
Late Breaking Results: Polynomial Formal
Verification of Fast Adders

Alireza Mahzoon1 Rolf Drechsler1,2
1Institute of Computer Science, University of Bremen, Bremen, Germany

2Cyber-Physical Systems, DFKI GmbH, Bremen, Germany
{mahzoon,drechsle}@informatik.uni-bremen.de

Abstract—Despite the recent success of formal verification
methods, the computational complexity of most of them is
still unknown. It raises serious questions regarding the scal-
ability of the approaches. One of the most successful formal
methods to prove the correctness of adders is Binary Decision
Diagram (BDD)-based verification. It reports very good results
for verification of different adder architectures. However, the
computational complexity of BDD-based verification has not been
yet fully investigated. In this paper, we calculate the complexity of
verifying one of the fastest available adders, i.e., conditional sum
adder. Then, we show that the verification of this architecture is
possible in polynomial time. Finally, we confirm our theoretical
calculations by experimental results.

I. INTRODUCTION

The importance of arithmetic circuits is rapidly growing
due to the demands for complex and extensive computations
in modern systems. These circuits are usually complicated;
thus, proving the correctness of them before implementation
is of the utmost importance to avoid bugs. Several formal
verification methods based on Binary Decision Diagrams
(BDDs) [1], Binary Moment Diagrams (BMDs) [2], and Sym-
bolic Computer Algebra (SCA) [3], [4] have been proposed
to check the correctness of arithmetic circuits. They usually
report very good results when it comes to the verification of
sophisticated architectures.

Despite the practical success of formal verification meth-
ods, the computational complexity of most of them is still
unknown. A good example of the unknown complexity is the
formal verification of integer adders using BDDs. It has been
shown in practice that BDDs are very efficient in proving the
correctness of adders. However, the computational complexity
of many adder architectures has not been yet calculated. To the
best of our knowledge, PolyAdd [5] is the only work on the
verification complexity of adders. It proves that verifying some
adder architectures is possible in polynomial time. However,
it does not provide the exact order of complexities.

The conditional sum adder is one of the important archi-
tectures whose verification complexity has not been yet fully
investigated. It has the smallest delay among the adders thanks
to its unique structure containing many multiplexers [6].
Therefore, it is the first choice for the designs in which
the delay is the most important parameter. In this paper, we
calculate the computational complexity of verifying a condi-
tional sum adder using BDDs. We also prove that verifying
this architecture is possible in polynomial time. Finally, we
compare the theoretical calculations with the experimental
results to confirm the correctness of the obtained complexities
in practice.

II. PRELIMINARIES

In this section, formal verification using BDDs and the
structure of the conditional sum adder are reviewed.

FAFA

FA

FA

FA

FA

FA

MUX

MUX

MUX

MUX

A
0

A
1

A
2

A
3

B
0

B
1

B
2

B
3

11111111

2

22

4

C
out

S

l=0

l=1

0 0 0

111

0

Fig. 1. A 4-bit conditional sum adder structure

BDD-based Verification: Formal verification of an adder
architecture becomes possible by obtaining each output func-
tion in form of BDD. Since BDDs are canonical, the BDD
of ith output is always identical independent of the adder
architecture. Thus, we can evaluate the BDDs to see whether
they match the BDDs of an adder. Symbolic simulation is a
powerful tool to get the output BDDs. First, the corresponding
BDDs for each input signal are generated. Then, starting from
primary inputs the BDD for the output of a gate (or a building
block) is computed. This process continues until we reach the
primary outputs and obtain their BDDs.

In order to compute the BDD of each gate (or building
block) output during symbolic simulation, we use the ITE
operator (If-Then-Else):

ITE(f, g, h) = (f ∧ g) ∨ (f̄ ∧ h) (1)

A recursive algorithm to compute the ITE operations has
been proposed in [7]. This algorithm which is widely used
in BDD packages (e.g., CUDD [8]) has a computational
complexity of O(|f | · |g| · |h|), where |f |, |g| and |h| denote
the size of the BDDs in terms of the number of nodes.
Conditional Sum Adder: Fig. 1 shows the structure of a 4-bit
conditional sum adder. In this architecture, two sets of outputs
are generated for a given group of k operand bits. Each set
contains k sum bits and one outgoing carry. For one of the
sets, it is assumed that the eventual incoming carry will be
zero, while for the other set it will be one. Once the incoming
carry is known, we select the correct set of outputs using
multiplexers.

The MUX blocks in Fig. 1 consist of two multiplexers: a
multiplexer to select between two k-bit sums and a multiplexer
to select between two 1-bit carries. These MUX blocks can
be put in different levels based on their inputs. Fig. 2 shows
the MUX blocks (boxes) of an 8-bit conditional sum adder in
four levels. The number inside each box presents the size of
the input sum bits, i.e., k.

l=0

l=1

l=2

l=3

111111111111111

2222222

444

8

Fig. 2. MUX blocks in an 8-bit conditional sum adder

III. COMPUTATIONAL COMPLEXITY

An n-bit conditional sum adder is divided into two main
stages: 1) 2n−1 Full-Adders (FAs) to generate initial sum and
carry bits. 2) An array of MUX blocks (see Fig. 2) to select
the sum and carry bits. We first calculate the computational
complexity of the first stage; then, we focus on the second
stage. Finally, we add up the two complexities to obtain the
overall verification complexity.

A FA with a ’0’ input (blue FAs in Fig. 1) is a Half-Adder
(HA); thus, the outputs can be obtained by two ITE operations:

si = Ai ⊕Bi = ITE(Ai, Bi, Bi),

ci = Ai ∧Bi = ITE(Ai, Bi, 0) (2)

Similarly, the output BDDs of a FA with an ’1’ input (red
FAs in Fig. 1) can be obtained as follows:

s′i = Ai �Bi = ITE(Ai, Bi, Bi),

c′i = Ai ∨Bi = ITE(Ai, 1, Bi) (3)

The computational complexity of these two adders is the
same and equals:
Complexity(si) = Complexity(s′i) = |Ai| · |Bi| · |Bi| = 3 · 3 · 3 = 27

Complexity(ci) = Complexity(c′i) = |Ai| · |Bi| = 3 · 3 = 9 (4)

Since there are 2n−1 FAs in the first stage of the adder, the
overall complexity of the first stage is calculated as follows:

complexity[stage1] = (2n− 1) · (27 + 9) = 72n− 36 (5)

In order to calculate the computational complexity of the
second stage, we first need to obtain the complexity of a single
MUX block. A MUX block in level l (see Fig. 2) receives two
inputs with 2l + 1 bits, i.e., M [2l : 0], and N [2l : 0]. These
inputs are the results of adding two 2l-bit numbers. Then, the
MUX selects between these two inputs based on the c signal,
which is an output carry that resulted from adding two 2l-bit
numbers. Therefore, a MUX block can be translated into 2l+1
ITE operations as follows:

o0 = ITE(c,M0, N0), . . . , o(2l) = ITE(c,M(2l), N(2l)) (6)

Thus, the overall complexity of a MUX block is calculated
as follows:

complexity[MUX] = |c| ·
2l∑
i=0

|Mi| · |Ni| (7)

It has been proven in [9] that the BDD size of the ith sum
and carry bits are bounded by 3i+5 and 3i+3, respectively.
Based on the facts that Mi and Ni are the sum bits, and c is
the (2l)th carry of an addition, we have:

complexity[MUX] = (3 · 2l + 3) ·
2l∑
i=0

(3i + 5)2 (8)

The number of MUXs in each row and the number of
rows in a conditional sum adder (see Fig. 2) are calculated
as follows:

number of MUXs in row = 2(log2 n−l+1) − 1,

number of rows = log2 n + 1 (9)

where the equations are exact for all word length being a power
of 2 (i.e., n = 2m) [6].

0

50

100

150

200

250

300

350

1024 2048 3072 4096 5120 6144 7168 8192 9216 10240

R
u

n
-t

im
e

(s
ec

o
n

d
s)

Size (number of bits per input)

𝑦 = 9 × 10−14𝑥4 − 2 × 10−9𝑥3

+2 × 10−5𝑥2 − 0.03𝑥 + 23

(a) Conditional sum adder

0

50

100

150

200

1024 2048 3072 4096 5120 6144 7168 8192 9216 10240

R
u

n
-t

im
e

(s
ec

o
n

d
s)

Size (number of bits per input)

𝑦 = 2 × 10−6𝑥2 − 0.002𝑥 + 0.722

(b) Ripple carry adder

Fig. 3. Run-time graphs of the adders

Consequently, the overall computational complexity of the
second stage is obtained:

complexity[stage2] =

log2 n∑
l=0

(2
(log2 n−l+1) − 1)(3 · 2l + 3)

2l∑
i=0

(3i + 5)
2

=

384

35
n
4
+

720

7
n
3
+ 488n

2
+ 399n log2 n −

795

7
n − 75 log2 n +

1601

35
(10)

Finally, the overall computational complexity of a condi-
tional sum adder is calculated by adding up the complexity
of the two stages in Eq. (5) and Eq. (10). Based on the
calculations, we can observe that the order of the verification
complexity is O(n4), i.e., it has quartic time complexity.

IV. EXPERIMENTAL RESULTS

After calculating the verification complexity for a condi-
tional sum adder, we check the correctness of the theoretical
results in practice. Fig. 3(a) (Fig. 3(b)) presents the run-time
of verifying conditional sum adders (ripple carry adders) with
different sizes. Similar studies have shown that the verification
of the ripple carry adder has quadratic time complexity. We
fit a curve (dashed lines) to the points with an acceptable
error and evaluate the curve function. We can fit a curve with
the order of 4 to the verification run-times of conditional sum
adders in Fig. 3(a). It confirms that the verification has quartic
time complexity. On the other hand, a curve with the order of
2 can be fitted to the verification run-times of ripple carry
adders in Fig. 3(b).

V. CONCLUSION

In this paper, we calculated the computational complexity of
verifying a conditional sum adder using BDD-based method.
Based on the calculations, we proved that verifying this adder
is of polynomial time, i.e., quartic time complexity. We also
confirmed the correctness of the complexity bounds obtained
in our theoretical calculations by experimental results.

Acknowledgment: This work was supported by the German
Research Foundation (DFG) within the Reinhart Koselleck
Project PolyVer (DR 287/36-1).

REFERENCES

[1] R. Drechsler and D. Sieling, “Binary decision diagrams in theory and practice,” Int. J.
Softw. Tools Technol. Transf., vol. 3, no. 2, pp. 112–136, 2001.

[2] M. Keim, R. Drechsler, B. Becker, M. Martin, and P. Molitor, “Polynomial formal
verification of multipliers,” Formal Meth. in Sys. Des., vol. 22, no. 1, pp. 39–58, 2003.

[3] A. Mahzoon, D. Große, and R. Drechsler, “PolyCleaner: clean your polynomials before
backward rewriting to verify million-gate multipliers,” in ICCAD, 2018, pp. 129:1–
129:8.

[4] ——, “RevSCA: Using reverse engineering to bring light into backward rewriting for
big and dirty multipliers,” in DAC, 2019, pp. 185:1–185:6.

[5] R. Drechsler, “PolyAdd: Polynomial formal verification of adder circuits,” in DDECS,
2021, pp. 99–104.

[6] R. Zimmermann, “Binary adder architectures for cell-based VLSI and their synthesis,”
Ph.D. dissertation, Swiss Federal Institute of Technology, 1997.

[7] K. S. Brace, R. L. Rudell, and R. E. Bryant, “Efficient implementation of a BDD
package,” in DAC, 1990, pp. 40–45.

[8] F. Somenzi, “CUDD: CU decision diagram package release 2.7.0,” available at https:
//github.com/ivmai/cudd, 2018.

[9] I. Wegener, Branching Programs and Binary Decision Diagrams. SIAM, 2000.

https://github.com/ivmai/cudd
https://github.com/ivmai/cudd

	Introduction
	Preliminaries
	Computational Complexity
	Experimental Results
	Conclusion
	References

