
Late Breaking Results: Towards Efficient Formal
Verification of Dot Product Architectures
Lennart Weingarten

Institute of Computer Science
University of Bremen
Bremen, Germany

len wei@uni-bremen.de

Kamalika Datta
Institute of Computer Science

University of Bremen/DFKI
Bremen, Germany

kdatta@uni-bremen.de

Rolf Drechsler
Institute of Computer Science

University of Bremen/DFKI
Bremen, Germany

drechsler@uni-bremen.de

Abstract—The popularity of compute intensive applications,
like AI/ML, has driven the design of processors with complex
functionality. The Dot Product (DP) is one of the most essential
operations in modern neural processors, although no complete
formal verification technique exists that can ensure its 100%
correctness. In this paper we show the first step towards
formally verifying DP using Symbolic Computer Algebra (SCA).
The verification process is performed without the need of a
reference model generation which is a key factor in verification.
Experimental results show the efficiency and scalability of SCA-
based verification for DP architectures.

Index Terms—Dot Product (DP), Formal Verification, Symbolic
Computer Algebra (SCA)

I. INTRODUCTION

In the ever evolving world of hardware development, to-
gether with the growth of AI, ensuring correctness of a design
is of vital importance. One of the fundamental blocks in
many AI and DSP applications is the Dot Product (DP) unit.
Verification of such blocks is essential to avoid costly errors.
While there exists a few design approaches for DP [1], [2],
none can provide a complete formal verification that can
ensure 100% correctness. In a recent work, an approach to
formally verify the Dot Product Accumulate Systolic Unit
(DPA) has been presented [3]. Equivalence checking is used
to verify the RTL code against a golden reference model,
which is yet to be proven complete. In this paper a verifi-
cation approach is presented that does not require a complex
reference model. Here, we verify the circuit by comparing
it with the Specification Polynomial (SP), which is a simple
high-level representation. Symbolic Computer Algebra (SCA)
(see [4]–[7]) is found to be the best proof engine for formal
verification of scalable multipliers. So far no complete formal
verification techniques exist for DP. In DP, many multiplier
terms are present, and as SCA-based methods are well suited
in this case, we perform formal verification of DP architectures
exploiting SCA.

II. VERIFICATION METHODOLOGY FOR DOT PRODUCT

A. Dot Product Architecture
The DP is realized by adding multiple product terms result-

ing in a single value. Eqn. (1) represents the DP of m product
terms.

DP := (a0 × b0) + (a1 × b1) + · · ·+ (am−1 × bm−1) (1)

Each term consists of a multiplication of two n-bit numbers,
resulting in a product of 2n-bits. The addition is performed
by an adder tree structure shown in Fig. 1. Initially the first
two terms are added, thereafter further terms are added one by
one until the final result is calculated. Each addition generates
an additional carry out, which can be added as a carry input
to the next adder (as shown in Fig. 1). In this work, the carry
bit is truncated.

Fig. 1: DP architecture

B. Application in Matrix Vector Multiplication Operation
The DP is part of many complex arithmetic operations

which are essential for AI applications, like e.g. Matrix-Vector
Multiplication (MVM), Matrix-Matrix Multiplication (MMM)
and Multiply-Accumulate (MAC). Eqn. (2) shows an example
for MVM. The number of DP terms varies depending on the
operation.

m[0,0] m[0,1] · · · m[0,k]

m[1,0] m[1,1] · · · m[1,k]

...
. . .

...
m[j,0] m[j,1] · · · m[j,k]

×


v0
v1
...
vk

 =


r0
r1
...
rk

 (2)

Each rk entry (result vector) from Eqn. (2) represents indi-
vidual DPs, consisting of many product terms for a particular
row matrix, as can be seen in Eqn. (3).
r1 = (m[0,0] × v0) + (m[0,1] × v1) + · ·+(m[0,k] × vk)

r2 = (m[1,0] × v0) + (m[1,1] × v1) + · ·+(m[1,k] × vk)

:

rk = (m[j,0] × v0) + (m[j,1] × v1) + · ·+(m[j,k] × vk)

(3)

For all rj in Eqn. (3) the SP can be expressed as shown in
Eqn. (4). Provided that each DP can be verified using SCA,
then the entire MVM in Eqn. (2) can be completely verified.
Similarly, other operations like MMM or MAC can also be
handled.
SPr1 := r1 − (m[0,0] × v0)− (m[0,1] × v1)− · · −(m[0,k] × vk) = 0

SPr2 := r2 − (m[1,0] × v0)− (m[1,1] × v1)− · · −(m[1,k] × vk) = 0

:

SPrk := rk − (m[j,0] × v0)− (m[j,1] × v1)− · · −(m[j,k] × vk) = 0
(4)

C. Verification Methodology
The first step in SCA-based verification is the definition of

the SP of the circuit. The SP is described solely on the basis of
the primary inputs and outputs of the circuit. Eqn. (5) shows
the SP of the DP consisting of m product terms.

SPDP := R−(a0×b0)−(a1×b1)−· · ·−(am−1×bm−1) = 0
(5)



Fig. 2: Overview of Verification Methodology

Fig. 2 shows the overall verification methodology of our tool
DP-Verifier. The Device Under Verification (DUV) given
in Verilog is converted into an And-Inverter-Graph (AIG)
representation, and the SP is generated. The verification is
then performed by iterating from primary outputs to primary
input in reverse topological order. For each AIG node, its Gate
Polynomial (GP) is evaluated by replacing it in the SP (see [5]
for more details of the substitution process). After all nodes
are processed, the final remainder polynomial is evaluated.
The circuit is correct, if it is a zero polynomial, otherwise it
is faulty.

III. EXPERIMENTS

The SCA-based DP-Verifier is implemented using C++.
All experiments were performed on an AMD Ryzen 7 PRO
4750U with 40GB main memory. We generate two variations
of the DP architecture for 8 and 16-bit.

• DT SE RC: an unsigned Dadda Tree (DT) multiplier
with Serial prEfix (SE) adder for the final stage and
Ripple Carry (RC) for the adder tree

• AR RC RC: an unsigned ARray (AR) multiplier with
RC for the final stage adder and for the adder tree

To show the efficiency and scalability of SCA-based verifi-
cation for DP architectures the experimental results for two
example DP circuits are presented in Fig. 3. Each multiplier
term has a bit width of 8 or 16 bits.

In the top and bottom sub-figures the verification time
and the maximum specification polynomial size is presented,
respectively. For all experiments, product terms ranging from
2 to 128 are evaluated. This implies that we can handle DPs
with up to 4096 bits. For all sub-figures the x-axis shows the
number of product terms. In the top figures the y-axis gives
the verification time (vTime) in seconds and in the bottom the
maximum SP size.

From this diagram it can be inferred that both DP designs
have similar behavior. The verification time shows polynomial
growth whereas the maximum SP size grows linearly only. The
SP size for larger terms is correlated to the memory usage,
which grows linear, whereas the verification time grows poly-
nomial. This shows the power of the SCA-based verification
methodology for complex circuits. While dealing with an NP -
complete problem, the solutions provided turn out to be very
efficient.

The substitution trajectory for 8 and 16 bit DP architectures
is depicted to show how the SP size grows over the substitution
steps. The top diagrams in Fig. 4 show the DP with the
smallest product terms (2) and the bottom with the largest
product terms (128). It can be observed that the trajectory
curve behaves identically for larger numbers of product terms,
which validates the scalability of SCA-based verification for
DP architecture.

Fig. 3: Verification results for 8 and 16-bit dot product

Fig. 4: Substitution trajectory for 8 and 16 bit DP

IV. CONCLUSION

In this work, we have shown the suitability and scalability of
SCA-based verification for DP architectures. Circuits where up
to 128 product terms (4096 bits) could be verified efficiently
in a very short time. This shows the power of our approach
which can verify large and complex DP circuits without the
need for a reference model. As future work verification of
MVM and MMM could be considered.

ACKNOWLEDGMENT

This work was supported in part by DFG within the Reinhart
Koselleck Project PolyVer (DR 287/36-1) and partly by the
German Federal Ministry of Education and Research (BMBF)
within the ECXL project under grant no. 01IW22002.

REFERENCES

[1] S. Prebeck et al., “A Scalable, Configurable and Programmable Vector
Dot-Product Unit for Edge AI,” in MBMV, 2022, pp. 1–9.

[2] D. Puri et al., “Raising the Bar: Achieving Formal Verification Sign-Off
for Complex Algorithmic Designs, with a Dot Product Accumulate Case
Study,” in DVCon India, 2023.

[3] E. Morini et al., “Achieving End-to-End Formal Verification of Large
Floating-Point Dot Product Accumulate Systolic Units,” DVCon, 2024.

[4] D. Kaufmann, A. Biere, and M. Kauers, “Verifying large multipliers by
combining SAT and computer algebra,” in FMCAD, 2019, pp. 28–36.

[5] A. Mahzoon, D. Große, and R. Drechsler, “RevSCA-2.0: SCA-Based
Formal Verification of Nontrivial Multipliers Using Reverse Engineering
and Local Vanishing Removal,” TCAD, vol. 41, no. 5, 2022.

[6] A. Konrad and C. Scholl, “Symbolic Computer Algebra for Multipliers
Revisited-It’s All About Orders and Phases,” in FMCAD, 2024.

[7] H. Liu et al., “Parallel Gröbner Basis Rewriting and Memory Optimiza-
tion for Efficient Multiplier Verification,” in DATE, 2024, pp. 1–6.


	Introduction
	Verification Methodology for Dot Product
	Dot Product Architecture
	Application in Matrix Vector Multiplication Operation
	Verification Methodology

	Experiments
	Conclusion
	References

