
FrEDDY: Modular and Efficient Framework to
Engineer Decision Diagrams Yourself

Rune Krauss
DFKI

Bremen, Germany
rune.krauss@dfki.de

Jan Zielasko
DFKI

Bremen, Germany
jan.zielasko@dfki.de

Rolf Drechsler
University of Bremen / DFKI

Bremen, Germany
drechsler@uni-bremen.de

Abstract—The hardware complexity in electronic devices used
by today’s society has increased significantly in recent decades due
to technological progress. In order to cope with this complexity,
data structures and algorithms in electronic design automation
must be continuously improved. Decision Diagrams (DDs) are an
important data structure in the design and analysis of circuits
because they allow efficient algorithms for their manipulation. The
practical relevance of DDs leads to an ongoing quest for appro-
priate software solutions that enable working with different DD
types. Unfortunately, existing DD software libraries focus either
on efficiency or usability. Consequences are a disproportionately
high effort for extensions or considerable loss of performance. To
tackle these issues, a modular and efficient Framework to Engineer
Decision Diagrams Yourself (FrEDDY) is proposed in this paper.
Various experiments demonstrate that no compromise with regard
to performance has to be made when using FrEDDY. It is on par
with or clearly more efficient than established DD libraries.

Index Terms—Framework, decision diagrams, pseudo-Boolean
functions, electronic design automation

I. INTRODUCTION

The growing hardware complexity makes it necessary to contin-
uously improve tools in Electronic Design Automation (EDA)
in order to meet time-to-market constraints [1]. Decision Di-
agrams (DDs) play a central role in the design, verification,
and testing of digital circuits because they can encode cor-
responding Boolean functions compactly and manipulate them
efficiently [2]. Breakthroughs were achieved, inter alia, in EDA
applications such as model checking using the well-known
reduced ordered Binary Decision Diagrams (BDDs) [3].

Motivated by the success of BDDs at bit level, numerous
data structures and algorithms have been developed to increase
the efficiency of specific EDA applications [4]. For example,
there are Kronecker Functional DDs (KFDDs) that are useful
for XOR-based synthesis. The exponential growth of bit-level
DDs, e. g., for integer multiplication, was overcome by pseudo-
Boolean functions that can be represented by word-level DDs.
While word-level DDs such as Multiplicative Binary Moment
Diagrams (*BMDs) represent multiplier circuits with linear
size, Algebraic Decision Diagrams (ADDs) are suitable for
matrix multiplication. Furthermore, Multiplicative Power Hy-
brid DDs (*PHDDs) were proposed to also efficiently represent
floating point numbers for arithmetic circuit verification.

This work was supported by the German Federal Ministry of Education
and Research within the projects DI-OCDCpro (contract no. 16ME0938),
FAIRe (contract no. 01IS23074), and ECXL (contract no. 01IW22002).

Variable Unique table Cache

Node Manager Operation

Edge DD types DD operations

Fig. 1: Dependency graph of modules included in FrEDDY

Even though some of these enhancements can be found in DD
software libraries, they generally do not offer the option to
implement your own ideas easily and efficiently [5], [6], [7],
[8]. The WLD library [8] focuses, e. g., on extensibility but is
not performant. The state-of-the-art CUDD library [6], which
is most widely used due to its high performance in terms of
speedup, originates from the 90s and has not been maintained
for several years. Scientific advancements and modern design
possibilities are thus not fully exploited, often resulting in code-
base changes to tailor custom implementations. Consequences
can be program crashes, which is intolerable in EDA.

To address these issues, in this paper we propose an open-
source C++23 Framework to Engineer DDs Yourself (FrEDDY)
with the main goal of being modular and efficient. Extendable
interfaces are integrated into FrEDDY so that word-level and
bit-level DDs can be implemented intuitively. For this purpose,
modules are provided to enable high performance. Benchmarks
show that arithmetic circuits with word-level DDs implemented
using FrEDDY are verified about 15 times faster on average
compared to related work. Despite FrEDDY’s generalization
beyond BDDs, there is no significant performance overhead in
symbolic model checking compared to state of the art.

II. ARCHITECTURE AND DESIGN

In this section, we provide an overview of FrEDDY by pre-
senting its highly modular architecture, which is schematically
visualized in Fig. 1. In addition to the key feature of extending
FrEDDY’s software modules with custom DD types and asso-
ciated operations, design choices based on scientific advances
to enable high performance are also described in the following.

Inspired by WLD’s concepts, the manager module has a base
class that already provides basic functionality such as comput-
ing the cofactor f [0/x] [2] of a function f w. r. t. variable x
in order to engineer DDs yourself. It abstracts from operators
that cannot be generalized for all DD types. They are declared



TABLE I: Feature comparison of DD software solutions

Name Version Last release BDD KFDD ADD *BMD *PHDD

BuDDy [5] 2.4.0 2004 ✓
CUDD [6] 3.0.0 2015 ✓ ✓
Sylvan [7] 1.8.1 2023 ✓ ✓
WLD [8] 1.1.0 2003 ✓ ✓

FrEDDY 1.0.0 2025 ✓ ✓ ✓ ✓ ✓

as pure virtual methods and must be implemented by a derived
type. For example, there is (∃x.f) ≡ f [0/x]∨f [1/x] [3], where
the disjunction ∨ must be defined in the derived class because
it differs at bit and word level.

Another difference exists in the DD encoding. *BMDs, e. g.,
have numerical edge weights while ADD edges are labeled by
Boolean values [9]. To provide maximum flexibility, both the
node and edge structure correspond to a template. Specifically,
the node entity is a C++ variant, meaning it is either a leaf
labeled with any value or a branch consisting of a variable index
and successor edges encapsulated by shared pointers, which
in turn reference nodes. Even if, depending on instantiation,
the node may be slightly larger in terms of memory than a
CUDD node, this overhead is negligible. First, a variant does
not allocate dynamic memory to guarantee type safety [10].
Second, shared pointers prevent memory leaks by automatically
deleting nodes (and edges) that are no longer required.

To reduce DDs during their construction/manipulation and
thus ensure canonicity, the unique table is implemented as a
flat hash table using the Boost Unordered library [11], which
has numerous advantages. For example, all nodes and edges are
stored contiguously in memory, which improves cache locality.
To avoid hash collisions, multiplicative functions are integrated
in orientation on CUDD. Unique tables are used separately for
each variable, since it is sufficient to iterate over nodes of the
variables to be swapped when reordering variables [2].

Recursive algorithms such as if-then-else [12] for DD con-
struction are usually called repeatedly, which can be very time-
consuming. This is remedied by a computed table that is imple-
mented as the unique table but is designed to cache performed
operations. Since there are not only universal operators but also
specialized operations like finding satisfying assignments [2],
the operation class follows the same polymorphic approach as
the base manager. So if the user wants to cache DD operations,
they are recognized by the computed table due to inheritance.

Overall, FrEDDY offers rich functionality through the inter-
action of its modules to implement DDs for efficiently solving
EDA tasks. TABLE I gives an overview comparing the features
of established DD software libraries and DD types already
implemented using FrEDDY. Since FrEDDY is open-source
software, more information in terms of usage and development
is available at https://github.com/runekrauss/freddy.

III. EXPERIMENTS

In order to evaluate FrEDDY’s efficiency, we conducted various
experiments that are summarized in this section.

The first experiment was interested in how performant the
modules in FrEDDY are in general. Since WLD shares some

32 40 48 56 62
0

5

10

15

20

n

R
el

at
iv

e
ru

n
tim

e FrEDDY
WLD

(a) Equivalence checking

abp11 dartes dpd75 ftp3 tcas
0

5

10

Trace

R
el

at
iv

e
ru

n
tim

e FrEDDY
WLD
CUDD

(b) Model checking

Fig. 2: Performance comparison of FrEDDY and related work

concepts, its *BMDs were compared with those of FrEDDY by
verifying n-bit multipliers using the hierarchical approach from
[9]. The second experiment dealt with FrEDDY’s performance
at bit level because of its genericity. To this end, FrEDDY was
compared with CUDD and WLD by performing BDD-based
model checking as in [12]. The experimental setup was fair for
all evaluations, i. e., comparable settings were configured for
DD software and the same system environment was used. For
each benchmark, 100 runs were carried out and mean values
calculated in terms of time.

Experimental results are shown in Fig. 2, which are now
interpreted. In total, FrEDDY verifies multipliers on average
about 15 times faster than WLD due to its handling of shared
pointers and the open addressing technique. These main rea-
sons are applicable to the model checking experiment. While
FrEDDY can keep up with CUDD despite its additional edge
structure, WLD is significantly outperformed.

IV. CONCLUSION

In this paper, we presented an open-source C++23 framework
called FrEDDY to engineer DDs yourself, which is modular
and efficient. Experiments demonstrated that FrEDDY is on
par with or considerably more powerful than established DD
software libraries. In summary, these results confirm that the
main goal of this work was achieved.

REFERENCES

[1] R. Reis, “EDA: Overview and some trends,” Journal of Integrated Circuits
and Systems, vol. 17, no. 3, pp. 1–10, 2022.

[2] C. Meinel and T. Theobald, Algorithms and Data Structures in VLSI
Design. Berlin: Springer, 2012.

[3] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang,
“Symbolic model checking: 1020 states and beyond,” Information and
Computation, vol. 98, no. 2, pp. 142–170, 1992.

[4] R. Drechsler and D. Sieling, “Binary decision diagrams in theory and
practice,” Journal on STTT, vol. 3, no. 2, pp. 112–136, 2001.

[5] J. Lind-Nielsen, “BuDDy: A BDD package,” 2004. [Online]. Available:
https://buddy.sourceforge.net/manual

[6] F. Somenzi, “CUDD: CU Decision Diagram package,” 2015. [Online].
Available: https://github.com/ivmai/cudd

[7] T. van Dijk and J. van de Pol, “Sylvan: Multi-core framework for decision
diagrams,” Journal on STTT, vol. 19, no. 6, pp. 675–696, 2017.

[8] M. Herbstritt, “WLD – a C++ library for decision diagrams,” 2003.
[Online]. Available: https://ira.informatik.uni-freiburg.de/software/wld

[9] R. E. Bryant and Y. Chen, “Verification of arithmetic circuits with binary
moment diagrams,” in DAC Proceedings. IEEE, 1995, pp. 535–541.

[10] M. Gregoire, Professional C++. New Jersey: Wiley, 2024.
[11] D. James and P. Dimov, “Boost.Unordered,” 2022. [Online]. Available:

https://boost.org/libs/unordered
[12] B. Yang et al., “A performance study of BDD-based model checking,” in

Proceedings of the Conference on FMCAD. Springer, 1998, pp. 255–289.


