
Late Breaking Results: LLM-assisted Automated Incremental
Proof Generation for Hardware Verification

Khushboo Qayyum2, Muhammad Hassan1,2, Sallar Ahmadi-Pour1, Chandan Kumar Jha1, Rolf Drechsler1,2
1Institute of Computer Science, University of Bremen, 28359 Bremen, Germany

2Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany
{hassan, sallar, khushboo, chajha, drechsler}@uni-bremen.de

Abstract—In this paper, we propose a methodology for hard-
ware verification assisted by Large Language Models (LLMs)
in the incremental proof generation process. First, an LLM
identifies the basic module of the Design Under Verification
(DUV), followed by expanding the proof scope as more modules
are added. LLMs assist in defining and verifying invariants
for each module using the Z3 solver, and in formulating inte-
gration properties at module interfaces. Our case studies on a
Ripple Carry Adder (RCA) and a Dadda Tree Multiplier (DTM)
demonstrate that LLMs enhance the efficiency and accuracy of
hardware verification.

I. INTRODUCTION

In the ever-evolving landscape of hardware design, ensur-
ing the reliability and correctness of hardware systems is a
paramount concern. In this context, formal verification has
been shown as a vital approach to mathematically guarantee
the absence of bugs in hardware systems [1], [2]. Central to
formal verification is the generation of functional properties,
or invariants, for the Design Under Verification (DUV). Tradi-
tionally, this is a manual and time-intensive process, involving
careful analysis and translation of complex natural language
specifications into verifiable properties, a task that becomes
more challenging as systems grow in scale and complexity.

This is precisely where the advent of Large Language
Models (LLMs) like OpenAI’s GPT-4 and Google’s Gemini
mark a transformative shift. LLMs, with their advanced natural
language processing capabilities, can automate and streamline
the property generation process. They excel in interpreting
complex hardware specifications and converting them into pre-
cise formal representations, such as SystemVerilog Assertions
(SVA) [3]–[5], System-on-Chip (SOC) properties [6]–[9], and
stimuli generation [10]. This automation not only accelerates
the verification process but also reduces the potential for

This work was supported in part by the German Federal Ministry of
Education and Research (BMBF) within the project ECXL under contract no.
01IW22002, the project PaSVer under contract no. 16ME0855, the project
SASPIT under contract no. 16KIS1852K and the project Scale4Edge under
contract no. 16ME0127.

SplitDUV
(.v)

LLM
Instance

Module List

Module List /
Basic Block

LLM
Instance

Unit
Properties

Prompt

LLM
InstanceBinding Map

Python
Env SAT/UNSATIntegration

Properties

Prompt

Prompt

Fig. 1. Overview - LLM-assisted automated incremental proof generation

human error in the initial stages of property creation. However,
a significant challenge arises when the formal model of the
DUV, combined with numerous properties, becomes over-
whelmingly large. In such scenarios, the verification process,
particularly the generation of proofs, becomes excessively
slow, diminishing the efficiency gains made by LLMs in
property creation.

In this regard, the potential of LLMs in enhancing incre-
mental proof generation presents an intriguing solution. Incre-
mental proof generation simplifies the verification process by
dividing it into smaller, manageable segments. This approach
involves verifying each sub-module of the DUV individually,
along with its interconnections, before methodically integrat-
ing these verified components to encompass the entire system.

In this paper, we present a methodology for formal hardware
verification assisted by LLMs into the incremental proof
generation process. It starts with an LLM identifying the basic
module of the DUV, setting the stage for proof generation. The
process then incrementally adds modules, expanding the proof
scope progressively. Initially, the LLM defines the invariants,
termed as Unit Properties (UPROP) for the basic module,
and these are verified using the Z3 solver. As more modules
are integrated, the LLM helps in formulating invariants at the
interfaces, termed Integration Properties (IPROP). This step-
by-step approach leads to a comprehensive proof for the entire
DUV. Our two case-studies; a Ripple Carry Adder (RCA)
and a Dadda Tree Multiplier (DTM), indicate that LLMs can
significantly aid in proof generation and hardware verification.

II. LLM-ASSISTED METHODOLOGY

In this section, we provide an overview of the proposed
LLM-assisted verification methodology for automated and
systematic incremental proof generation. The methodology
comprises five stages as shown in Fig. 1, 1) code splitting, 2)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from permissions@acm.org.
DAC ’24, June 23–27, 2024, San Francisco, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0601-1/24/06...$15.00
http://dx.doi.org/10.1145/3649329.3663498

mailto:permissions@acm.org
http://dx.doi.org/10.1145/3649329.3663498

DAC ’24, June 23–27, 2024, San Francisco, CA, USA Khushboo Qayyum, Sallar Ahmadi-Pour, Muhammad Hassan, Chandan Kumar Jha, Rolf Drechsler

TABLE I
A SELECTION OF UPROP FOR 1-BIT FULL-ADDER IN NATURAL

LANGUAGE AND Z3PY

Natural Language Description Z3Py Representation
Zero Input Case: If all inputs (A,

B, and Cin) are zero, then both the
Sum and Cout outputs should be 0

zero_input_case = And(Not(A),
Not(B), Not(Cin), Not(Sum),

Not(Cout))
Two Inputs High (A and B are 1):
If A and B are both 1, with Cin

being 0, the Sum should be 0 and
Cout should be 1.

two_inputs_AB = And(A, B,
Not(Cin), Not(Sum), Cout)

All Inputs High: A, B, and Cin are
all 1, Sum and Cout should both

be 1.

all_inputs_high = And(A, B,
Cin, Sum, Cout)

basic module search, 3) unit property generation, 4) encapsu-
lating block selection, and 5) integration property generation.

In the first stage, an LLM instance processes Verilog files
of the DUV, dividing them into smaller modules. This division
helps manage the code more effectively and circumvents the
LLM’s token limit. In the second stage, the LLM identifies
the simplest functional module (basic module) within the
DUV, such as a half-adder. This module sets the stage for
our incremental proof. The LLM also compiles a list of the
module’s functionalities and constructs a corresponding Z3Py
model. In the third stage, the LLM generates a list of invariants
using the identified basic module, termed UPROP, in natural
language. These properties are then converted into Z3Py
format by the LLM. The Z3 solver employs these properties
and the module’s Z3Py model to determine satisfiability -
SAT/UNSAT. In stage four, a Verilog parser extracts binding
information of modules, facilitating systematic proof extension
to connected modules. The LLM formulates invariants for the
interfaces between connected modules, termed IPROP. These
properties are translated into Z3Py format and analyzed with
the Z3 solver for satisfiability. In stage five, the process of
stages 2, 3, and 4 repeats iteratively, expanding from the basic
module to the top-level module of the DUV. If the Z3 solver
finds a counter-example at any stage, the LLM is prompted to
generate a corresponding Verilog test case for the testbench.
The proposed methodology enables systematic and efficient
verification of hardware designs, with the assistance of LLMs
to streamline the incremental proof generation process.

III. EXPERIMENTAL EVALUATION

In this section, we discuss two case-studies using Z3 prover
to generate proofs and OpenAI’s GPT-4 as the LLM.
A. Case-study : Ripple Carry Adder

For this case study, a 4-bit RCA was used, which can
extended to n-bit adder. For RCA, a full-adder is identified
as a basic module and accordingly UPROP are generated.
A selection of UPROP in natural language and Z3Py repre-
sentation are shown in Table I. Consider the case when all
inputs are high, i.e., if A, B, and Cin are all 1, then the Sum
should be 1 and Cout should be 1 as well. This case is the full
utilization of the adder where three 1s result in the binary value
11. The corresponding UPROP in Z3Py representation is:
all inputs high = And(A,B,Cin, Sum,Cout). Similarly,
the IPROP generated by stage four are shown in Table II.

TABLE II
IPROP OF TWO CONNECTED FULL ADDERS

Natural Language Description Z3Py Representation
Sum Independence: The sum
output of the first full adder
(Sum1) is independent of the
second full adder’s inputs and

operation

sum_independence =
Not(Exists([A2, B2, Cin2],
Sum1 == Xor(A2, B2, Cin2)))

No False Carry: If the first full
adder does not generate a carry,
the second full adder’s carry-in

should be zero

no_false_carry =
Implies(Not(Cout1), Not(Cin2))

Carry Generation and Handling: If
the first full adder generates a

carry, the second full adder should
process this carry along with its

own inputs

carry_generation_handling =
Implies(Cout1, And(Cin2,
full_adder_2_logic))

B. Case-study : Dadda Tree Multiplier
For the second case-study, we applied our methodology to

a 4-bit DTM that is extendable to n-bit multiplier. In this case,
the LLM identified the single-bit multiplication units that form
the foundation of the partial product matrix as a basic module.
Afterwards, the proof was extended to include half adders
and Carry-select Adder (CSA). Table III shows two UPROP
for basic module of DTM and half adder. Finally, the proof
connects all the modules.

TABLE III
CASE-STUDY: DADDA MULTIPLIER’S UNIT PROPERTIES

Natural Language Description Z3Py Representation
AND Gate Functionality: When
both inputs are 1, the output is 1;

otherwise, the output is 0.

def and_gate_functionality(a,
b): return And(a == 1, b == 1)

Half Adder - Summing without
Carry: If only one input is 1 and
the other is 0, the sum output is 1,

and the carry output is 0.

def
half_adder_sum_without_carry(a,
b): sum = Xor(a, b); carry =
And(a, b); return And(sum ==

1, carry == 0)

IV. CONCLUSION

In this paper, we presented a methodology for hardware
verification assisted by LLMs, which involves an incremen-
tal proof generation process. An LLM first identifies the
basic module of the DUV, then expands the proof scope
with additional modules. LLMs are crucial for defining and
verifying module-specific invariants with the Z3 solver and
developing integration properties at module interfaces. Case
studies on a Ripple Carry Adder and a Dadda Tree Multiplier
are demonstrated.

REFERENCES
[1] R. Drechsler, Advanced formal verification. Springer, 2004.
[2] ——, Formal verification of circuits. Springer Science & Business Media, 2013.
[3] R. Kande, H. Pearce, B. Tan, B. Dolan-Gavitt, S. Thakur, R. Karri, and J. Rajendran, “Llm-

assisted generation of hardware assertions,” arXiv preprint arXiv:2306.14027, 2023.
[4] M. Orenes-Vera, M. Martonosi, and D. Wentzlaff, “From rtl to sva: Llm-assisted generation

of formal verification testbenches,” arXiv preprint arXiv:2309.09437, 2023.
[5] C. Sun, C. Hahn, and C. Trippel, “Towards improving verification productivity with circuit-

aware translation of natural language to systemverilog assertions,” in First International
Workshop on Deep Learning-aided Verification, 2023.

[6] D. Saha, S. Tarek, K. Yahyaei, S. K. Saha, J. Zhou, M. Tehranipoor, and F. Farahmandi, “Llm
for soc security: A paradigm shift,” arXiv preprint arXiv:2310.06046, 2023.

[7] X. Meng, A. Srivastava, A. Arunachalam, A. Ray, P. H. Silva, R. Psiakis, Y. Makris, and
K. Basu, “Unlocking hardware security assurance: The potential of llms,” arXiv preprint
arXiv:2308.11042, 2023.

[8] B. Ahmad, S. Thakur, B. Tan, R. Karri, and H. Pearce, “Fixing hardware security bugs with
large language models,” arXiv preprint arXiv:2302.01215, 2023.

[9] M. Hassan, S. Ahmadi-Pour, K. Qayyum, C. K. Jha, and R. Drechsler, “Llm-guided formal
verification coupled with mutation testing.”

[10] Z. Zhang, G. Chadwick, H. McNally, Y. Zhao, and R. Mullins, “Llm4dv: Using large
language models for hardware test stimuli generation,” arXiv preprint arXiv:2310.04535,
2023.

	Introduction
	LLM-assisted Methodology
	Experimental Evaluation
	Case-study : Ripple Carry Adder
	Case-study : Dadda Tree Multiplier

	Conclusion
	References-0.2cm

