
Special Session

Prompt. Verify. Repeat.
LLMs in the Hardware Verification Cycle

Muhammad Hassan1,2, Mohamed Nadeem1, Khushboo Qayyum2, Chandan Kumar Jha1, Rolf Drechsler1,2
1Institute of Computer Science, University of Bremen, 28359 Bremen, Germany

2Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany
{hassan, mnadeem, chajha, drechsler}@uni-bremen.de khushboo.qayyum@dfki.de

Abstract—In this paper, we review the use of Large Language
Models (LLMs) in the context of hardware verification, using the
concept of a semantic layer to organize their role. We place LLMs
within a centaur-style workflow and describe their operation as
an iterative loop, Prompt. Verify. Repeat.. In this loop, an LLM
is first prompted to generate or modify a verification artifact.
The artifact is then evaluated using standard EDA tools and
human review. Based on the results, the prompt or constraints
are adjusted, and the process is repeated until the verification ob-
jectives are met. Within this structure, LLMs function alongside
existing tools to support the verification process. Furthermore, we
present a simple example of illustrating this concept in deductive
reasoning in hardware verification as an application.

Index Terms—Hardware verification, large language models,
assertion generation, formal methods, AI in EDA

I. INTRODUCTION

Advancements in semiconductor fabrication, as outlined by
Moore’s Law, have led to System-on-Chips (SoCs) and other
Integrated Circuits (ICs) with tens of billions of transistors.
As their functionality increases, pre-silicon hardware verifi-
cation now consumes about 70% of development time and
resources [1]. Errors detected after tape-out typically cannot
be repaired through software updates; they instead require new
silicon, resulting in additional cost and delays in Time-to-
Market. Verification teams therefore combine simulation, for-
mal property checking, emulation, and FPGA prototyping in
multi-stage sign-off flows that uncover corner cases under tight
schedules. The overall hardware verification process itself is
typically structured into several stages to ensure thoroughness.
However, the main difficulty stems from semantic translation.
Requirements start as informal natural language, behavior is
written in Hardware Description Languages (HDLs) like Ver-
ilog or SystemVerilog, verification intent appears in assertion
languages like SystemVerilog Assertions (SVA) or Property
Specification Language (PSL), stimulus is described in Univer-
sal Verification Methodology (UVM), and debug questions are
asked against waveform traces. Each hand-off can introduce
misinterpretation, and the volume of artifacts strains human
attention.

This work was supported in part by the German Federal Ministry of
Research, Technology and Space (BMFTR) within the project ECXL under
contract no. 01IW22002, the project PaSVer under contract no. 16ME0855,
the project SASPIT under contract no. 16KIS1852K, the project ECXLplus
under the contract no. 01IW24001 and the project Scale4Edge under contract
no. 16ME0127.

Recently, the field of Artificial Intelligence (AI) has wit-
nessed a transformative breakthrough with the advent of
Large Language Models (LLMs). Prominent examples of
foundational LLMs that have driven progress include the
LLMs from OpenAI (e.g., GPT-3, GPT-4) [2], Llama mod-
els from Meta [3], Claude from Anthropic [4], DeepSeek
models [5], and Gemini from Google [6]. LLMs have shown
great promise in generating HDLs based on natural language
descriptions, partial code snippets, or specific instructions [7].
Consequently, LLMs are now being investigated for their
potential to assist in hardware verification by automatically
generating assertions [8]–[10]. When generated accurately
and consistently, these assertions contribute to verifying the
correctness, completeness, and consistency of the hardware de-
sign; core principles of effective verification. As a result, they
can significantly reduce the time and effort required. Several
studies have shown that LLMs are capable of producing high-
quality assertions in various HDLs, making them promising
candidates for improving the verification process [11]–[13].

The increasing complexity of verification processes along
with the development of LLMs is prompting a shift in the
verification approaches. Traditional verification methods are
facing growing limitations, leading the industry to explore
alternative solutions. LLMs, which have shown effectiveness
in processing code and complex text, are being considered
as a possible next step. However, these models are not com-
prehensive world models. Their probabilistic token generation
can invent signals, mislabel the design hierarchy, and produce
behavior or structures that deviate from the intended hardware
design unless guided by a golden reference design. However,
their real value emerges when they are partnered with humans
in a centaur workflow [14] (i.e., a human-AI collaborative pro-
cess) serving as a semantic layer [15] that links requirements,
RTL, and verification artifacts, while deterministic Electronic
Design Automation (EDA) tools continue to supply definitive
pass/fail evidence.

Contribution: In this paper, we review the LLMs from the
semantic layer concept and position them within a centaur
workflow for hardware verification. We frame the interaction
as an iterative three-step loop Prompt. Verify. Repeat. First,
prompt the LLM to generate or transform a verification arti-
fact. Second, verify the artifacts with existing EDA tools and
human inspection, and third, repeat the cycle, refining prompts
or constraints until verification goals are met. This view
positions LLMs as adaptable translators that operate beside979-8-3315-2037-3/25/$31.00 ©2025 IEEE

existing EDA tools. We believe this will help researchers
in EDA look at LLMs in a different way to develop their
novel methodologies. Additionally, using this semantic layer
concept, we show a simple illustrative example of using
deductive reasoning in hardware verification.

The remainder of the paper is structured as follows: Section
II discusses different existing related works integrating LLMs
in the hardware verification flow. Section III discusses open
challenges which are creating a bottleneck for LLM integra-
tion, Section IV presents our semantic layer approach and an
illustrative example, and Section V discusses promising future
directions.

II. LLMS FOR VERIFICATION

Several works have explored machine learning techniques
for verification [16]–[18] in the past. However, in this section,
we aim to highlight the research problems in verification where
LLMs in particular have shown potential. Even though the
use of LLMs initially in the domain of EDA was limited
to the generation of the hardware description code, it has
significantly advanced thereafter in the area of verification.

In [19], the authors were among the first to explore the
use of LLMs in the verification process. They introduced a
framework called nl2sva, which generates SVA for a given
circuit based on a general natural language specification. Their
methodology employs few-shot prompting, using chain-of-
thought examples to enhance the quality of the generated
assertions. Both human feedback and model checker outputs
are utilized to help the LLM debug and refine its results.

In [20], the authors also addressed the challenge of translat-
ing natural language specifications into SVA. To address this
issue, they demonstrated that the process could be automated
using LLMs by following a three-step automated approach: (a)
extracting relevant information for SVA generation from the
specification document, (b) aligning terminology between the
natural language specification and the HDL implementation,
and (c) generating the SVA. Using this method, they achieved
an 89% success rate in producing assertions that were both
structurally and functionally accurate.

In [21], the authors present a two-step approach for gen-
erating SVA for OpenTitan designs. In the first step, design
specifications are converted into a JSON file with a fixed
format, which serves as input to the LLM. The high-level
idea is to aid the LLM in understanding the specifications in a
structured manner. In the second step, the assertions produced
by the LLM are validated using the VCS simulation tool. The
resulting log files are then used to iteratively refine the SVA as
needed. Although fewer than 27% of the assertions required
modification, the authors suggest that using domain-specific
LLMs tailored for Assertion-Based Verification (ABV) could
further enhance the quality of the generated assertions.

In [22], the authors reduced the number of iterations re-
quired for SVA generation by introducing a feedback loop.
In this loop, both the Verilog design and the specification are
provided as input to the LLM, enabling better synchronization

of signal names between the design and the generated asser-
tions. Additionally, manual prompts and error messages from
the simulator are used to iteratively refine the SVAs.

In [23], the authors examined the quality of invariants gen-
erated by LLMs using both design specifications and Verilog
code as input. To assess these invariants, they introduced
mutations into the design using the Yosys tool and analyzed
how effectively the generated invariants responded to these
changes. The authors also shared several key observations
from their experiments: (a) LLMs perform well with structured
input data, consistent with findings in [21]; (b) positive rein-
forcement and monetary incentives can enhance LLM output
quality; (c) when provided with a counterexample, LLMs were
unable to repair or patch the design; and (d) LLMs struggled
to comprehend flattened netlists.

In [24], the authors advocate for the use of domain-specific
language models instead of general-purpose LLMs. They
propose adapting a general model by fine-tuning it with VLSI-
specific data to improve performance. For evaluation, they
utilize metrics such as pass@k and BLEU score to compare
their model against existing LLMs. Although their domain-
adapted model outperformed others of similar size, GPT-4
remained the most effective in generating SVA from natural
language specifications.

In [25], [26], the authors introduce a methodology for iden-
tifying and patching design bugs using LLMs in combination
with Retrieval-Augmented Generation (RAG). They develop
an iterative bug detection and fixing framework, where RAG
enhances the LLM’s context awareness during prompting. Five
types of bugs were manually introduced into the OpenTitan
design, and the LLM successfully patched four of them. The
exception involved a bug caused by an incorrect constant
value, which the LLM was unable to fix.

In [27], the authors tackle the issue of syntax errors in
Verilog code generated by LLMs. Their approach combines
RAG with a React-based prompting strategy—comprising
steps of thought, action, and observation—to enhance correc-
tion quality. Their methodology corrected 98.5% of syntax
errors. Additionally, GPT-4 alone achieved 98% correction
accuracy with just one-shot prompting, but their method offers
a more scalable solution for smaller models.

In [28], an iterative methodology is introduced to correct
both syntactic and functional errors in RTL code. The approach
employs two LLM-based agents, one dedicated to debugging
and the other to evaluating the design’s completeness and
overall quality. The authors further enhance the correction
process by fine-tuning the LLM and employing advanced
prompting strategies like self-planning and role prompting.

In [29], the authors propose using a domain-specific LLM
for hardware debugging. They build a training dataset from
design defects and fixes extracted from version control systems
of open-source repositories. A LLM is then trained on this data
to detect and correct bugs. However, the authors observe vari-
ability in the performance of fine-tuned models, highlighting
the need for further refinement in training methodologies.

In [30], the authors present the first comprehensive bench-
mark suite and evaluation framework for assessing the ability
of LLMs to generate SVA. The benchmark comprises three
test scenarios: (1) NL2SVA-Human, which evaluates LLM
performance when provided with high-quality human-written
testbenches and specifications; (2) NL2SVA-Machine, which
tests LLMs on diverse natural language specifications; and (3)
the most challenging, Design2SVA, which assesses whether
an LLM can generate SVA using only RTL code.

In [31], the authors construct a large dataset of over 1,000
High-Level Synthesis (HLS) programs, each with up to 40
injected bugs. This dataset serves as a valuable resource for
training LLMs on bug detection and correction in high-level
synthesis designs.

In [32], the authors explore using LLMs for verifying both
conventional RISC-V and neuromorphic processors. Their
results show that LLMs can achieve up to 89% coverage. How-
ever, their methodology depends on human intervention, which
limits scalability. To address this, they suggest automating
certain steps, such as converting coverage reports into prompts
to improve scalability.

In [33], the authors propose a multi-step process for using
LLMs to generate formal proofs for verification. The process
involves breaking the code into smaller modules, identifying
simple modules, generating properties for them, and progres-
sively connecting and verifying these modules in a hierar-
chical fashion. This iterative approach is especially suited
for hierarchical designs. In [34], the authors use LLMs to
generate auxiliary properties that support complex verification
tasks. They also leverage counterexamples from induction-
based methods to create assertions that aid in k-induction
proofs.

In [35], the authors introduce SYNTHTL, a tool designed to
translate natural language specifications of hardware behavior
into Temporal Logic (TL) specifications. The approach ad-
dresses challenges such as ambiguity in natural language and
the difficulty of validating potentially incorrect translations.
SYNTHTL integrates LLMs, model checking, and human
feedback in a loop. It decomposes complex specifications
into simpler sub-statements, translates each into TL, and then
combines them, reducing validation effort and enhancing tool-
assisted verification of natural language inputs.

In [36], a comprehensive framework is proposed to support
RTL code generation and verification from natural language
instructions. The framework includes: (1) a benchmark for
evaluating LLM performance in RTL code and assertion
generation, (2) a large dataset of instruction-code pairs, and
(3) a unified infrastructure for both training and fair evaluation
of LLMs in RTL-related tasks.

Finally, in [37], the author explores the use of LLMs for
generating human-readable proofs in the context of Polyno-
mial Formal Verification (PFV). Using OpenAI’s GPT-4o, the
model is able to generate complete proof structures, including
the base case, hypothesis, and inductive step, which can then
be validated through deterministic reasoning engines.

From the prior works, it is clear that the LLMs indeed have

immense potential for use in hardware verification. However,
there exist some challenges which we discuss in the next
section.

III. KEY CHALLENGES

LLMs have notable potential in hardware verification, but
their broad and dependable use depends on addressing several
technical and practical challenges. In this section, we briefly
discuss a few of the challenges.

A. Data Scarcity for HDLs

The performance of LLMs is heavily dependent on the
quality and quantity of their training data. A major bottleneck
to developing highly proficient LLMs for hardware verification
is the relative scarcity of large-scale, high-quality, publicly
available datasets of HDL code, especially for specialized
artifacts like complex SVA or comprehensive testbenches,
when compared to general-purpose software programming lan-
guages. This data deficit is a primary contributor to poor LLM
performance and the tendency to hallucinate when generating
HDL-specific content. Much of the existing HDL code within
corporations is proprietary and represents valuable intellectual
property, making it challenging to use for training publicly
accessible models. While fine-tuning open-source LLMs on
smaller, curated HDL datasets is a viable approach, this pro-
cess itself requires significant effort, computational resources,
and domain expertise. In this regard, [30] introduced the first
comprehensive benchmark suite and evaluation framework to
assess the ability of LLMs in generating SVA. Similarly,
initiatives like the VERT dataset [18], which provides open-
source SVA represent crucial steps towards addressing this
data gap. However, more such efforts are required at this end.

B. Scalability and Explainability

As SoCs continue to grow in size and complexity, the scal-
ability of LLM-based verification solutions becomes a critical
consideration. Integrating LLMs to verify designs containing
billions of transistors and expansive state spaces presents
significant challenges. These include the high computational
resources required, the limited context windows of current
LLMs that may be insufficient to capture an entire design or its
documentation, and the overwhelming volume of information
that must be processed and analyzed. Equally important is
the issue of explainability. For verification engineers to trust
and effectively utilize LLM-generated artifacts (e.g., SVA,
test stimuli, bug patches), they often need to understand why
the LLM produced a particular output or made a specific
recommendation. The black box nature of many deep learning
models, including LLMs, makes their internal reasoning pro-
cesses opaque, which is a significant hurdle for adoption in
safety-critical applications.

C. Evaluation Metrics and Benchmarking

Defining appropriate, robust, and comprehensive metrics to
evaluate the quality, correctness, and practical effectiveness of
LLM-generated verification artifacts is a non-trivial challenge.

Simple metrics like code similarity to a reference, or pass/fail
rates on a limited set of tests, may not be sufficient to capture
the true utility or potential pitfalls of an LLM-generated
SVA, test case, or debug suggestion. Metrics currently em-
ployed include syntax correctness and functional correctness
determined by formal property verification pass/fail status as
outlined in Section II. There is a pressing need for standardized
benchmarks and dedicated evaluation frameworks specifically
designed for assessing LLMs in the context of hardware
verification. A further consideration is the potential risk of
LLM-induced bugs. If not managed and validated with extreme
care, LLMs could inadvertently introduce new, subtle, and
difficult-to-detect errors into the verification process itself, e.g.,
an incorrectly generated assertion might pass on a correct
design but fail to detect a genuine design flaw, or, sneakily it
might pass on a buggy design, thereby creating a false sense of
security. Similarly, a poorly designed test case generated by
an LLM might achieve superficial coverage metrics without
actually stressing the critical functionalities or corner cases
of the design. This implies that the outputs of LLMs used in
verification must themselves be subjected to rigorous meta-
verification. This might involve applying formal methods to
verify properties of LLM-generated SVA. This adds another
layer of complexity but is crucial for ensuring that LLMs
genuinely enhance, rather than compromise, the integrity of
the hardware verification process.

The combination of aforementioned challenges in addition
to LLM’s potential to hallucinate or produce functionally
incomplete HDL creates a trust deficit that can be a major
barrier in the adoption of LLMs in critical verification roles.
Even if LLMs demonstrate promising results in controlled
benchmarks, practitioners will be reluctant to rely on them for
mission-critical tasks without stronger guarantees of reliability
or clearer insights into their reasoning. Overcoming this trust
deficit requires not only technically superior LLMs but also the
development of robust methods for validating LLM outputs,
explaining their derivations, and managing the associated risks.
To address some of these challenges, we propose integrating
LLMs as a semantic layer in the verification flow, as detailed
in the next section.

IV. LLMS AS SEMANTIC LAYER

A. Overview

Fig. 1 shows an overview of the semantic layer concept,
Prompt. Verify. Repeat. to integrate LLMs in the hardware
verification flow. The high-level idea is that LLMs should be
used as a tool in conjunction with other EDA tools. First,
the LLMs are prompted along with verification plans, natural
language requirements, and the Design Under Verification
(DUV) to perform a certain task. Additionally, the LLMs
are provided with a schema. The LLMs are prompted to
either parse the given information and provide some text, or
they are prompted to synthesize the given information into
SVA, bug patches, code refactoring and optimizations, or test
stimuli, or they are prompted to explain certain behaviors in
the given information. Hence, using the schema the LLMs

Verification
plan

NL requirements

Semantic
Layer

Parse

Synthesize

Explain

Sc
he

m
as

Deterministic
Engines

Goals
met?

Assertions

Bug patches

Optimized code

Test stimuli
Digital design

Simulation

Formal methods

Emulation

FPGA prototyping

Generated
Artefacts

LLMs

Pr
om

pt

Ve
ri
fy

No

Yes

1

2

3
Repeat

Direct usage!

Fig. 1: Overview of using LLMs as a semantic layer in
hardware verification.

are able to generate the verification artifacts. Due to the
probabilistic nature of LLMs as outlined in Section I, the
generated artifacts need to be verified for correctness. Hence,
as a second step, the artifacts are verified using deterministic
EDA tools (Deterministic Engines) and human inspection
via simulation, formal methods, or emulation, etc. Once the
artifacts are verified, it is checked if the goals have been met or
not. If the goals are not met, the third step is started to repeat
and refine the prompts or constraints until the verification goals
are met.

In Fig. 1, we can see that LLMs inside the semantic
layer are a small part of a bigger system. Please note, the
generated artifacts may only be used directly to check if goals
are met with extreme caution as the artifacts can be very
inconsistent [38].

In the following subsection, using this concept of semantic
layer, we show a rudimentary example of using deductive
reasoning in hardware verification.

B. Deductive Reasoning in Hardware Verification

One of the essential tasks in artificial intelligence is to build
reasoning systems that simulate human thinking in decision-
making and inference based on given knowledge [39]. In
this context, Deductive Reasoning [40], [41] is a central task
that relies on a set of deduction rules to draw logically
sound conclusions from explicitly given premises. One of the
intuitive deduction rules is Modus Ponens, which performs
a single reasoning step (i.e., deriving a direct conclusion G
from a given fact F and an implication ”If F , then G”). This
is formulated as follows:

F F → G
G

For multi-step reasoning, each observed conclusion is
treated as a fact, and deduction rules are applied to derive
further conclusions.

In order to enable automated reasoning, formulating the
given knowledge into a formal logic is essential. Therefore,
Answer Set Programming (ASP) [42]–[44], a well-known
declarative programming framework from the area of knowl-
edge representation and non-monotonic reasoning, has been
introduced. ASP enables the description of given knowledge
using a first-order logic-based representation (called an ASP

(a) Half Adder (b) AIG

Fig. 2: Half adder block diagram and its corresponding AIG
graph.

program). It consists of a set of rules, facts, and constraints
such that facts represent information that is valid within
the knowledge, and constraints express information that is
negated or considered invalid. Rules represent implications
that allow conclusions to be derived. To enable performing
deductive reasoning, Stable Model semantics [45], [46] is used
to compute the intended models of the program (called Answer
Sets (AS) of the program).

In the EDA field, ASP has been successfully employed to
enable Polynomial Formal Verification (PFV) [47], [48] of
circuits with constant cutwidth [49], [50], where cutwidth is
defined as the maximum number of intermediate nodes that
each output bit relies on. PFV is performed by translating
the And-Inverter Graph (AIG) representation of the circuit
design into a set of rules and the high-level specifications
as constraints within an ASP program Π (i.e., as the logical
complements of the specifications, capturing the violation
conditions).

Consider the AIG graph of Figure 2(b) constructed w.r.t. the
half adder of Figure 2(a). The program Π can be constructed
as shown in Listing 1, where Π is in smodels format accepted
by the Clingo solver [51] (i.e., :-, ”xˆ1”, and & correspond
to ”←”, ¬x, and ”∧”, respectively). The specifications of the
sum and carry (labeled as ω) are added to the program Π.
The ASP program Π is then passed to an ASP solver to check
whether it has an answer set (i.e., whether the program is
consistent) under each possible input vector. If the program has
no answer set (i.e., Π is inconsistent), the design matches the
specification functions. Otherwise, the design is incorrect, and
a counterexample that violates the specifications is obtained.

Listing 1: Π constructed w.r.t. the AIG of Figure 2(b).
Π = {and1(X):-a(Y), b(Z), X = Y&Z.
and2(X):-a(Y), b(Z), X = (Y ˆ1)&(Zˆ1).
and3(X):-and1(Y), and2(Z), X = (Y ˆ1)&(Zˆ1).
carry(X):-and2(X).
sumOut(X):-and3(X).}

However, the process of translating both the AIG and
the specification functions into an ASP program is manual,
making it time-consuming and error-prone. Additionally, the
specification functions may be described in natural language,
which makes them harder to translate into an ASP program.
Therefore, LLMs have gained interest for automating the
translation process due to their capability to process complex
natural language.

Listing 2: Single-shot Prompt and Guided-LLM Prompting.
% S i n g l e − s h o t Prompt ing :
P l e a s e w r i t e ASP r u l e s f o r a h a l f a d d e r such t h a t

t h e c a r r y i s 0 i f bo th i n p u t s A and B a r e
n o t 1 . The c a r r y i s e q u a l t o 1 i f i n p u t s A
and B a r e 1 . The sum i s e q u a l t o 1 i f i n p u t s
A and B a r e n o t e q u a l . The sum i s e q u a l t o 0
i f i n p u t s A and B a r e e q u a l .

% Guided −LLM Prompt ing :
Step 1) : P l e a s e re − f o r m u l a t e t h e f o l l o w i n g t e x t a s

” I f −Then ” s t a t e m e n t s :
The c a r r y i s 0 i f bo th i n p u t s A and B a r e n o t 1 .

The c a r r y i s e q u a l t o 1 i f i n p u t s A and B a r e
1 . The sum i s e q u a l t o 1 i f i n p u t s A and B

a r e n o t e q u a l . The sum i s e q u a l t o 0 i f
i n p u t s A and B a r e e q u a l .

Step 2) : P l e a s e w r i t e ” I f −Then ” s t a t e m e n t s a s ASP
r u l e s such t h a t t h e ” I f p a r t ” a p p e a r s i n t h e
body of t h e r u l e , and t h e ” Then p a r t ” a p p e a r s

a s t h e head of t h e r u l e . P l e a s e don ’ t add
e x t r a i n f o r m a t i o n . P l e a s e , r e p r e s e n t t h e
v a l u e s o f t h e c a r r y , sum , and i n p u t s A and B
u s i n g t h e p r e d i c a t e s c a r r y (X) , sum (X) , a (X) ,
and b (X) , r e s p e c t i v e l y , where X d e n o t e s t h e
c o r r e s p o n d i n g b i t v a l u e .

Relying on the LLM single-shot prompting to encode
specifications into ASP introduces numerous errors, including
both syntactic and semantic ones. This necessitates manual
analysis and correction by domain experts. However, guiding
the LLM through the encoding process significantly improves
the quality of the resulting encoding.

Consider the prompts of Listing 2. Performing single-shot
prompting produced syntactical errors and a mismatch with
the AIG encoding. However, breaking the translation process
into two steps (i.e., Step 1 and Step 2) has a significant
improvement in the encoding. More precisely, LLM was able
to encode syntactically and semantically correct ASP rules.
This enables using LLM in the field of formal verification
and automating the encoding process.

V. PROMISING DIRECTIONS

The rapid development of LLMs in the context of hardware
verification suggests a future in which LLMs play a central
role in ensuring design correctness. A practical and sustainable
approach is to integrate LLMs as aids to humans, rather
than autonomous replacements as motivated in Section I.
This synergistic approach leverages the strengths of both
humans (creativity, critical reasoning, domain knowledge) and
LLMs (speed, pattern recognition, handling vast data). In this
regard, there are several promising directions where LLMs
can be used effectively. A critical area is the development
of explainable AI methods tailored for LLM applications
in verification. Verification engineers need to understand the
rationale behind an LLM’s suggestions, i.e., why a particular
SVA was generated, why a test stimuli was deemed important,
or how a bug patch was derived. Making LLM decisions more
transparent and interpretable is essential for building trust and
enabling effective debugging of the LLM’s own reasoning
processes. Another promising direction is fine-tuning open-

source LLMs on tailored proofs data to improve their accuracy
in generating human-readable proofs. For instance, LLMs
might be trained to generate formal proofs for symmetric and
partially symmetric functions, which are common in hardware
designs but challenging to verify.

VI. CONCLUSION

The use of LLMs in hardware verification is an emerging
area within EDA. Rather than replacing human experts, LLMs
are expected to serve as helpful assistants by handling routine
tasks such as generating testbench code, drafting assertions,
analyzing simulation logs, and supporting debugging. LLMs
show potential in improving various aspects of the verification
process, including assertion-based and simulation-based meth-
ods, test generation, and translation of natural language spec-
ifications into formal representations. These capabilities could
streamline workflows and reduce manual effort. However, con-
cerns persist around the accuracy, reliability, and transparency
of LLM outputs, limited domain-specific training data, and
integration and security challenges. Progress will depend on
collaboration between AI and EDA experts to develop better
datasets, improve model training, ensure transparency, validate
results, and adapt tools for effective LLM use.

REFERENCES

[1] H. Shin, “Efficient bug discovery with machine learning for
hardware verification,” Retrieved March, 2022. [Online]. Avail-
able: https://community.arm.com/arm-research/b/articles/posts/efficient-
bug-discovery-with-machine-learning-for-hardware-verification

[2] OpenAI, “Openai.” [Online]. Available: https://openai.com/
[3] Meta, “Llama by meta.” [Online]. Available: https://www.llama.com/
[4] Anthropic, “Anthropic.” [Online]. Available: https://claude.ai
[5] A. Liu et al., “Deepseek-v3 technical report,” arXiv preprint

arXiv:2412.19437, 2024.
[6] G. Inc., “Google inc.” [Online]. Available: https://gemini.google.com/app
[7] S. Thakur et al., “Autochip: Automating hdl generation using LLM feed-

back,” arXiv preprint arXiv:2311.04887, 2023.
[8] R. Kande et al., “LLM-assisted generation of hardware assertions,” arXiv

preprint arXiv:2306.14027, 2023.
[9] M. Orenes-Vera et al., “From RTL to SVA: LLM-assisted generation of

formal verification testbenches,” arXiv preprint arXiv:2309.09437, 2023.
[10] C. Sun et al., “Towards improving verification productivity with circuit-

aware translation of natural language to systemverilog assertions,” in DAV,
2023.

[11] D. Saha et al., “LLM for SoC security: A paradigm shift,” arXiv preprint
arXiv:2310.06046, 2023.

[12] X. Meng et al., “Unlocking hardware security assurance: The potential of
LLMs,” arXiv preprint arXiv:2308.11042, 2023.

[13] B. Ahmad et al., “Fixing hardware security bugs with large language
models,” arXiv preprint arXiv:2302.01215, 2023.

[14] S. Saghafian et al., “Effective generative ai: The human-algorithm centaur,”
arXiv preprint arXiv:2406.10942, 2024.

[15] S. Hoseini et al., “A survey on semantic data management as intersection
of ontology-based data access, semantic modeling and data lakes,” Journal
of Web Semantics, vol. 81, p. 100819, 2024.

[16] R. Drechsler et al., “Formal specification level: Towards verification-driven
design based on natural language processing,” in Proceeding of the 2012
Forum on Specification and Design Languages. IEEE, 2012, pp. 53–58.

[17] M. Soeken et al., “Automating the translation of assertions using natural
language processing techniques,” in Proceedings of the 2014 Forum on
Specification and Design Languages (FDL), vol. 978. IEEE, 2014, pp.
1–8.

[18] A. Menon et al., “Enhancing large language models for hardware
verification: A novel systemverilog assertion dataset,” arXiv preprint
arXiv:2503.08923, 2025.

[19] C. Sun et al., “Towards improving verification productivity with circuit-
aware translation of natural language to systemverilog assertions,” in First
International Workshop on Deep Learning-aided Verification, 2023.

[20] W. Fang et al., “AssertLLM: Generating hardware verification assertions
from design specifications via multi-LLMs,” in 2024 IEEE LLM Aided
Design Workshop (LAD). IEEE, 2024, pp. 1–1.

[21] B. Mali et al., “Chiraag: Chatgpt informed rapid and automated assertion
generation,” in 2024 IEEE Computer Society Annual Symposium on VLSI
(ISVLSI). IEEE, 2024, pp. 680–683.

[22] K. Maddala et al., “LAAG-RV: LLM assisted assertion generation for rtl
design verification,” in 2024 IEEE 8th International Test Conference India
(ITC India). IEEE, 2024, pp. 1–6.

[23] M. Hassan et al., “LLM-guided formal verification coupled with mutation
testing,” in 2024 Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 2024, pp. 1–2.

[24] M. Liu et al., “Domain-adapted LLMs for vlsi design and verification: A
case study on formal verification,” in 2024 IEEE 42nd VLSI Test Symposium
(VTS). IEEE, 2024, pp. 1–4.

[25] K. Qayyum et al., “From bugs to fixes: Hdl bug identification and patching
using LLMs and RAG,” in 2024 IEEE LLM Aided Design Workshop (LAD).
IEEE, 2024, pp. 1–5.

[26] K. Qayyum et al., “Llm-assisted bug identification and correction for ver-
ilog hdl,” ACM Transactions on Design Automation of Electronic Systems,
2025.

[27] Y. Tsai et al., “RTLFixer: Automatically fixing RTL syntax errors with large
language model,” in Proceedings of the 61st ACM/IEEE Design Automation
Conference, 2024, pp. 1–6.

[28] K. Xu et al., “Meic: Re-thinking RTL debug automation using LLMs,”
arXiv preprint arXiv:2405.06840, 2024.

[29] W. Fu et al., “LLM4SecHW: Leveraging domain-specific large language
model for hardware debugging,” in 2023 Asian Hardware Oriented Security
and Trust Symposium (AsianHOST). IEEE, 2023, pp. 1–6.

[30] M. Kang et al., “FVEval: Understanding language model capabilities in
formal verification of digital hardware,” arXiv preprint arXiv:2410.23299,
2024.

[31] L. J. Wan et al., “Software/hardware co-design for LLM and its application
for design verification,” in 2024 29th Asia and South Pacific Design
Automation Conference (ASP-DAC). IEEE, 2024, pp. 435–441.

[32] C. Xiao et al., “LLM-based processor verification: A case study for
neuromorphic processor,” in 2024 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 2024, pp. 1–6.

[33] K. Qayyum et al., “Late breaking results: LLM-assisted automated incre-
mental proof generation for hardware verification,” in Proceedings of the
61st ACM/IEEE Design Automation Conference, 2024, pp. 1–2.

[34] A. Kumar et al., “Generative ai augmented induction-based formal ver-
ification,” in 2024 IEEE 37th International System-on-Chip Conference
(SOCC). IEEE, 2024, pp. 1–2.

[35] D. Mendoza et al., “Translating natural language to temporal logics with
large language models and model checkers,” in 2024 Formal Methods in
Computer-Aided Design (FMCAD), 2024, pp. 1–11.

[36] S. Liu et al., “Openllm-rtl: Open dataset and benchmark for LLM-aided de-
sign RTL generation,” in Proceedings of the 43rd IEEE/ACM International
Conference on Computer-Aided Design, 2024, pp. 1–9.

[37] R. Drechsler, “Towards LLM-based generation of human-readable proofs in
polynomial formal verification,” arXiv preprint arXiv:2505.23311, 2025.

[38] K. Qayyum et al., “LLMs for hardware verification: Frameworks, tech-
niques, and future directions,” in 2024 IEEE 33rd Asian Test Symposium
(ATS), 2024, pp. 1–6.

[39] J. McCarthy, “Programs with common sense,” in Proceedings of the Ted-
dington Conference on the Mechanization of Thought Processes, 1959, pp.
75–91.

[40] L. J. Rips, “Two kinds of reasoning,” Psychological Science, vol. 12, no. 2,
pp. 129–134, 2001.

[41] M. D. S. Braine, “On the relation between the natural logic of reasoning
and standard logic.” Psychological Review, vol. 85, pp. 1–21, 1978.
[Online]. Available: https://api.semanticscholar.org/CorpusID:120217462

[42] V. W. Marek et al., “Stable models and an alternative logic programming
paradigm,” A Computing Research Repository, 1998.

[43] I. Niemelä, “Logic programs with stable model semantics as a constraint
programming paradigm,” Ann. Math. Artif. Intell., vol. 25, no. 3-4, pp. 241–
273, 1999.

[44] M. Gebser et al., “Conflict-driven answer set solving: From theory to
practice,” Artificial Intelligence, 2012.

[45] M. Gelfond et al., “The stable model semantics for logic programming,” in
Proceedings of International Logic Programming Conference and Sympo-
sium, 1988, pp. 1070–1080.

[46] M. Gelfond et al., “Classical negation in logic programs and disjunctive
databases,” New Generation Computing, pp. 365–385, 1991.

[47] R. Drechsler et al., “Polynomial formal verification: Ensuring correctness
under resource constraints,” in ICCAD, 2022, pp. 70:1–70:9.

[48] R. Drechsler, “PolyAdd: Polynomial formal verification of adder circuits,”
in DDECS, 2021, pp. 99–104.

[49] M. Nadeem et al., “Polynomial formal verification exploiting constant
cutwidth,” in Proceedings of the 34th International Workshop on Rapid
System Prototyping. Association for Computing Machinery, 2024.

[50] M. Nadeem et al., “Polynomial formal verification of sequential circuits
using weighted-aigs,” in 2025 Design, Automation & Test in Europe Con-
ference & Exhibition (DATE), 2025.

[51] M. Gebser et al., “Advances in gringo series 3,” 2011, pp. 345–351.

