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Abstract—In this paper we propose an effective methodology
for integrating Concolic Testing (CT) with SystemC-based Virtual
Prototypes (VPs) for verification of embedded SW binaries. Our
methodology involves three steps: 1) integrating CT support with
the Instruction Set Simulator (ISS) of the VP, 2) utilizing the
standard TLM-2.0 extension mechanism for transporting concolic
values alongside generic TLM transactions, and 3) providing
lightweight concolic overlays for SystemC-based peripherals that
enable non-intrusive CT support for peripherals and thus signifi-
cantly reduce the CT integration effort. Our RISC-V experiments
using the RIOT operating system demonstrate the effectiveness of
our approach.

I. INTRODUCTION

Embedded systems integrate numerous peripherals alongside the
processor on the Hardware (HW) side and extensively rely on em-
bedded Software (SW) for configuration and complex functionality.
Verification of the embedded SW is crucial to avoid errors and
mitigate the risk of security vulnerabilities.

Therefore, mainly simulation-based methods are employed that
leverage Virtual Prototypes (VPs) for SW execution early in the de-
sign flow [1]], [2]]. VPs are essentially abstract models of the entire
Hardware (HW) platform and predominantly created in SystemC
TLM (Transaction-Level Modeling) [3]. Beside the Instructions
Set Simulator (ISS), which is an abstract model of the processor,
peripherals play a very important role for every platform. VPs are
designed from the ground up to represent the whole HW platform
and provide an industrial proven solution for analysis of complex
HW/SW interactions. However, a comprehensive simulation-based
verification requires integration of sophisticated test generation
techniques.

Concolic Testing (CT) is such a technique that has been shown
very effective in the SW domain for increasing the SW test
coverage and finding intricate bugs, e.g. [4], [S]. CT works by
successively exploring new paths through the SW by solving
symbolic constraints that are tracked alongside the concrete ex-
ecution. This combination of symbolic with concrete execution
enables comprehensive testing of the SW by exploring a large set
of different program paths very efficiently. Integrating CT with a
VP-based simulation would enable comprehensive and accurate
testing of embedded SW binaries that interact extensively with HW
peripherals.

Contribution: We propose an effective methodology for such an
integration. Essentially, our methodology involves three steps:
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1) Integrating special CT support with the ISS and memory,
both of which are generic components and thus can be re-
used henceforth to build VPs for different HW platforms.

2) Utilizing the standard TLM-2.0 extension mechanism for
transporting concolic values alongside generic TLM transac-
tions. This is very important for CT to seamlessly integrate
with the existing TLM communication infrastructure, which
is at the heart of every VP.

3) Providing lightweight CT overlays for SystemC-based pe-
ripherals. Overlays intercept TLM transactions to process the
concolic extension before and after the transaction is routed
to the existing SystemC-based peripheral. This significantly
reduces the CT integration effort, as the existing SystemC-
based peripherals can be reused.

Our RISC-V experiments using the RIOT operating system demon-
strate the effectiveness of our approach in analyzing real-world
embedded applications. Our methodology enables us to rapidly
support new platforms for CT by reusing peripheral

II. RELATED WORK

CT and symbolic execution are very active research areas. They
have been used for SW verification, based on intermediate repre-
sentations [|6] and recently at the binary level [4], [S]], [7], as well
as HW verification at RTL [_8]], [9] and VP level [10], [11].

To deal with embedded SW, specialized approaches are required
that support complex HW/SW interactions. This gave rise to a
number of approaches that mainly differ on how the underlying
HW is being integrated. [12] uses virtual peripheral models man-
ually extracted from QEMU. [13] on the other hand integrates
HW Verilog models. [14] introduced instruction level abstraction
to formally model SW-visible behavior of HW. [15] provides an
MSP430-based symbolic execution environment based on KLEE.
[16] introduces an assembly to LLVM-IR lifting approach. [17]
allows hybrid binary CT with physical devices. [18]], [19] use SW
models extracted from SystemC-based peripherals.

To the best of our knowledge, an approach that directly integrates
CT with SystemC-based VPs for the purpose of embedded SW
verification is not available.

III. CoNcoLIC TESTING WITH SYSTEMC-BASED VPs

This section presents our proposed methodology on integrating
CT with SystemC-based VPs. We start by an overview on CT in a
VP-based setting (Section [@, then present more details on the
actual integration with SystemC TLM (Section [III-B) and finally
discuss our proposed CT overlays in more detail (Section [III-C)).

Visit http://www.systemc-verification.org/risc-v| to find our most recent
RISC-V related approaches.
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Fig. 1. Overview on our CT integration with VPs

A. Overview Concolic Testing

Fig.|l|shows an overview on our CT integration for VPs. Essen-
tially, it consists of two parts: 1) the SystemC-based VP with CT
extensions (left side), and 2) the CT engine (right side).

A central component of the CT engine is the exploration engine.
It is the main entry point and orchestrates CT by successively gen-
erating new inputs for the testing process. Each input is processed
by the VP. That means the VP re-executes the embedded SW binary
from the beginning and provides the input to the SW (via input
peripherals such as a sensor or UART). The VP tracks symbolic
(input) constraints alongside the concrete execution. The collected
constraints are solved by the exploration engine to generate new
inputs that will drive the execution towards different paths in
the embedded SW binary. Numerous search heuristics have been
proposed in the literature to guide the exploration faster towards
interesting cases. We effectively implemented a standard approach
based on dynamic symbolic execution, that flips branch conditions
to generate new inputs and utilizes address concretization in case
of symbolic memory indices [20].

The CT engine provides concolic data types and operations for
the VP as well as a solver interface to reason about constraints.
We have build this part of our engine on top of KLEE [6]], a state-
of-the-art symbolic execution engine, by providing thin wrapper
around the respective KLEE APIs. Technically, a concolic data type
is a pair of (mandatory) concrete value and (optional) symbolic
expression.

So far we conceptually follow the existing CT approaches. The
main novelty lies in our integration of CT with SystemC TLM,
which we discuss in the following.

B. Integration with SystemC TLM based VPs

In order to track symbolic constraints alongside the VP-based
execution, we need to integrate that support into the ISS, memory,
TLM bus and peripherals. The memory is a generic component that
is necessary in any VP. Similarly, the ISS needs to be provided
once per supported processor ISA (Instruction Set Architecture)
and can be re-used henceforth. Thus, investing more time to build
a highly specialized CT integration for the memory and ISS is
reasonable. However, peripherals are often different between em-
bedded systems and thus require special consideration to reduce
the CT integration effort and subsequent maintenance effort due

to providing duplicate models (for a concrete execution and for
a symbolic execution). Therefore, we propose a methodology to
build special CT models for the memory and ISS but try to facilitate
the integration of new peripherals with CT as much as possible.

To enable CT support in the memory we essentially replace the
native with concolic data types. Similarly, in the ISS we modify
the register bank and execution unit to use concolic instead of
native data types and operations. Many parts of the ISS, such as the
decoder logic, processing of incoming interrupts or the debugger
interface can be re-used without modification. In addition, we adapt
the memory interface, that translates load/store instructions to TLM
transactions before the bus system, to pack and unpack symbolic
constraints into a TLM extension and pass it alongside the normal
TLM transaction. This is a very important design choice that
naturally fits into the TLM idea of interoperability. The peripherals
are unaware of the TLM extensions and simply process the normal
TLM transaction. For each peripheral we introduce an optional
CT overlay that is placed between the bus and the peripheral to
provide non-intrusive CT support for the peripheral. The overlay
can modify the TLM extension before and after routing the TLM
transaction to the peripheral. In addition, it is possible to start
with a very simple (or even none if the device does not need to
handle symbolic constraints) overlays and refine them on demand
as necessary to support the embedded SW. We further illustrate the
overlay idea and discuss it in more detail in Section[[II-C}

A last challenge that needs to be addressed to integrate CT is
restarting the VP-based simulation which in turn is based on Sys-
temC. The open source reference implementation of SystemC does
not provide such a restart mechanism. However, we were able to
essentially emulate a restart behavior with the following procedure:
Besides the usual sc_main function we provide a custom main
function from which we call the SystemC sc_elab_and_sim func-
tion for each CT input. In addition, we reset the global SystemC
simulation context (sc_core.:sc_curr_simcontext) before each call
to ensure that a new SystemC simulation context is created’| A new
VP instance is initialized and executed per simulation context.

C. Peripheral Overlay Example

This section discusses a theoretical example scenario to illustrate
the design and refinement of SystemC peripheral overlays.

As an example peripheral we will consider a SiFive UART (e.g.
used on the FE310-GO00 SoC of the HiFivel board, see [21]
Chapter 17). Essentially, it provides memory mapped registers
to receive and transmit data as well as configuration registers
to enable interrupts, configure the watermark level (how many
elements should be received before triggering an interrupt) and
other important functionality. The UART provides a small buffer to
store received and process transmitted characters. To receive data,
the rxdata register is read. It returns a 32 bit value where the highest
bit indicate if the UART is empty (the bit is set) and the lower 8 bit
are the received character (if not empty).

Fig. 2] shows a basic embedded SW driver, that copies data from
an RX to a TX UART, in three different variants from simple to
more sophisticated. The driver function is interrupt driven and trig-
gered whenever the RX UART receives new data. Fig. [3]shows the

2This approach currently relies on implementation details and is not standard-
conform. Apart from the simulation context, SystemC contains additional global
variables which cannot be properly reset at this time. Even though we are
currently unaware of functional issues with our current reset approach, we are
striving towards a reduction of global state in SystemC. See https://github.com/
accellera-official/systemc/issues/8 for more information.
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void copy_driver () {
[ [ VARIANT-1 ]J--———————
char ¢ = read_rx_uart();
write_tx_uart (c);

char ¢ = read_rx_uart();
assert (c != "#’); // assume sender filters ’#’
write_tx_uart (c);

char ¢ = read_rx_uart();
assert (c != "#’); // assume sender filters ’'#’
i

1
2
3
4
5
6
7
8
9
10 while (!empty_rx_uart()) {
11
12
13 write_tx_uart (c)

14

15

Fig. 2. Example embedded SW to illustrate overlay design and refinement

corresponding (SystemC concolic) overlay for the UART in order
to support the respective variant of the SW driver. For clarity and
brevity we employ a slight pseudo-code notation (in particular with
respect to the assume function that adds symbolic constraints) and
omit irrelevant details (such as the constructor). Our methodology
idea is to start with a coarse overlay and refine it on demand as
necessary to support the embedded SW.

The first SW variant simply copies a single character from RX to
TX UART (Line[3}fd]in Fig.[2). To support such a scenario the over-
lay simply returns an arbitrary value on a read access (Line [I0]in
Fig.[3). In the next variant we assume a scenario where the received
characters are constrained according to an environment model, i.e.
we assume that the character "#’ is never received. With variant 1
of the overlay, the variant 2 SW would hit a spurious error, because
the assertion in Line[Zlshould not fail under the current environment
assumptions’} To support such a scenario, the outgoing UART data
can be constrained accordingly by the overlay (Line as shown
in variant 2. The SW variant 3 adds another layer of complexity
(Line[TO}{T4). Now, the copy process continues until the RX UART
is empty (which makes this driver more generic)’| Using variant
2 of the overlay, the SW could spin infinitely in the copy loop
because the empty bit is an unconstrained symbolic independent
of the actual UART status. This abstraction is fixed by the variant
3 refinement (Line that also demonstrates the benefits of
having access to the actual peripheral from the overlay.

This last variant covers the main functionality from the receive
part of the UART which is the interesting functionality with regard
to a symbolic evaluation. The remaining functionality is mainly
responsible to configure the UART and process interrupts. Thus,
the concolic overlay can be very compact and yet enable full CT
of embedded SW binaries that extensively interact with the UART.
Furthermore, peripherals and overlays can be developed side by
side which makes maintanance and testing much more easy (the
peripherals are still normally used in the concrete VP and bug fixes
are immediately available).

IV. EVALUATION

We evaluate our methodology based on the open source RISC-V
VP that is implemented in SystemC TLM [22], [23]] and available
at GitHub [24]. In particular, we use the HiFivel configuration of
the VP. The HiFivel is a RISC-V board from SiFive that features

3 A rather interesting fact is that using an abstract overlay can even lead to
the detection of SW errors that would otherwise be masked by the concrete
peripheral implementation.

#We assume in this illustration scenario that the TX UART has a sufficiently
large buffer and processes incoming characters fast enough.

class UARTOverlay : public sc_core::sc_module {

1

2 UART &uart; // reference to concrete UART

3 // ...omit constructor...

4 void transport (tlm::tlm _generic_payload &trans,
5 sc_core::sc_time &delay) {

6 // process symbolic extension

7 auto addr = trans.get_address|();

8 if (addr == RX_ADDR) {

9 /) [ VARIANT-1 ]-—————————
10 auto data = SymbolicUint32(); // any value
1 [ VARIANT-2 ]——————————
12 auto data = SymbolicUint32(); // any value
13 assume ((data & Oxff) != ’"#’); // avoid ’"#’
| [ VARIANT-3 ]J-————————-
15 auto data = SymbolicUint32(); // any value
16 assume ((data & Oxff) != "#’); // avoid "#’
17 if (uart.empty()) {

18 assume (data & (1 << 31)); // empty

19 } else {
20 assume (! (data & (1 << 31))); // not empty
21 }
Y [ END J————————————————
23 // pack the symbolic value into a TLM extension
24 auto ext = new SymbolicExtension (data);
25 trans.set_extension (ext);
26 }
27 // call the normal UART
28 isock->b_transport (trans, delay);
29 }
30 };

Fig. 3. Example overlay to illustrate overlay design and refinement

a 32 bit RISC-V processor alongside a set of essential peripher-
als, including UARTS (receive and transmit), interrupt controller
and GPIO [25]]. It is particularly well suited for small embedded
applications that are built on top of lightweight operating systems
such as FreeRTOS, Zephyr or RIOT. The HiFivel configuration of
the VP is binary compatible to the real board, i.e. can execute SW
binaries compiled for the real board.

Following our methodology we modified the existing ISS and
memory in the VP to operate on concolic data types and integrated
our CT engine as described in Sectionm Peripheral overlays will
be added and refined on demand (though overlays can obviously
be reused once they have been implemented and fully refined for
a specific peripheral). As a case-study we consider an example
application for the HiFivel that queries and processes sensor data
on top of the RIOT operating system. In the following we present
more details on the application (Section[I[V-A)), then discuss our test
setup (Section [[V-B) and results (Section [[V-C), and conclude with
an outlook for future work (Section[[V-D).

A. RIOT-based Example Application

As an example we consider an interrupt driven application that
periodically processes sensor data. An interrupt is triggered when
new sensor data is available. A producer-consumer scheme is
employed by the application to process this data. For this purpose,
two RIOT threads are employed which communicate with each
other using RIOT’s interprocess communication mechanism. The
producer thread reads data from the sensor and passes received
data to the consumer thread which processes the data and ultimately
writes it to the UART. Assertions are used to perform sanity checks
on the data, for instance to check that sensor values are within a
certain expected range. Considering that RIOT is a multithreading
operating system, we believe these kinds of producer-consumer
patterns to be common in embedded applications utilizing RIOT.
The compiled binary of this example application consists of 4061
assembler instructions.



TABLE 1
EVALUATION RESULTS FOR DIFFERENT OVERLAY REFINEMENTS
iteration #instrs | run-time | #paths | bug
I 127,477 1.11 sec 1| SB
12 1,370,415 | 13.58 sec 13 | RB
13 341,805,972 170 min 3270 -

B. Test Setup

To ensure termination of the testing process, because the appli-
cation is interrupt driven and hence non-terminating, we bounded
the number of processing iterations in the application. The testing
process continues until all bugs are fixed. Since we start with coarse
overlays that over-approximate the behavior of the real peripherals,
spurios bugs are possible. In this case a refinement of the overlays
is necessary.

For this example application, an overlay is only required for the
sensor peripheral (it acts as the only input device). Overlays for
the other HiFivel peripherals are not necessary. This includes the
UART, since it only acts as an output device, but also other pe-
ripherals which are accessed by RIOT during the operating system
initialization phase. Furthermore, overlays are much more compact
than the real peripheral and can be integrated non-intrusively as
discussed in Section[[II-C} This is a major benefit of our approach,
since we can leverage the power of the existing SystemC-based
peripherals (which are integrated into full platforms such as the
HiFivel VP).

C. Test Results

Table Il shows the results. The first column shows the test
iteration. The next three columns show the number of executed
instructions (column: #instrs), overall run-time (column: run-time)
and number of concolic execution paths (column: #paths). Please
note, by using symbolic expressions, CT can cover a large set of
different inputs on a single path. The last column shows if a bug is
found and if the bug is spurios (SB) or a real (RB). In total, three test
iterations I1, 12 and I3 are performed until no more bug is detected
(in I3). All experiments are performed on a Linux system with an
Intel i7-8565U processor.

In I1 the sensor overlay returns fully unconstrained data. While
this abstraction is too coarse (since the real sensor filters data
according to a configuration setting), we left it for demonstration
purposes. As expected, a spurios bug is detected very fast, in fact
on the very first path after executing around 127K instructions.
We refined the sensor overlay accordingly to consider the filter
setting of the real sensor, resulting in I2. Now a real application
bug is detected (caused by a false assumption regarding potential
values returned by the sensor in the application code) after 13 paths
and around 1.4M instructions. It shows, that our approach can be
very effective in finding bugs (proving correctness is more difficult,
as it requires to explore all possible paths). For I3 we fixed the
aforementioned bug and discovered no further bugs. In total 3270
paths were explored in I3 with around 341M executed instructions
in 170 minutes.

D. Outlook

Our experiments demonstrate the applicability and effectiveness
of our proposed methodology in integrating CT with SystemC-
based VPs to test real-world embedded applications. To further
boost our methodology we plan to:

(1]
[2]
[3]
[4]
[5]
[6]

[71
[8]
[91
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

Investigate automated methods to derive peripheral overlays
from existing SystemC-based peripherals. A starting point
might be a half-automated approach that leverages peripheral
interface descriptions.

Devise automated methods to refine overlays or localize the
exact source of a spurios error (currently it is a manual
approach though the existing VP-based debug infrastructure
can be used).

Investigate how to minimize the performance impact on
restarting the SystemC-based simulation and consider par-
allelization or snapshoting to boost performance. Further,
integrate advanced symbolic query optimizations.
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