give the reader an overview, Fig-
ure 2 shows the distribution of f(bestInd) for all employed
fitness functions. The boxplots from left to right are al-
ways f(bestIndadj), f(bestIndapp), f(bestIndtrue). We can
see that the adjusted fitness function outperforms the ap-
proximative function for the Rosenbrock function and the
WeightedSphere function as the median and both quartiles are
closer to zero. In contrast, for the Ackley Function and the
Rastrigin function, the approximative function is slightly better
or does not differ much from the adjusted function. Please

0

250

500

750

1000

0.00 0.25 0.50 0.75 1.00

p-values

fr
e
q
u
e
n
cy

Fig. 3. Distribution of p-values for all 7200 specified runs.

TABLE IV
RATIO OF STATISTICALLY SIGNIFICANT ADJUSTED WINS TO

APPROXIMATIVE WINS

Significance Ratio(adj:app) result
α = 0.05 1575:1430 1.1014
α = 0.01 1141:832 1.3714
α = 0.005 1012:683 1.4817
α = 0.001 794: 383 2.0731

note the different y-axes for each function and the fact, that
we employed the dual problem to Section III, i.e. calculation
the negative fitness value and optimising towards zero.

Figure 3 shows the result of pairwise two-sample
hypothesis-test following Equation 25. We computed the p-
value for each pairing (a pairing is one distinct setup with
approximatve and adjusted fitness functions) and plotted the
p-values frequency. For all pairings with a p-value higher than
1 − α the proposed method outperforms the approximative
fitness function. For all pairing with a p-value smaller than α,
the approximative fitness function outperforms the proposed
methodology. Please note, that we performed 7200 different
t-tests (number of target times number of setups) whose p-
values are displayed in Figure 3. When setting α = 0.05 to
achieve statistical significance, we obtain a 1575:1430 ratio,
i.e. 1575 setups were won by the adjusted fitness function and
1430 setupt were won by the approximative fitness function.
Won means the hypothesis test decided statistically significant
for this option. For α = 0.01 we even obtain 1141:832. The
results for α = 0.005, α = 0.001 can be found in Table IV.

We then used the p-values computed above to investigate the
influence of the training data’s distribution on the performance
of the adjusted fitness function. Figure 4 shows the number
of wins in each category (if neither approximativ nor adjusted
performed significantly better at 1 − α = 0.95, we assigned
to the category borderline). The solid bars show those for
normal distribution, the dashed lines for uniform distribution.
Each subgraph represents one level of goodness-of-fit. We
can see, that in setups with a uniform distribution, adjusted
outperforms approximative for levels bad and good, while in
setups with a normal distribution, this is not the case. On
the other hand, for the average case, the normal distribution
performs less poor than the uniform distribution (uniform has
a higher tendency towards approximative than normal).

average bad good

adju
ste

d

appro
xim

ativ
e

bord
erli

ne

adju
ste

d

appro
xim

ativ
e

bord
erli

ne

adju
ste

d

appro
xim

ativ
e

bord
erli

ne

0

200

400

600

800

n
u
m

b
e
r

o
f
w

in
s

 (
c
o
n
fid

e
n
c
e
 0

.9
5
)

distribution

normal

uniform

Fig. 4. Statistically significant wins split between distribution and level of
goodness-of-fit

We repeated this procedure to compare the performance
based on levels of goodness-of-fit. Figure 5 depicts the out-
come. For poorly fitted fitness functions adjusted outperforms
approximative, for well fitted, there is a tendency towards
adjusted, while for average approximative has higher results.

Finally, we investigated the encoding’s influence and thus
the algorithm’s configuration’s influence. Figure 6 depicts
the results. We see an interesting result that fits the data
depicted in Figure 2: The bit-encoding significantly favours
the adjusted optimisation, while the gray-encoding favours the
approximative. Interestingly, the choice of selector seems to
have little to no influence.

3) Discussion: Now, we can answer our research ques-
tions from the beginning of the chapter: The evaluation on
benchmark functions showed that our method, in general,
outperforms the standard approximative technique. While there
are setups where our method fails to produce better results
(most seen with the Rastrigin Function), our method wins
more setups. Interestingly, when it outperforms, it does so
overwhelmingly (see Table IV).

Second, the encoding does have an influence. Setups with
bit-encoding favour the adjusted fitness function. This obser-
vation might stem from the fact that small changes in bit-
encoding can lead to huge changes in the domain. This aligns
with the main idea behind the proposed method: To allow more
exploration, even when the fitness values are poor (if it is due
to a poor fitting). We plan to investigate this relation in future
work. Third, the distribution of training data does seem to
have an influence, though no significant one. For well and in-
sufficiently trained data, setups with uniform distribution tend
towards adjusted, while the normal distribution performs better
with average fittings. This is surprising, as we expected the
normal distribution to have a better influence on our method
than the uniform. It might correlate with the distribution of the
targets in the output space. We assume that for targets on the
outskirts of our distribution, our method performs better. We
continue to research in this direction. Fourth, the estimation
quality is an influencing factor. Our method has the highest
positive impact for good and bad levels, as we expected.
Another detail the data show is that our method seemingly
works better on unimodal functions (WeightedSphere and

elite stochastic

adjusted

approximative

borderline
adjusted

approximative

borderline

0

250

500

750

n
u
m

b
e
r

o
f
w

in
s

 (
c
o
n
fid

e
n
c
e
 0

.9
5
)

encoding

bit

double

gray

Fig. 6. Statistically significant wins for different encodings and selectors

0

500

1000

1500

adjusted approximative borderline

n
u
m

b
e
r

o
f
w

in
s

 (
c
o
n
fid

e
n
c
e
 0

.9
5
)

level

average

bad

good

Fig. 5. Statistically significant wins for different levels of goodness-of-fit

Rosenbrock Function). Whether this is due to the modality
or due to their goodness-of-fit (WeightedSphere had an overall
high goodness-of-fit, Rosenbrock a relatively weak one) is still
an open question which we plan to investigate further.

B. Application from material sciences

We additionally tested our approach on an application from
material sciences. Ellendt et al. proposed a high-throughput
method to identify the ingredients (alloy specification, ther-
mal and mechanical treatment) for structural materials (for
example, steel) that match a given requirement profile [15].
As there is no functional relation known between alloy spec-
ification/treatments and the resulting requirement profile, a
predictive function was developed, mapping so-called micro-
descriptors (characteristic values on micro samples of the
same material) onto the requirement profile. This enables a
backwards search for a given requirement profile, yielding a
set of micro descriptors.

1) Description of Setup: We evaluated three different cases,
all mapping micro-descriptors to requirement profiles. We first
trained a predictive function (the approximative function) and
employed our technique of prediction intervals. As there was
no gold standard (for no true function is known), we had
to change our evaluation such, that we compare both the
approximative fitness values for both optimisation modi and
the adjusted instead of the true fitness values, i.e. we used
fapp,adj(bestIndadj) and fapp,adj(bestIndapp).

2) Results: We compared the ratios ratio(fapp) =
wins(Adjusted)

wins(Approximative) and ratio(fadj) =
wins(Approximative)

wins(Adjusted) to
see, whether one of both performs comparatively better. We

obtain ratio(fapp) = 12/161 = 0.745 for the approximative
optimisation modus, and ratio(fadj) = 8/148 = 0.541 for the
adjusted optimization. That is, when comparing approxima-
tive fitness values, the adjusted optimisation mode performed
relatively better than the approximative did, when comparing
adjusted values.

3) Discussion: We see that our method produces positive
results for an application example from material sciences. As
the next step of evaluation, we plan to verify our results
experimentally.

VI. CONCLUSION AND FURTHER RESEARCH

We proposed incorporating statistical knowledge about the
goodness-of-fit into an approximative fitness function, given
that the actual fitness function is unavailable. We implemented
our approach for kernel-based SVR with an approximative
technique to compute prediction intervals. We evaluated our
approach using 144 different setups, customising benchmark
function, training data distribution, goodness-of-fit and con-
figuration of the evolutionary algorithm. Our results show that
our approach is significantly better in more cases than the
approximative fitness function. We see a better performance in
unimodal benchmark functions. We plan to develop analogue
adjustments for different learning techniques, such as gaussian
processes and neural networks, in further work. Finally, we
hope to investigate the influence of the target’s position on
the performance of our method.

REFERENCES

[1] K. De Jong, D. Fogel, and H.-P. Schwefel, A history of evolutionary
computation, 01 1997, pp. A2.3:1–12.

[2] D.-P. Yu and Y.-H. Kim, “Predictability on performance of surrogate-
assisted evolutionary algorithm according to problem dimension,” 07
2019, pp. 91–92.

[3] T. Chugh, C. Sun, H. Wang, and Y. Jin, Surrogate-Assisted Evolutionary
Optimization of Large Problems, 01 2020, pp. 165–187.

[4] L. Shi and K. Rasheed, A Survey of Fitness Approximation Methods
Applied in Evolutionary Algorithms, 01 2010, vol. 2, pp. 3–28.

[5] Y. Jin, “A comprehensive survey of fitness approximation in evolutionary
computation,” Soft Computing, vol. 9, pp. 3–12, 10 2005.

[6] K. Brabanter, J. De Brabanter, J. Suykens, and B. De Moor, “Approxi-
mate confidence and prediction intervals for least squares support vector
regression,” IEEE transactions on neural networks / a publication of the
IEEE Neural Networks Council, vol. 22, pp. 110–20, 11 2010.

[7] A. Smola and B. Schölkopf, “A tutorial on support vector regression,”
Statistics and Computing, vol. 14, pp. 199–222, 08 2004.

[8] V. Vapnik, The Nature of Statistical Learning Theory. Springer, 2000.
[9] T. Fushiki, “Estimation of prediction error by using k-fold cross-

validation,” Statistics and Computing, vol. 21, pp. 137–146, 2011.
[10] J. D. Rodriguez, A. Perez, and J. A. Lozano, “Sensitivity analysis of k-

fold cross validation in prediction error estimation,” IEEE Transactions
on Pattern Analysis and Machine Intelligence (TPAMI), vol. 32, no. 3,
pp. 569–575, 2010.

[11] F. Wilhelmstötter, “Jenetics,” https://jenetics.io, 2021.
[12] H. Li, “Smile,” https://haifengl.github.io, 2021.
[13] B. L. Welch, “The generalization of ‘student’s’ problem when

several different population variances are involved,” Biometrika,
vol. 34, no. 1/2, pp. 28–35, 1947. [Online]. Available:
http://www.jstor.org/stable/2332510

[14] D. Duvenaud, J. Lloyd, R. Grosse, J. Tenenbaum, and Z. Ghahramani,
“Structure discovery in nonparametric regression through compositional
kernel search,” Proceedings of the 30th International Conference on
Machine Learning, 02 2013.

[15] N. Ellendt and L. Mädler, “High-throughput exploration of evolutionary
structural materials,” HTM Journal of Heat Treatment and Materials,
vol. 73, pp. 3–12, 2018.

