
Cross-Level Processor Verification via
Endless Randomized Instruction Stream Generation

with Coverage-guided Aging
Niklas Bruns1 Vladimir Herdt1,2 Eyck Jentzsch3 Rolf Drechsler1,2

1Institute of Computer Science, University of Bremen, 28359 Bremen, Germany
2Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany

3MINRES Technologies GmbH, 85579 Neubiberg, Germany
{nbruns,vherdt,drechsler}@uni-bremen.de eyck@minres.com

Abstract—We propose a novel cross-level verification approach
for processor verification at the Register-Transfer Level (RTL).
The foundation is a randomized coverage-guided instruction
stream generator that produces one endless and unrestricted
instruction stream that evolves dynamically at runtime. We lever-
age an Instruction Set Simulator (ISS) as a reference model in a
tight co-simulation setting. Coverage information is continuously
updated based on the execution state of the ISS and we employ
Coverage-guided Aging to smooth out the coverage distribution of
the randomized instruction stream over the time. In combination,
this enables a broad and deep coverage to find intricate corner-
case bugs in the RTL processor. Our case study with an industrial
pipelined 32 bit RISC-V processor demonstrate the effectiveness
of our approach.

I. INTRODUCTION

Extensive processor verification at the Register-Transfer
Level (RTL) is essential to detect intricate bugs, which could
lead to enormous follow-up costs and additional design it-
erations. Simulation-based methods that rely on continuous
processor-level stimuli generation are still prevalent and form
the backbone of the verification effort due to their ease of
use and scalability. In this paper we consider RISC-V [1], [2]
as a representative Instruction Set Architecture (ISA) which
serves as foundation for modern processor architectures, in
particular in the embedded application domain. RISC-V is a
free and open-source ISA that enables a royalty-free processor
design and implementation. It is designed in a very modular
way with optional standard instruction set extensions around
a mandatory base integer instruction set and the ability to
integrate additional custom instruction sets to build highly
application-specific processors. These properties made RISC-V
very popular in industry and academia. From the verification
perspective, however, the extensive modularity adds additional
complexity. Besides the modern features provided by RISC-V
and any micro-architectural specific optimizations of the pro-
cessor, such as pipelining and branch prediction, the verification
tools also need to be able to deal with the large configura-
tion space offered by RISC-V. Promising approaches in this

This work was supported in part by the German Federal Ministry of
Education and Research (BMBF) within the project Scale4Edge under contract
no. 16ME0127, and within the project VerSys under contract no. 01IW19001.

context leverage methods based on co-simulation that employ
an Instruction Set Simulator (ISS) (i.e. an executable abstract
model of the processor core, typically implemented in C++)
as a functional reference model for the RTL processor under
test. Such a method is used by Google’s open-source RISC-V
Design Verification (DV) framework. It applies constraint-based
specification techniques in SystemVerilog to generate RISC-V
assembly tests one after another. Different RISC-V instruction
sets are supported by selecting and combining the respective
constraint-based specifications. Execution results between the
ISS and RTL processor core are compared through execution log
files. While this feature set makes RISC-V DV very powerful in
general, it also has some major weaknesses. In order to keep
the framework generic, the generated tests use a restricted in-
struction set to avoid problems with infinite loops and platform-
dependent memory access operations. Moreover, by generating
tests one by one, only comparatively short instruction sequences
are considered, and the state of the processor under test is
regularly reset for each new test execution. Furthermore, the
co-simulation has an inherent performance overhead due to
the extensive filesystem communication, since each RISC-V
assembly test needs to be compiled, loaded onto the respective
simulator, and produce a log file for comparison. Finally, the test
generator is not designed to be dynamically guided by coverage
information obtained from the test execution progress. Many of
these issues have been addressed by a recent academic work [3].
It generates endless instruction streams and integrates the ISS
with the RTL core in a very efficient co-simulation compiled
into a single binary with in-memory communication. The setup
allows to generate instructions without any restrictions, i.e.,
arbitrary combinations of load/store and Control and Status
Registers (CSRs)1 instructions, as well as infinite loops, are
supported, which enables a very comprehensive test approach.
However, the approach is still limited as it does not collect or
employ runtime coverage information to assess and guide the
test generation process. Instead, the instruction stream genera-
tors are based on a simple randomized test strategy which makes
it very difficult to continuously achieve a broad and deep test

1In the CSRs, the processor stores additional instruction results to enable
sophisticated hardware/software interactions.



coverage in endless instruction streams.
In this paper, we propose a novel cross-level verification

approach that conceptually builds upon the previous academic
work [3] and addresses the aforementioned limitations. The
foundation is a randomized coverage-guided instruction stream
generator that produces an endless and unrestricted instruction
stream that evolves dynamically at runtime based on observed
coverage information. We also leverage an ISS as a reference
model in a tight co-simulation setting. Coverage information is
continuously updated based on the execution state of the ISS
and we employ the novel concept of Coverage-guided Aging
to smooth out the coverage distribution of the randomized in-
struction stream over time. In combination, this enables a broad
and deep coverage to find intricate corner-case bugs in the RTL
core. Our experiments with the 32-bit pipelined RISC-V core
of the MINRES The Good Core (TGC) series demonstrate the
effectiveness of our approach. We achieve a much more regular
coverage distribution of the randomized instruction stream via
Coverage-guided Aging, and we found another intricate micro-
architecture related bug in the interplay between the already
heavily tested industrial processor with the accompanied test
bench infrastructure.

II. RELATED WORK

Several approaches have been proposed to generate tests for
the purpose of processor verification. One prominent direc-
tion is to employ model-based test generators that leverage a
constraint-based specification format to guide the test generation
process [4], [5]. In this context, optimization techniques for
constraint propagation [6], execution path coverage models [7]
and mining techniques for processor manuals [8] have been
considered. Alternative approaches integrate coverage-guided
test generation based on bayesian networks [9] and other ma-
chine learning techniques [10] as well as fuzzing [11] and
symbolic execution [12]. However, these approaches are either
not designed for RTL verification or impose restrictions on the
generated instruction streams. In addition, they do not target the
modern RISC-V ISA.

Recently, verification approaches tailored for RISC-V have
emerged. In the introduction, we already covered the modern
co-simulation based approaches that are tailored for RTL and
are closest to our proposed approach. Other simulation-based
approaches for RISC-V generate instruction sequences by com-
bining pre-defined randomized patterns [13] and by utilizing
constraint-based specifications [14] as well as coverage-guided
fuzzing techniques [15]. However, they suffer from the same
limitations as the traditional processor-level stimuli generation
approaches in imposing restrictions or operating at a differ-
ent abstraction level than RTL. Finally, a set of directed test-
suites that cover different RISC-V instruction sets [16]–[18] are
available that form a baseline for testing and looking beyond
simulation-based techniques. A few formal approaches that
are based on model checking techniques [19], [20] have been
proposed as well. Nevertheless, these formal techniques are
possibly susceptible to scalability issues.

RTL-Core RTL-Memory

ISS ISS-MemoryInstrGen

InstrGen

Coverage-ObserverInstruction-Injector

C
o
m
p
a
r
a
t
o
rSeed

Seed
Core-Adapter

Fig. 1. Overview on core verification

III. BACKGROUND ON RISC-V

RISC-V, is a free and open Instruction Set Architecture (ISA)
that was developed at UC Berkeley and is available under the
open-source license: Creative Commons Attribution 4.0 Interna-
tional License [1], [2]. RISC-V provides three different integer
base ISAs that differ primarily in the used word width: RV32I
is the 32-bit version of the architecture, RV64I is the 64-bit, and
RV128I is the 128-bit version. These base ISAs define integer
calculations, program control, load and store operations, and
debugging instructions. In addition to this base ISAs, many
instruction set extensions are defined. The used extensions are
appended to the name of the integer base ISA to name the ca-
pabilities of a core implementation. A 32-bit RISC-V processor
with a multiplication unit, CSR instructions, Fence, and support
for compressed instructions is called RV32IMCZicsrZifencei.

IV. CROSS-LEVEL PROCESSOR VERIFICATION WITH
COVERAGE-GUIDED AGING

In this section, we present our cross-level processor verifica-
tion approach that is based on endless randomized instruction
stream generation using Coverage-guided Aging. We start with
an overview.

A. Overview

Fig. 1 shows the overview of our approach. It starts with
initializing the random instruction generators (InstrGen). Each
core has its separate instruction generator which are initialized
with the same cryptographic seeds. As a consequence, the gen-
erators provide the same endless randomized instruction stream.
At first, some instructions of the endless instruction stream are
generated and executed by the ISS. After this, the RTL processor
fetches its instruction stream. However, for the fetching of the
RTL core, micro-architectural details such as pipelining, pre-
fetching, and fetch-buffering have to be considered. For this
purpose, a core adapter is used, which checks for addresses
that were not fetched by the ISS, fills them with randomized
values (not generated by InstrGen), and forwards them to the
RTL-Core. After the execution of the instructions, the core
and ISS write the results to the separated memories. Next, the
Coverage-Observer measures the functional coverage based on
the ISS execution state, does the coverage-aging, and gives
hints to the Instruction-Injector if functionality must be covered
(again. In principle, the functional coverage can be specified
arbitrarily complex and is used to guide the test generation over



time. We will present more details on the Coverage-Observer in
Section IV-B. Next, the Instruction-Injector evaluates the hints
and injects instructions to cover the requested functionality.
The injector must consider that the cores have different fetch
behaviors and execution timings that result in individual random
instruction generator states. The functional principle of the
Instruction-Injector is described in Section IV-C. The purpose
of the Comparator is to find functional differences between
the RTL-Core and the ISS. To achieve this, it compares the
register values of the ISS and the RTL-Core. The matching is not
straightforward because the cores do not have the same timing
behavior. The Comparator logs the value changes and constantly
compares the two changes at the same position to solve this
problem. If the Comparator finds any differences, then it quits
the simulation. In the following, we provide more details on
the Coverage-Observer (Section IV-B) and Instruction-Injector
(Section IV-C), which are the two most important components
to implement coverage-guided aging.

B. Coverage-Observer
The main functionality of the Coverage-Observer is to mon-

itor the internal state of the ISS to measure the coverage. It
samples the executed instructions and looks up the matching
coverage points. In this work, we define the cross-product of
instruction groups as coverage points. The instruction groups are
defined by a verification engineer to lay the verification focus
at the to-be-tested functionality. An instruction group covers
a set of instructions like arithmetic or load/store instructions.
Consequently, our approach guarantees to verify each func-
tionality in combination with every function. The Coverage-
Observer watches the executed instructions at run-time and is
the heart of our coverage aging extension. After an instruction
sequence covers an coverage point, the Coverage-Observer sets
the corresponding Coverage-guided Aging counters to a defined
maximal value. Periodically, the Coverage-Observer decreases
the Coverage-guided Aging counter until the minimum limit
is reached. In this case, it gives a hint to the Instruction-
Injector. This hint consists of a random instruction sequence
that is needed to cover the coverage point. The instructions are
randomly selected instructions that were sampled in this run
dynamically. The Coverage-Observer will reset the Coverage-
guided Aging counter if the groups are covered again. Next we
describe the Instruction-Injector.

C. Instruction-Injector
The purpose of the Instruction-Injector is to inject instruction

sequences into the random test generators in compliance with
their internal state. When the instruction injection ignores the
internal states, then the generators provide differing instruction
streams that may lead to a false result of the Comparator. To
achieve a legal injection, the Instruction-Injector measures how
many instructions have been executed before the current state
of the random generator was reached. Then, it schedules the
injection to the same near-future instruction count for all instruc-
tion generators. This approach is valid because deterministic
random sources, that are initiated with the same cryptographic
seed value, provide the same random sequences. In this way,

we have ensured that the behaviors of the random instruction
generators are equal.

V. EVALUATION

In this section, we present our case study and discuss the
evaluation results. The goal of our case study is to evaluate the
applicability of Coverage-guided Aging for cross-level proces-
sor verification. We start with the test setup.

A. Test Setup

As Device Under Test (DUT), we used the 32-bit pipelined
RISC-V core of the MINRES The Good Core (TGC) series,
which has already been extensively verified using simulation-
based approaches and formal techniques. As reference ISS, we
used the ISS of the open-source SystemC-based RISC-V VP2.
To enable the co-simulation, we translated the industrial RTL
core to C++ using the open-source tool Verilator3 and inte-
grated it into a SystemC test bench along with the ISS. For
our evaluation, we configured the core and ISS to support the
RISC-V subset RV32IMCZicsrZifencei (see: Section III). All
experiments were executed on an Ubuntu 20.04 LTS machine
with an AMD Ryzen 7 PRO 4750U CPU with 4.1GHz and
36GB RAM and a SystemC simulation time limit of 1 second (≈
20 million instructions). By analyzing the RISC-V specification,
we identified the following six important instruction groups that
act as base for the coverage points in this case study: Arithmetic,
Control Flow, Memory, Special & System, Control & Status
Register (CSR), and Other. The group Arithmetic contains all
arithmetic instructions of the instruction subsets RV32I and
RV32C and all instructions of RV32M. The group Control Flow
contains the unconditional jump and the conditional branch
instructions of RV32I and RV32C. The group Memory con-
tains the load/store instructions of RV32I and RV32C and the
memory ordering instructions of RV32I. The group Special &
System contains the ECALL and EBREAK, the NOP and the
HINT instructions of RV32I, and the illegal, NOP, breakpoint,
and HINT instructions of RV32C. Additionally, it contains the
FENCE instruction of ZIFENCEI. The group CSR is equivalent
to ZICSR. The group Other contains all instructions of the un-
defined and unsupported subsets and the privileged architecture.
As a consequence of the six instruction groups and the resulting
36 coverage points, we configured the Coverage-guided Aging
counter to the value 100 and will be decremented after a new
instruction is generated. With the value 100, there are enough
random instructions, and at the same time, the coverage points
are triggered frequently. In the following, we compare the results
of a random test generator with and without our Coverage-
guided Aging extension (Section V-B). Then we present a bug
that we found during the development process (Section V-C).

B. Random vs. Coverage-guided Aging

Fig. 2 shows the result bar chart of our case study. The chart
gives information about how often the coverage points (defined
as cross product of the instruction groups) were executed by the

2https://github.com/agra-uni-bremen/riscv-vp
3https://www.veripool.org/verilator/

https://github.com/agra-uni-bremen/riscv-vp
https://www.veripool.org/verilator/


Fig. 2. Cross Coverage Groups : Sum of all runs

random test generator and the Coverage-guided Aging test gen-
erator. The random generator is a re-implementation of the test
generator of [3] and has already proven its excellent bug-hunting
capabilities. Unfortunately, it tends to favor specific test state
spaces. It is based on a static randomized test strategy that does
not change over time. However, such an adjustment is critical
since we are looking at an endless instruction stream and not at
individual cases where readjustment after each run is possible.
As stated in the legend, the blue bars, which are always on the
left side, represent the instructions generated by the random test
generator and the orange bars belonging to the test generator
that is enhanced with Coverage-guided Aging. The execution of
the random test generator leads to substantial peaks in specific
combinations of instruction groups while other combinations
were almost never executed. For example, the count of Special
& System : Special & System is so low that it almost can not
be seen, and in opposite, the combination of Other : Other was
executed very often. Thus, clear gaps can be seen. In contrast,
the Coverage-guided Aging generator has much weaker peaks
on certain groups. In addition, every group is executed and
always reaches a clearly visible execution count. Thus, the
result of the random test generator seems to degenerate. In
comparison, the Coverage-guided Aging test generator provides
a more balanced result, and no gaps can be seen. Unfortunately,
the results could not be presented for space reasons. Thus, we
have shown that Coverage-guided Aging complements to close
gaps and achieves more balanced verification results.

C. Detected Pipeline Bug

During the development of the Coverage-guided Aging test
generator we have discovered a micro-architectural related bug
in the accompanied test bench adapter of the already well-tested
industrial RTL-Core. In certain test cases, there where no free

entries in the execute FIFO of the pipeline and thus the core did
not receive any further instructions. This was triggered because
the pipeline was only emptied by the test bench adapter when a
valid instruction was executed. Therefore, a test case could trig-
ger this error if the core ran too many invalid instructions (see:
Special & System : Special & System in Fig. 2) in succession.

D. Discussion and Future Work

Our case study shows, that Coverage-guided Aging is a ef-
fective extension for cross-level processor verification. We have
shown that Coverage-guided Aging complements to close gaps
and achieves a much more regular coverage distribution. Fur-
thermore we found another intricate micro-architectural bug in
the already heavily tested industrial processor. For future work,
we plan to design advanced micro-architecture coverage metrics
to measure specific feature testing like the hazard handling of
pipelines. In addition, we plan to create a processor verification
benchmark based on finely detailed coverage groups.

REFERENCES

[1] A. Waterman and K. Asanović, Eds., The RISC-V Instruction Set
Manual; Volume I: Unprivileged ISA, 2019.

[2] ——, The RISC-V Instruction Set Manual; Volume II: Privileged Archi-
tecture, 2019.

[3] V. Herdt, D. Große, E. Jentzsch, and R. Drechsler, “Efficient cross-level
testing for processor verification: A risc- v case-study,” in FDL, 2020,
pp. 1–7.

[4] A. Adir, E. Almog, L. Fournier, E. Marcus, M. Rimon, M. Vinov,
and A. Ziv, “Genesys-pro: innovations in test program generation for
functional processor verification,” D&T, pp. 84–93, 2004.

[5] B. Campbell and I. Stark, “Randomised testing of a microprocessor
model using SMT-solver state generation,” in Formal Methods for
Industrial Critical Systems, F. Lang and F. Flammini, Eds., 2014, pp.
185–199.

[6] Y. Katz, M. Rimon, and A. Ziv, “Generating instruction streams using
abstract CSP,” in DATE, 2012, pp. 15–20.

[7] M. Chupilko, A. Kamkin, A. Kotsynyak, and A. Tatarnikov, “Mi-
croTESK: specification-based tool for constructing test program gen-
erators,” in HVC, 2017.

[8] W. Ma, A. Forin, and J. Liu, “Rapid prototyping and compact testing
of CPU emulators,” in RSP, 2010, pp. 1–7.

[9] S. Fine and A. Ziv, “Coverage directed test generation for functional
verification using bayesian networks,” in DAC, 2003, pp. 286–291.

[10] C. Ioannides, G. Barrett, and K. Eder, “Feedback-based coverage
directed test generation: An industrial evaluation,” in Hardware and
Software: Verification and Testing, S. Barner, I. Harris, D. Kroening,
and O. Raz, Eds., 2011.

[11] L. Martignoni, R. Paleari, G. F. Roglia, and D. Bruschi, “Testing CPU
emulators,” in ISSTA, 2009, pp. 261–272.

[12] H. Wagstaff, T. Spink, and B. Franke, “Automated ISA branch cov-
erage analysis and test case generation for retargetable instruction set
simulators,” in CASES, 2014, pp. 1–10.

[13] “RISC-V torture test generator,” https://github.com/ucb-bar/
riscv-torture.

[14] V. Herdt, D. Große, and R. Drechsler, “Towards specification and testing
of RISC-V ISA compliance,” in DATE, 2020, pp. 995–998.

[15] V. Herdt, D. Große, H. M. Le, and R. Drechsler, “Verifying instruction
set simulators using coverage-guided fuzzing,” in DATE, 2019, pp. 360–
365.

[16] “RISC-V ISA tests,” https://github.com/riscv/riscv-tests.
[17] “RISC-V compliance task group,” https://github.com/riscv/

riscv-compliance.
[18] N. Bruns, V. Herdt, D. Große, and R. Drechsler, “Toward RISC-V CSR

compliance testing,” IEEE ESL, vol. 13, no. 4, pp. 202–205, 2021.
[19] “RISC-V formal verification framework,” https://github.com/

SymbioticEDA/riscv-formal, 2020.
[20] “OneSpin 360 DV RISC-V Verification App,” https://www.onespin.com/

solutions/risc-v, 2020.

https://github.com/ucb-bar/riscv-torture
https://github.com/ucb-bar/riscv-torture
https://github.com/riscv/riscv-tests
https://github.com/riscv/riscv-compliance
https://github.com/riscv/riscv-compliance
https://github.com/SymbioticEDA/riscv-formal
https://github.com/SymbioticEDA/riscv-formal
https://www.onespin.com/solutions/risc-v
https://www.onespin.com/solutions/risc-v

	Introduction
	Related Work
	Background on RISC-V
	Cross-Level Processor Verification with Coverage-guided Aging
	Overview
	Coverage-Observer
	Instruction-Injector

	Evaluation
	Test Setup
	Random vs. Coverage-guided Aging
	Detected Pipeline Bug
	Discussion and Future Work

	References

