
Polynomial Formal Verification of Sequential
Circuits using Weighted-AIGs

Mohamed Nadeem⋓, Chandan Kumar Jha⋓, Rolf Drechsler⋓,†
University of Bremen, Bremen, Germany⋓

DFKI GmbH, Bremen, Germany†

mnadeem@uni-bremen.de, chajha@uni-bremen.de, drechsler@uni-bremen.de
Abstract—Ensuring the functional correctness of a digital system

is achievable through formal verification. Despite the increased
complexity of modern systems, formal verification still needs
to be done in a reasonable time. Hence, Polynomial Formal
Verification (PFV) techniques are being explored as they provide
a guaranteed upper bound on the run time for verification.
Recently, it was shown that combinational circuits characterized
by a constant cutwidth can be verified in linear time using Answer
Set Programming (ASP). However, most of the designs used in
digital systems are sequential. Hence, in this paper, we propose a
linear time formal verification approach using ASP for sequential
circuits with constant cutwidth. We achieve this by proposing a
new data structure called Weighted-And Inverter Graph (W-AIG).
Unlike existing formal verification methods, we prove that our
approach can verify any sequential circuit with a constant cutwidth
in a linear time. Finally, we also implement our approach and
experimentally show the results on a variety of sequential circuits
like pipelined adders, serial adders, and shift registers to confirm
our theoretical findings.

Index Terms—Polynomial Formal Verification, Sequential Cir-
cuits, Pipelined Adders, Cutwidth, Answer Set Programming.

I. INTRODUCTION

Ensuring the functional correctness of circuits is one of
the most challenging tasks in digital system design. These
circuits are mostly sequential in nature [1]–[3], i.e., the output
function is determined by both the current and the previous
inputs. Given their ubiquitous use in modern systems, ensuring
the correctness of sequential circuits becomes an imperative
task [4]–[6]. Thus, formal verification methods have gained con-
siderable attention to determine whether these circuits behave
as desired [7], [8]. There exist several techniques for achieving
efficient verification of sequential circuits using Binary De-
cision Diagrams (BDDs) [9], and Bounded Model Checking
(BMC) [10]. These methods unroll the sequential circuit up
to several clock cycles (also called Time Frames) (TF) to
guarantee its correctness. In [11], the authors propose a scal-
able method for sequential verification based on partitioning
the Boolean function. The Boolean function is represented as
a Directed Acyclic Graph (DAG), with its gates arranged in
topological order. Verification is then performed inductively on
the circuit up to the desired TF . In this context, And-Inverter
Graphs (AIGs) [12] serve as DAGs to provide an efficient
representation of the circuits. However, this approach is limited
to acyclic AIGs, as the topological order is not preserved in the
cyclic AIGs. In addition to this, there is no guarantee on the
runtime of the approach proposed in [11].

Despite the success of these methods in verifying sequential
circuits, they fail to provide any time bounds for the verification
process. Thus, Polynomial Formal Verification (PFV) [13] has

This work was supported by the German Research Foundation (DFG) within
the Reinhart Koselleck Project PolyVer (DR 287/36-1).

been introduced to guarantee an upper bound on the time
required for the verification process. Recently, there have been
works that have explored the PFV of sequential circuits [14],
[15] using BDD. These methods have demonstrated that the
verification of some of the sequential circuits is bounded by
polynomial time. However, these works were either limited to
specific types of sequential circuits, such as counters in [14], or
restricted to a single clock cycle TF in [15].

In this work, we use Answer Set Programming (ASP) [16]–
[18] for the verification of a large variety of sequential circuits
and show stricter than polynomial bound, i.e., linear bound on
the runtime. ASP is a declarative programming framework that
is well-known in the area of knowledge representation and non-
monotonic reasoning [19]. It is used to solve difficult search
problems while allowing compact modeling. Recently, it has
been demonstrated that the verification of combinational circuits
with a constant Cutwidth [20] of the AIG (e.g., Ripple Carry
Adder (RCA), Carry Look-ahead Adder (CLA), and Carry Skip
Adder (CSKA)) can be achieved in linear time using ASP [21].
However, extending this approach to the domain of sequential
circuits remains a challenging task due to the limitations of AIG
in encoding sequential circuits. This arises from its inability to
encode the time frames in the AIG nodes.

We alleviate this limitation of AIG and introduce a new data
structure called Weighted-AIG (W-AIG) that allows encoding
time frames. Unlike [11], we exploit the concept of Simple
Paths [22] to handle both acyclic as well as cyclic AIGs. We
introduce a new method for unrolling the sequential circuit
w.r.t. W-AIG and the TF , where TF is defined based on the
number of input vectors passed to the circuit. Our approach
incorporates the concept of cutwidth in conjunction with W-AIG
to partition the circuit into subcircuits, each corresponding to a
specific time frame. Subsequently, the ASP solver Clingo [23] is
employed to verify each subcircuit independently. This approach
effectively reduces the overall time complexity to the cutwidth
of the circuit. We implemented the proposed methodology
and analyzed Pipelined Adders having a constant cutwidth. In
addition to this, we also show other widely used sequential cir-
cuits (i.e., Shift Registers, and Serial Adders) that are verifiable
in polynomial time [14], [15], can now be verified in linear time
using our proposed approach.

Contributions: A) We introduce Weighted-AIG (W-AIG) as a
new data structure that enables encoding time frames of acyclic
and cyclic AIGs. B) We present an innovative PFV approach for
sequential circuits with constant cutwidth using ASP in linear
time. C) We conduct an empirical evaluation to show the linear
time verifiability for sequential circuits with constant cutwidth
using ASP.

FA

FA

A0 B0

C0

A1 B1

O0 O1 O2

C1

(a) Pipeline RCA

A0 B0

1 2

3

FF1FF2

O0

A1 B1

FF3 FF4

4 5

6

7 8 9

11
O2O1

10

(b) AIG

Fig. 1: The Pipeline RCA and its corresponding AIG graph.

II. PRELIMINARIES
A. Pipelined Adder

Pipelining was introduced to increase the performance of
digital circuits and is ubiquitous in modern processors and
accelerators [24], [25]. It is achieved by inserting flip flops
between combinational circuits, which increases the frequency
of operation [26]. We have used an example of a 2-bit RCA,
which has two Full Adders (FAs), to explain the pipelining
methodology. We see from Fig. 1(a), that the flip flops (red
diamond) are inserted so that the output of the RCA is obtained
after two cycles. In the first cycle, A0 +B0 + C0 is done using
the first FA, and the outputs (O0, C1) are stored in the flip flop
at the end of the first cycle. In the second cycle, A1 +B1 + C1

are added using the second FA, which generates the remaining
outputs (O1, O2). Hence, the numbers are added in two cycles.
B. Cutwidth as a Property of AIG

Let A be a circuit design. Then, A can be seen as a directed
graph G, which consist of terminal nodes (i.e., inputs PI and
outputs PO), and non-terminal nodes (i.e., And, FF , and Inv
gates). This can be formulated as follows:

Definition 1 (AIG Graph). Let G = (V,E) be an AIG of the
circuit design A such that:

• V = {v | v is a gate}.
• E = {(v, v′) | v, v′ ∈ V, v is an input of v′}.

Given the block diagram shown in Fig. 2(a), the AIG graph
can be obtained as shown in Fig. 2(b) (C0 is taken to be 0 hence
it does not appear in the AIG).

Intuitively, given an AIG G = (V,E) of size n with
v0, ..., vn ∈ PO ordered output gates (i.e., vi appears before
vi+1, where 0 ≤ i < n), the cutwidth of G is the smallest
number K of edges required to be removed to partition G into
n subgraphs σ = {G1, ..., Gn} such that each subgraph Gi has
at most K out-going edges.

Each subgraph (G,Oi) can be constructed w.r.t. G by starting
from the output gate Oi, and traversing all its reachable nodes.
The subgraphs (G,O0) of Fig. 2(c) and (G,O1) of Fig. 2(d)
are constructed w.r.t. G of Fig. 2(a). Since each subgraph
might contain several nodes that appear in more than one
subgraph (e.g., node 2 appears in Fig. 2(c) and Fig. 2(d)), it
is essential to reduce these subgraphs to ensure that they have
disjoint edges. This is achieved by making a copy of that node in
each of the required subgraphs. The resulting disjoint subgraphs
Gi are called as Reduced Subgraphs.

We refer by COi and CIi to the set of out-going and in-
going nodes (also called Non-primary Inputs) induced by edge-
cuts such that COi contains the nodes that are stored and

FA

A0 B0

O0 O1

C0

(a) FA

A0 B0

1 2

3

O0

O1

(b) AIG

A0 B0

1 2

3

O0

(c) G0

A0 B0

1 2

3

O0

O1

(d) G1

Fig. 2: Dotted nodes and edges are removed when the subgraphs are reduced.

passed to other subgraphs, while CIi contains nodes coming
from previous subgraphs. Thus, the subgraph Gi is evaluated
by populating the non-primary inputs CIi together with the
primary inputs PIi appearing in Gi. It is important to highlight
that the values of the non-primary inputs CIi are obtained by
concatenating the values of out-going nodes CO0, . . . , COi−1.
Let INi = PIi ∪ CIi be the inputs of the subgraph Gi.

The graph G is said to K-Bounded Graph if it can be
partitioned into G0, . . . , Gn reduced subgraphs such that each
subgraph Gi has at most K inputs (i.e., |INi| ≤ K, where
0 ≤ i ≤ n). Given the reduced subgraphs G0 and G1

of Fig. 2(c) and Fig. 2(d), the graph G is a 2-bounded graph.
This due to the fact that G0 has two inputs (i.e., IN0 =
{A0, B0}, where CI0 = ∅ and PI0 = {A0, B0}) and G1 has
one input (IN1 = {2}, where CI1 = {2} and PI1 = ∅).

C. Answer Set Programming

ASP is a declarative framework [27], [28] widely used to
solve difficult NP-hard search problems [29]. These search
problems are reduced for computing Answer Sets [30]. We
follow the standard definitions of ASP [31], [32]. In the context
of circuit design, the basic idea of ASP is to encode an AIG
graph G as a logic program Π, together with its specification
functions. Then, a query Q (represented by a set of facts)
representing values of circuit inputs, is added to the program
Π (denoted by ΠQ). The Clingo solver is used to check whether
an answer set of ΠQ exists [33]. If the answer set exists, the
query Q matches the program Π (i.e., Q is a Valid Input).
Otherwise, Q is invalid. We refer by Q to the set of all queries.
The graph G is said to be a Valid Graph if for every Q ∈ Q,
Q is a valid input.

III. W-AIG DATA STRUCTURE

In this section, we introduce W-AIG as a new data structure
that extends AIG by labelling each gate with weights that
represent the time frames 1, . . . , TF in which the value of the
gate has to be verified. The basic idea is to assign a set of
weights (representing time frames) to each gate. Intuitively, the
set of weights for a gate is computed from inputs PI to outputs
PO. For any input node v ∈ PI , we have that the set of weights
w(v) = {0} (indicating that the value appears in the same time
frame in which it is passed). For a non-terminal node n, the set
of weights is either incremented by 1, if v ∈ FF , or it remains
unchanged. Hence, if the values are passed to input gates at
time frame t = 1, then all gates appearing before v ∈ FF
will appear in the same time frame, and those appearing after
v ∈ FF will appear at t = 2, similar to the actual operation of
the sequential circuits.

We start by constructing all possible paths from an input
v ∈ PI to any other non-input node v′ ̸∈ PI . Given an

A0 B0

1 2

3

FF1FF2

O0w={1}

w={1}
w={1}

w={0}

w={0}

w={0}

w={0}

w={0}

A1 B1

w={0} w={0}

FF3 FF4

4 5

6

7 8 9

11
O2w={1}O1w={1}

10w={1}

w={1} w={1}w={1}

w={1}

w={1}
w={1}

w={1}w={1}

w={1}

(a) G

A0 B0

1 2

3

FF1FF2

O0

w={1}
w={0}

w={0}

w={0}

w={0}

w={0}

A1 B1

w={0} w={0}

FF3 FF4

4 5

6

7 8 9

11
O2w={1}O1w={1}

10w={1}

w={1} w={1}w={1}

w={1}

w={1}
w={1}

w={1}w={1}

w={1}

w={1,2}

w={1,2}

(b) G′

Fig. 3: The W-AIG G is then constructed w.r.t. the AIG of Fig. 1(b) and the
modified (W-AIG) AIG G′ of Fig. 3(a). Nodes highlighted in red, blue, and
magenta correspond to inputs, outputs, and latches, respectively. The edges
highlighted in orange correspond to the infinite path appearing in G′.

AIG G = (V,E), and a node v ∈ PI , ρ is a Path such that
ρ := {v, v1, ..., vn | (v, v1), ..., (vn−1, vn) ∈ E}. Let V (ρ) and
E(ρ) be the set of nodes and edges appearing in the path ρ.
Since sequential AIG can be cyclic, there may exist an infinite
path (a path with an infinite number of nodes). Consider the
modified AIG as shown in Fig. 3(b), there exists an infinite
path A0, 1, 3, FF2, FF2, ... (i.e., the path will keep looping to
FF2) obtained from the input A0. To overcome this problem,
it is required to restrict the path to be a simple path. A path ρ
is said to be a Simple Path if every two edges e, e′ ∈ E(ρ), it
holds that e ̸= e′. By the previous definition, the simple path ρ
contains only distinct edges and, consequently, has no loops.

This allows us to define the weight function w of a node v ∈
V (ρ) w.r.t. the simple path ρ (denoted by w(v, ρ)) as follows:

w(v, ρ) =


w(v′, ρ) + 1, if v ∈ FF, (v′, v) ∈ E(ρ), v′ ∈ V (ρ).

w(v′, ρ), if v ̸∈ FF, (v′, v) ∈ E(ρ), v′ ∈ V (ρ).

0, if v ∈ PI.

(1)

Consider the AIG of Fig. 3(a). It has five simple paths. For
instance, the path ρ = A0, 1, 3, FF2, O0 can be constructed
starting from the input node A0. Similarly, consider the modified
AIG of Fig. 3(b). It also has five simple paths. For instance, the
path ρ′ = A0, 1, 3, FF2, FF2, O0 can be constructed starting
from the input node A0. The simple path requires all edges to
be disjoint, but a node might appear twice in the simple path
(e.g.,ρ′ = A0, 1, 3, FF2, FF2, O0 in Fig. 3(b)).

Considering the path ρ = A0, 1, 3, FF2, O0 obtained from the
AIG of Fig. 3(a). It holds that w(O0, ρ) = 1, as this path has
only one flip-flop FF2 appearing before O0, while w(A0, ρ) =
0. Thus, the weights allow us to track the time frame at which
a gate needs to be checked. This means that if a value is passed
at time frame i on node A0, it will appear on node O0 in time
frame i+ w(O0, ρ).

Now, let ϱ be the set of all simple paths, obtained from
any input v ∈ V ∩ PI . Since there may exist several weights
for the same node, let w(v) be the set of all weights of the
node v obtained from any path ρ ∈ ϱ. This allows us to define
the Weighted-AIG (W-AIG) w.r.t. ϱ as follows:

Definition 2 (W-AIG). Let G′ = (V ′, E′) be an AIG graph.
Then, the W-AIG G = (V,E,W) is a weighted directed graph
of G′ = (V ′, E′) such that:

• V = V ′.
• E = E′.
• W = {(v, w(v)) | v ∈ V }.

A0 B0

1 2

3 FF1

FF2
O0 w={1}

w={1}

w={1}w={0}

w={0}

w={0}

w={0}

w={0}

(a) G0

A0 B0

1 2

3

FF1FF2

O0w={1}

w={1}
w={1}

w={0}

w={0}

w={0}

w={0}

w={0}

A1 B1

w={0} w={0}

FF3 FF4

4 5

6

7 8 9

11
O1w={1}

10w={1}

w={1} w={1}w={1}

w={1}

w={1} w={1}

w={1}w={1}

w={1}

(b) G1

A0 B0

1 2

3

FF1FF2

O0w={1}

w={1}
w={1}

w={0}

w={0}

w={0}

w={0}

w={0}

A1 B1

w={0} w={0}

FF3 FF4

4 5

6

7 8 9

11
O2w={1}O1w={1}

10w={1}

w={1} w={1}w={1}

w={1}

w={1}
w={1}

w={1}w={1}

w={1}

(c) G2

Fig. 4: The nodes highlighted in red, blue, magenta, and green correspond to
inputs, outputs, flip flops, and out-going (in-going) nodes, respectively. Dotted
nodes and edges are removed when the subgraphs are reduced.

The W-AIG G and G′ are constructed w.r.t. the simple paths
as shown in Fig. 3(a) and Fig. 3(b), respectively. The set of
weights of a node v ∈ V guarantees that no two values are
passed to node v in the same time frame t. Considering the
modified W-AIG G′ of Fig. 3(b), and suppose all values are
passed to inputs at time frame 1. Then, the resulting value of O0

will appear at time frames 2 and 3, i.e., it needs to be checked
for both time frames. The functional correctness is established
by verifying whether the output value at time frame t matches
its specification for the passed input values at time frame t′.
Here t′ ≤ t ≤ TF +1, where TF is the number of time frames
in which the values of IN are passed.

IV. PFV OF SEQUENTIAL CIRCUITS

The PFV approach consists of five main steps: Step 1 begins
by extending the AIG to a W-AIG. Step 2 constructs the
output-based subgraphs G0, . . . , Gn with respect to the W-
AIG. Step 3 addresses the fact that each subgraph Gi might
contain more than a single time frame, which needs to be
unrolled. Thus, it is essential to partition each subgraph Gi,
allowing only a single time frame. Therefore, each subgraph
Gi is further divided into smaller ones, each representing a
single weight (time frame) within the subgraph (referred to
as a Weight-based Subgraph) (Section IV-A). Step 4 involves
unrolling each weight-based subgraph w.r.t. the number of
input vectors, VW (Section IV-B). Step 5 consists of two
tasks: 1) Information Passing: Proposing a method for storing
and passing outgoing nodes between the unrolled subgraphs
(Section IV-C). 2) Verification: Encoding the unrolled subgraph
as an ASP logic program, as described in [34]. The ASP solver
is then employed to verify the unrolled graph. If the verification
is valid, the solver determines the values of the outgoing nodes
within their specified time frames for use in other unrolled
subgraphs (Section IV-D). Finally, Step 5 is repeated until all
unrolled subgraphs are verified.

A. Graph Splitting

Given the W-AIG of Fig. 3(a), the reduced subgraphs G0,
G1, and G2 are constructed as shown in Fig. 4(a), Fig. 4(b),
and Fig. 4(c). Considering the subgraph G1, we have CI1 =
{FF1} and CO1 = {11}. To ensure that each subgraph Gi

contains at most one time frame t, and hence, can be unrolled
for only one time frame, it is essential to split each Gi into
a set of subgraphs Gi,j (called Weight-Based Subgraph) such
that each subgraph Gi,j represent at most one time frame. If
the subgraph contains more than one time frame, it implies that

A0 B0

1 2

3 FF1

FF2
O0

w={1,2}

w={1}w={0}

w={0}

w={0}

w={0}

w={0}

w={1,2}

(a) G′
0

A0 B0

1 2

3 FF1

FF2
O0

w={1}

w={1}w={0}

w={0}

w={0}

w={0}

w={0}

w={1}

(b) G′
0,1

FF2
O0

w={2}
w={2}

(c) G′
0,2

Fig. 5: The subgraph G′
0 defined w.r.t. the modified WAIG G′ of Fig. 3(b), and

the resulting weight-based subgraphs G′
0,1 and G′

0,2. The weights highlighted
in orange are the resulting weights after G′

0 is split.

inputs appear in different time frames, thereby increasing the
number of inputs in the subgraph which is not desired.

Let W(Gi) be the sets of all weights appearing in the graph
Gi. Similarly, let W(INi) be the set of weights of the inputs
INi w.r.t. Gi. To split the subgraph Gi into smaller ones, each
representing a single time frame t, it is essential to determine
the number of time frames appearing in Gi. Let len(Gi) be the
difference between the largest and the smallest weight appearing
in Gi (i.e., len(Gi) = max(W(Gi)) − min(W(Gi))). The
weight-based graph splitting is defined as follows:

Definition 3 (Weight-based Graph). Let Gi = (Vi, Ei,W) be
a reduced subgraph, and j be an integer such that 0 < j ≤
len(Gi). Then, the graph Gi,j = (Vi,j , Ei,j ,Wi,j) is a Weight-
based Subgraph of Gi such that:

• Vi,j := {v ∈ Vi | w(v) ∩ {j − 1, j} ≠ ∅, (v, w(v)) ∈ Wi}.
• Ei,j := {(v, v′) ∈ Ei | v, v′ ∈ Vi,j}.
• Wi,j := {(v, w′(v)) |, w′(v) ⊆ w(v) ∩ {j − 1, j},

(v, w(v)) ∈ Wi, v ∈ Vi,j}.

By the previous definition, if the subgraph Gi has time frames
0, 1, and 2, it can be partitioned into two subgraphs Gi,1 and
Gi,2. For Gi,1, then j = 1. Therefore, all nodes with the weight
0 or 1 are selected with their edges, and the weights of these
nodes are restricted to values 0 and 1. Similarly, Gi,2 contains
nodes that have weights 1 or 2, and their weights are restricted
to values 1 and 2. This allows us to guarantee that each subgraph
Gi,j to be unrolled at most one time frame t. Considering
the subgraph G0 of Fig. 4(a). As len(G0) is exactly 1 (i.e.,
len(G0) = 1 − 0 = 1), then, G0 can only be split into one
subgraph G0,1 that is identical to G0. The same is true for
G1,1, and G2,1.

To show a case of having more than one weight-based
subgraph, consider the modified subgraph G′

0 of Fig. 5(a). Since
len(G′

0) = 2 − 0 = 2, then G′
0 is split into two subgraphs

G′
0,1 and G′

0,2 as shown in Fig. 5(b) and Fig. 5(c), respectively.
For G′

0,1, where j = 1, only nodes with weights 0 and 1 are
selected, restricting all nodes to these weights. The weight-
based subgraph G′

0,2 is defined analogously.

B. Weight-based Graph Unrolling

Intuitively, the circuit is unrolled w.r.t. the number of input
vectors passed to it. Consequently, the number of time frames
can be computed accordingly, and the circuit is unrolled up
to the computed number of time frames. We refer by Vector
Width (VW) to the number of input vectors. The number of
time frames can be calculated w.r.t. the vector width VW and
the WAIG G = (V,E,W) as shown in the following corollary.

A0 B0

1 2

3 FF1

FF2
O0 w={2}

w={2}

w={2}w={1}

w={1}

w={1}

w={1}

w={1}

(a) G1
0,1

FF1
w={2}

A1 B1

w={1} w={1}

FF3 FF4

4 5

6

7 8 9

11
O1w={2}

10w={2}

w={2} w={2}w={2}

w={2}

w={2}
w={2}

w={2}w={2}

w={2}

(b) G1
1,1

11
O2

w={2}

w={2}

(c) G2
2,1

Fig. 6: The nodes highlighted in red, blue, magenta, and green correspond to
inputs, outputs, flip flops, and out-going (in-going) nodes, respectively.

Corollary IV.1. (Number of Time Frames) Let VW be the
vector width, and max(W(G)) be the maximum weight of
G = (V,E,W). Then, the number of time frames TF =
VW ∗max(W(G)).

Given a time frame t, each weight-based subgraph Gi,j is
unrolled. We refer by Gt

i,j to the unrolled subgraph of Gi,j

under time frame t. The graph unrolling is defined as follows:

Definition 4 (Unrolled Graph). Let Gi,j = (V,E,W) be a
weight-based subgraph, t be a positive integer such that 1 ≤
t ≤ VW . Then, a graph Gt

i,j = (V t, Et,Wt) is the unrolled
graph of Gi,j w.r.t. t such that:

• V t = V .
• Et = E.
• Wt = {(v, w(v) +min(W(IN)) + t) | (v, w(v)) ∈ W}.

Intuitively, every gate will either appear at the same time
frame as the inputs or appear in the next time frame. Therefore,
it is essential to compute the least time frame of the inputs
min(W(IN)). Then, based on the number of input vectors,
the time frame t is computed and added to min(W(IN)).
Finally, if there is no flip flop between the node v and the
inputs, the weight w(v) of v is equal to min(W(IN)), and
thus, they appear in the same time frame. Otherwise, the node
v will appear in the next time frame.

For example, consider G1,1 of Fig. 4(a). We refer by wt(v)
to the set of weights of node v appearing in the unrolled graph
Gt

i,j . Since G1,1 has three inputs IN1,1 (i.e., PI1,1 = {A1, B1}
and CI1,1 = {FF1}) with different weights (e.g., w(A1) = {0}
and w(FF1) = {1}), then min(W(IN1,1)) = {0}. Suppose
that t = 1, then the values of A0 and B0 will appear at time
frame 1 (e.g., w(A0) = {0}, and wt(A0) = 0 + 0 + 1 = {1}),
and the value of FF1 will appear at time frame 2 (e.g.,
w(FF1) = {1}, and wt(FF1) = 1 + 0 + 1 = {2}). It
is important to notice that unrolling does not increase the
number of inputs. Consider G0,1 of Fig. 4(a), and suppose that
VW = 1. Then, the unrolled subgraphs G1

0,1, G1
1,1, and G2

2,1

are constructed as shown in Fig. 6(a), Fig. 6(b), and Fig. 6(b),
respectively (recall Definition 4).
C. Information Passing w.r.t. Unrolled Weight-based Subgraphs

Intuitively, the set of out-going nodes COt′

i,j is evaluated in
the unrolled subgraph Gt

i,j to be used in other subgraphs Gt′

i′,j′ ,
where i′ ≥ i, j′ ≥ j, and t′ ≥ t. Hence, the values of COt′

i,j

must be stored w.r.t. the time frame t′, in which they appear.
These values cannot be stored as a function of the primary

inputs PIti,j because doing so would require passing PIti,j to
other subgraphs, resulting in an exponential expansion of the
search space. Instead, we store the values of COt′

i,j w.r.t the
carry function carryi under the same time frame t′. This allows
us to utilize the carry in the specification of the output Oi.

Therefore, we introduce two mapping functions f and g. We
start by defining a mapping function f that maps each set of
input values s ∈ INi,j to a set of values COUTi,j of out-going
nodes under time frame t+1 ∈ TF of the unrolled graph Gt

i,j .
f : IN t

i,j 7→ COUT t+1
i,j (2)

The function g maps each set of values s′ ∈ COUT t+1
i,j to the

value of the carry function carryi at the same time frame t+1.
g : COUT t+1

i,j 7→ [0, 1]t+1. (3)
To illustrate the previous Eq. (2), let us consider G1

0,1

of Fig. 6(a). Then, IN1
0,1 = {A0, B0} has four possible

combinations that need to be evaluated, while it has only one
out-going node CO2

0,1 = {FF1}. By Eq. (2), the relation
between the inputs and the out-going nodes is defined such
that f(0, 0) = {0}, f(1, 1) = {1}, f(0, 1) = {0}, and
f(1, 0) = {1}. Then, Eq. (3) is used to define the relation
between the out-going nodes and the carry function carryi such
that g(0) = {0}, and g(1) = {1}. Hence, it is sufficient to
store only the relation between functions f and g, instead of
storing their values w.r.t. the primary inputs IN1

0,1. To store
these values, we construct a hash table X t+1

i,j to store the values
as follows:

X t+1
i,j = {(f(s), g(f(s))) | s ∈ IN t

i,j}. (4)
To illustrate the previous equation, the inputs IN t

i,j are passed
at time frame t, while the values of out-going nodes appear
at time frame t+ 1. E.g., the values of IN1

0,1 = {A0, B0} are
passed at time frame 1, and these values appear on the out-going
nodes CO2

0,1 = {FF1} at time frame 2.
D. Unrolled Subgraph Verification

Two main tasks must be performed for each unrolled sub-
graph Gt

i,j . The first task is to check whether Gt
i,j is a valid

graph (recall Section II-C). The second task is to construct the
table X t+1

i,j to be used in CIt+1
i′,j′ of the unrolled graph Gt+1

i′,j′ .
This is due to the fact that IN t+1

i′,j′ may contain primary inputs
PIti′,j′ at time frame t, and non-primary inputs CIt+1

i′,j′ at time
frame t+1 (e.g., CI21,1 = {FF1}, and PI11,1 = {A1, B1} w.r.t.
G1

1,1 of Fig. 6(b)).
As the values of CIt+1

i′,j′ may be a concatenation of multiple
tables (in case the values of CIt+1

i′,j′ are obtained from several
unrolled subgraphs at time frame t), we define a relation ⋊⋉
that allows us to concatenate different tables, behaving as an
inner join if the tables have common nodes, and as a cross join
otherwise. Let X t+1

i′,j′ (CIt+1
i′,j′) be the resulting table. Hence, the

resulting table is populated with the values of PIti′,j′ (e.g., table
X 2

1,1(CI21,1) is populated with PI11,1 = {A1, B1}).
Through this approach, the search space for each subgraph

Gt
i,j drops to 2IN

t
i,j Consequently, the overall complexity for

the verification is reduced to O(N ·2K), where N is the number
of all unrolled subgraphs, and K represents the maximum
number of inputs obtained from all weight-based subgraphs
Gi,j . This is in contrast to the complexity 2TF∗n illustrated
in Section III.

V. PROOFS AND EXPERIMENTAL RESULTS

A. Time Complexity

We refer by Π(Gt
i,j) to the logic program constructed w.r.t.

the unrolled subgraph Gt
i,j and time frame t, and by Π(G)

to the logic program constructed w.r.t. the WAIG graph G.
Then, checking the graph validity of Π(Gt

i,j) depends on the
number of its input nodes IN t

i,j (recall Section II-C). Thus, the
verification time of the unrolled graph Gt

i,j is characterized in
the following theorem.

Theorem V.1. Let Gt be an unrolled subgraph under a time-
frame t. Then, Π(Gt) can be verified in time O(2|IN |), where
IN is the number of inputs appearing in Gt.

Proof: Let Gt be the unrolled subgraph w.r.t. time-frame
t. Then, Gt is a valid graph iff for each input value q ∈ Q, it
holds that q is a valid input, where Q is the set representing
all possible input values. Hence, the Π(Gt) is bounded by the
size of Q. The size of Q depends on the number of inputs of
G. Let IN be the set of inputs representing the primary inputs
PI and the in-going nodes CI appearing in Gt. Consequently,
it holds that |Q| = 2IN . Hence, Π(Gt) is bounded by 2IN , and
consequently, Π(Gt) is verified in time O(2|IN |).

To analyze the overall complexity of our approach, it is
essential to compute the complexity required to construct the
WAIG G = (V,E,W) from the AIG graph G′ = (V ′, E′).
For the computation of weights, which includes constructing
simple paths in G′, we employ a Depth First Search (DFS)
approach. It has been shown that the complexity of DFS is
O(|V ′|+ |E′|) [35].

Since the unrolled subgraph Gt
i,j may contain in-going nodes

CIti,j , these values are obtained from X t
i,j(CIti,j) (recall Sec-

tion IV-C). We assume that X t
i,j(CIti,j) can be computed in

constant time. This is because the search operation of a hash
table may take a linear time in the worst case [36].

Finally, the overall complexity of our PFV approach is
characterized as follows.

Theorem V.2. Let G = (V,E,W) be a WAIG constructed w.r.t.
the AIG G′. Then, G can be verified in time O(N ·2K), where N
is the number of all unrolled subgraphs and K is the maximum
size of input nodes over all unrolled subgraphs.

Proof: Let G = (V,E,W) be a W-AIG of G′, where I
is the number of outputs. Then, l the output-based subgraphs
are constructed from G. As each subgraph i ∈ I may contain
more than one weight, then J weight-based subgraphs have to
be constructed from each subgraph i ∈ I (recall Definition 3).
This results in G0,1, ..., GI,J weight-based subgraphs. Finally,
each Gi,j is unrolled w.r.t. time frames TF (recall Definition 4),
where TF is computed as shown in Corollary IV.1. Let Gt

i,j

be the unrolled subgraph at time-frame t such that 1 ≤ t ≤
TF . Also, let IN t

i,j be the set of inputs appearing Gt
i,j . Hence,

Π(Gt
i,j) can be verified in time O((2|IN

t
i,j |) by Theorem V.1.

As the graph unrolling does not change the number of inputs
of the weighted subgraph Gi,j (recall Definition 4), then, we
have IN t

i,j = INi,j , where 1 ≤ t ≤ TF .

0 500 1000 1500 2000 2500 3000 3500 4000
Input Bit-width [n]

0

200

400

600

800

1000

1200

Ti
m

e
[s

]

Cutwidth with VW=1
SAT with VW=1
Cutwidth with VW=2
SAT with VW=2
Cutwidth with VW=3
SAT with VW=3
Cutwidth with VW=4
SAT with VW=4
Cutwidth with VW=5
SAT with VW=5

(a) PRCA

0 500 1000 1500 2000 2500 3000 3500 4000
Input Bit-width [n]

0

250

500

750

1000

1250

1500

1750

Ti
m

e
[s

]

Cutwidth with VW=1
SAT with VW=1
Cutwidth with VW=2
SAT with VW=2
Cutwidth with VW=3
SAT with VW=3
Cutwidth with VW=4
SAT with VW=4
Cutwidth with VW=5
SAT with VW=5

(b) PCSKA

0 500 1000 1500 2000 2500 3000 3500 4000
Input Bit-width [n]

0

500

1000

1500

2000

2500

Ti
m

e
[s

]

Cutwidth with VW=1
SAT with VW=1
Cutwidth with VW=2
SAT with VW=2
Cutwidth with VW=3
SAT with VW=3
Cutwidth with VW=4
SAT with VW=4
Cutwidth with VW=5
SAT with VW=5

(c) PCLA

0 1000 2000 3000 4000
Number of Time Frames [TF]

0

200

400

600

800

Ti
m

e
[s

]

SIPO with Cutwidth
SIPO with SAT
SISO with Cutwidth
SISO with SAT

(d) Shift Registers
Fig. 7: Verification time per circuit type. In Fig. 7(a), Fig. 7(b), and Fig. 7(c), the x-axis represents the input bit-width, while in Fig. 7(d), it corresponds to the
number of time frames. The y-axis shows the verification time, sorted in ascending order. The solid and dotted lines indicate the verification time obtained from
the Cutwidth and SAT approaches, respectively.

Let U be the number of unrolled subgraphs Gt
i,j w.r.t the

weight-based subgraph Gi,j . The overall time complexity for
verifying the WAIG G can be calculated as follows:

Complexity(G) :=

I∑
i=0

J∑
j=0

U∑
t=1

O(2|IN
t
i,j |) (5)

Moreover, G is said to be a K-bounded graph, iff for every
unrolled subgraphs Gt

i,j has at most K inputs, where 0 ≤ i ≤ I ,
1 ≤ j ≤ J , and 1 ≤ t ≤ U (recall Section II-B).

As the graph unrolling does not change the number of inputs
of the weight-based subgraph Gi,j (recall Definition 4), then, it
always holds that IN t

i,j = INi,j , where 1 ≤ t ≤ TF .
Let K be the maximum number of inputs over all weight-

based subgraphs Gi,j , where 0 ≤ i ≤ I and 1 ≤ j ≤ J . Also,
let N be the overall number of all unrolled subgraphs. Hence,
the WAIG G can be verified in time O(N ·2K). If the constant
K remains unchanged regardless of the circuit size n, it scales
linearly with time. This is due to the fact that increasing the
circuit size n will only increase the number of subgraphs N .

B. Empirical Evaluation

To show the feasibility of our approach, we have implemented
the ASP framework and the W-AIG data structure in Python,
where Clingo is used as the ASP solver. The framework takes
input circuits in the standard AIGER format [37].

1) Experimental Setup: We mainly compare our approach
(labeled as Cutwidth), and Yosys SAT-based BMC approach
[38] (labeled as SAT) in terms of the overall time (referred
to as verification time). In the SAT approach, a miter circuit
is constructed and unrolled up to the vector width VW , and
the resulting circuit is then verified. Notably, we are compar-
ing the Cutwidth approach with the SAT approach, since the
approach [14] is limited to counters, and the approach [15]
is restricted to a single clock cycle. We evaluate pipelined
RCA (PRCA), pipelined CSKA (PCSKA), and pipelined CLA
(PCLA) of different sizes n up to 4096 bitwidth, and under
different vector widths VW in terms of verification time,
cutwidth (CW), and upper bound K. These types of pipelined
adders have been selected, as these adders have a constant
cutwidth as shown in [21]. The RCA, CSKA, and CLA adders
are constructed using the ArithsGen tool [39] and synthesized
using Yosys. Then, the pipelined adders are constructed by
introducing flip flops between two adder blocks, each of size
n/2, as shown in Fig. 1(a). To show that our approach is not
limited to pipelined adders, we evaluate Serial RCA (SRCA),

TABLE I: Calculated cutwidth (CW), upper bound (K) for different circuits.

Circuit Type
SIPO SISO SRCA SCSKA SCLA PRCA PCSKA PCLA

CW 1 1 1 3 7 1 3 7
K 1 1 3 8 11 3 8 11

Serial CSKA (SCSKA), Serial CLA (SCLA), Serial-In-Parallel-
Out (SIPO), and Serial-In-Serial-Out (SISO) of different sizes
in terms of upper bound K. Consequently, they can also be
verified in linear time.

2) Experimental Results: Table I shows the upper bound K
of inputs of different sequential circuits of different sizes up
to 4096 (i.e., n =4096). We can see that these circuits have a
constant width, and consequently, they can be verified in linear
time using our approach. Fig. 7 shows the verification time of
Cutwidth and SAT approaches for PRCA (Fig. 7(a)), PCSKA
(Fig. 7(b)), and PCLA (Fig. 7(c)) w.r.t. the input bitwidth n and
the vector width VW . The results demonstrate that the Cutwidth
approach exhibits better scalability in terms of the verification
time for adder circuits with a constant cutwidth compared to the
SAT approach. Specifically, the curve is linear for the Cutwidth
approach but non-linear for the SAT approach. Since these
pipelined adders have a constant cutwidth, the verification time
scales linearly w.r.t. n and VW . Fig. 7(d) shows the verification
time of Cutwidth and SAT approaches for SIPO and SISO w.r.t.
the number of time frames TF , where VW = 1. The results
again demonstrate that the Cutwidth approach provides better
scalability in verification time for both SIPO and SISO circuits
compared to the SAT approach, with a linear curve for Cutwidth
and a non-linear curve for SAT. This confirms the theoretical
findings that we have proven in Section V-A.

VI. CONCLUSION

In this paper, we have introduced the W-AIG as a novel
data structure that extends AIG representation, enabling efficient
tracking of gate values across different time frames in sequential
AIGs. Additionally, we have introduced a novel PFV approach
that combines the cutwidth of W-AIG to partition the circuit
into subcircuits, where the ASP solver was used to verify
each subcircuit independently, and reason about the outgoing
nodes of the subcircuit. Moreover, we have demonstrated that
sequential circuits with a constant cutwidth K can be verified
in a linear time w.r.t. the circuit size n and the time frames
TF . Furthermore, we have conducted experiments to show that
several sequential circuits exploit a constant cutwidth. Finally,
our experiments have shown that several types of pipelined
adders can be verified in linear time.

REFERENCES

[1] D. Lewin and D. Protheroe, Sequential circuits, pp. 200–251. 1992.
[2] F. S. Stanciulescu, “Sequential logic and its application to the synthesis

of finite automata,” IEEE Trans. Electron. Comput., 1965.
[3] M. K. Stojcev, “Joseph cavanagh, sequential logic: Analysis and synthe-

sis,” Microelectron. Reliab., pp. 1108–1109, 2008.
[4] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic verification of

finite-state concurrent systems using temporal logic specifications,” ACM
Trans. Program. Lang. Syst., p. 244–263, 1986.

[5] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking. MIT
Press, 2000.

[6] A. Ghosh, S. Devadas, and A. R. Newton, Verification of Sequential
Circuits, pp. 123–151. 1992.

[7] R. Drechsler, ed., Advanced Formal Verification. Kluwer Academic
Publishers, 2004.

[8] R. Drechsler, Formal System Verification: State-of the-Art and Future
Trends. Springer Publishing Company, Incorporated, 1st ed., 2017.

[9] K. L. McMillan, Symbolic Model Checking: An Approach to the State
Explosion Problem. PhD thesis, 1992.

[10] A. Biere, A. Cimatti, E. Clarke, M. Fujita, and Y. Zhu, “Symbolic model
checking using sat procedures instead of bdds,” in Proceedings 1999
Design Automation Conference, pp. 317–320, 1999.

[11] A. Mishchenko, M. Case, R. Brayton, and S. Jang, “Scalable and scalably-
verifiable sequential synthesis,” in 2008 IEEE/ACM International Confer-
ence on Computer-Aided Design, 2008.

[12] A. Mishchenko, S. Chatterjee, and R. K. Brayton, “DAG-aware AIG
rewriting: a fresh look at combinational logic synthesis,” in DAC, pp. 532–
535, 2006.

[13] R. Drechsler, “PolyAdd: Polynomial formal verification of adder circuits,”
in DDECS, pp. 99–104, 2021.

[14] C. Dominik and R. Drechsler, “Polynomial formal verification of sequen-
tial circuits,” in Proceedings of 2024 Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2024.

[15] L. Weingarten, K. Datta, A. Kole, and R. Drechsler, “Complete and
efficient verification for a RISC-V processor using formal verification,”
in Proceedings of 2024 Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2024.

[16] G. Brewka, T. Eiter, and M. Truszczyński, “Answer set programming at
a glance,” ACM, vol. 54, no. 12, p. 92–103, 2011.

[17] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub, Answer Set Solving
in Practice. Synthesis Lectures on Artificial Intelligence and Machine
Learning, 2012.

[18] I. Niemelä, “Logic programs with stable model semantics as a constraint
programming paradigm,” Annals of Mathematics and Artificial Intelli-
gence, vol. 25, pp. 241–273, 1999.

[19] F. Harmelen, V. Lifschitz, and B. Porter, “The handbook of knowledge
representation,” p. 1034, 2007.

[20] F. R. K. Chung, “On the cutwidth and the topological bandwidth of a
tree,” SIDMA, vol. 6, no. 2, pp. 268–277, 1985.

[21] M. Nadeem, J. Kleinekathofer, and R. Drechsler, “Polynomial formal
verification exploiting constant cutwidth,” in Proceedings of the 34th In-
ternational Workshop on Rapid System Prototyping, RSP ’23, Association
for Computing Machinery, 2024.

[22] R. Diestel, Graph Theory. Springer Publishing Company, Incorporated,
5th ed., 2017.

[23] M. Gebser, R. Kaminski, A. König, and T. Schaub, “Advances in gringo
series 3,” in LPNMR, pp. 345–351, 2011.

[24] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantitative
approach. Elsevier, 2011.

[25] H. Peng, S. Huang, S. Chen, B. Li, T. Geng, A. Li, W. Jiang, W. Wen,
J. Bi, H. Liu, et al., “A length adaptive algorithm-hardware co-design
of transformer on fpga through sparse attention and dynamic pipelining,”
in Proceedings of the 59th ACM/IEEE Design Automation Conference,
pp. 1135–1140, 2022.

[26] C. V. Ramamoorthy and H. F. Li, “Pipeline architecture,” ACM Computing
Surveys (CSUR), vol. 9, no. 1, pp. 61–102, 1977.

[27] C. Baral, Knowledge Representation, Reasoning and Declarative Problem
Solving. Cambridge University Press, 2003.

[28] M. Gebser, B. Kaufmann, and T. Schaub, “Conflict-driven answer set
solving: From theory to practice,” Artificial Intelligence, 2012.

[29] W. Marek and M. Truszczyński, “Autoepistemic logic,” Journal of ACM,
vol. 38, p. 587–618, 1991.

[30] M. Gelfond and V. Lifschitz, “Classical negation in logic programs and
disjunctive databases,” New Generation Computing, pp. 365–385, 1991.

[31] I. Niemelä, “Logic programs with stable model semantics as a constraint
programming paradigm,” Annals of Mathematics and Artificial Intelli-
gence, vol. 25, no. 3, pp. 241–273, 1999.

[32] V. W. Marek and M. Truszczynski, “Stable models and an alternative logic
programming paradigm,” A Computing Research Repository, 1998.

[33] T. Sato, “Completed logic programs and their consistency,” The Journal
of Logic Programming, vol. 9, no. 1, pp. 33–44, 1990.

[34] F. Wotawa and D. Kaufmann, “Model-based reasoning using answer set
programming,” Applied Intelligence, vol. 52, pp. 1–19, 2022.

[35] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algo-
rithms. The MIT Press and McGraw-Hill Book Company, 1989.

[36] R. Sedgewick and K. Wayne, Algorithms, 4th Edition. Addison-Wesley,
2011.

[37] A. Biere, “The AIGER And-Inverter Graph (AIG) format version
20071012,” Tech. Rep. 07/1, Institute for Formal Models and Verification,
Johannes Kepler University, Altenbergerstr. 69, 4040 Linz, Austria, 2007.

[38] C. Wolf, “Yosys open synthesis suite.” https://yosyshq.net/yosys/.
[39] J. Klhufek and V. Mrazek, “Arithsgen: Arithmetic circuit generator for

hardware accelerators,” in DDECS, pp. 44–47, 2022.

