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Abstract—Polynomial Formal Verification (PFV) ensures that
a class of circuits can be verified efficiently by calculating
polynomial upper bounds for the resource demands of the
verification process. In this paper, we address the PFV of Boolean
affine spaces represented by a 2-XOR sum of products. We
show that time and space resources remain quadratic in the
number of input variables during the entire verification process.
Specifically, we prove that the dimensions of ROBDDs and
QRBDDs representing a 2-affine space are linear. Furthermore,
we prove that all ROBDDs generated during the symbolic
simulation of the circuit can be computed in linear time. Finally,
we provide an overall quadratic upper bound for the formal
verification of QRBDD-based circuits. The experimental results
confirm the given bounds.

I. INTRODUCTION

Formal verification has become a central part of system
design, as it is necessary to guarantee their correct behavior.
For example, a circuit can be verified by assigning all possible
combinations of inputs and comparing the result to a reference,
but this is only feasible for very small designs. Using formal
methods, on the other hand, symbolic inputs can be used,
which are simulated in the same manner. The resulting outputs
are formal expressions, which describe the behavior of the
circuit for all input combinations. The efficiency of this
process can be increased, by using Binary Decision Diagrams
(BDDs) to represent the symbolic values. But the drawback of
mathematical approaches, such as this symbolic simulation, is
their computational complexity. Depending on the inspected
circuit, the resource demands in time and memory can grow
exponentially, and in addition they are hard to predict upfront
With Polynomial Formal Verification (PFV) [9], [11] the fea-
sibility of the verification is guaranteed by giving polynomial
upper bounds for the required runtime and space used by
the entire verification process. Consequently, a broader use
of formal methods in practice is possible as their application
becomes more reliable. In the case of symbolic simulation,
it is not sufficient to inspect the size of the final BDDs,
which represent the outputs of the considered circuit. In fact,
it is necessary to analyze each BDD that is computed during
the symbolic simulation. PFV has already been proven for
several types of functions and verification methods, such as

symmetric functions [10], adders or multipliers [11]. With
the aim of identifying new classes of Boolean functions that
can be verified in polynomial time, this paper investigates
the characteristic functions of affine spaces. Their algebraic
representation takes the form of an AND of XORs of literals,
commonly referred to as canonical expressions (CEX). In
particular, we focus on 2-CEX forms, where XORs contain
at most two literals. These forms are particularly favored in
logic synthesis due to technological constraints, as 2-XOR
gates are preferred over unbounded XOR gates. 2-CEXs are
frequently exploited in three-level logic minimization, such as
2-SPP forms [7], or for managing regular functions, including
autosymmetric functions [1]. Moreover, the XOR operator
plays an important role in current new technologies, such as
reversible and quantum computing [1], [14], as well as crypto-
graphic protocols such as secure multiparty computation [16].

In this paper, we prove that the time and space requirements
for the PFV of 2-CEX forms are quadratic with respect to the
number of input variables throughout the overall verification
process. Specifically, we show that the dimensions of the
ROBDDs and QRBDDs corresponding to a 2-CEX exhibit
linear growth. Moreover, we prove that all ROBDDs produced
during the symbolic simulation of the circuit can be computed
in linear time. Finally, we provide a quadratic upper bound
for the formal verification of QRBDD-based circuits. Our
experimental results support the theoretical bounds.

II. PRELIMINARIES

A. Affine spaces

Let us consider the n Boolean variables x1, . . . , xn on the
Boolean space {0, 1}n where each point is described by a
binary vector of n elements. An XOR factor is an XOR,
i.e., ⊕, of one or more variables, one of which possibly
complemented. Moreover, ({0, 1}n,⊕) is the Boolean space
of vectors with n components and the elementwise XOR
operator ⊕. Let α be a vector in {0, 1}n and let V be a
vector subspace of ({0, 1}n,⊕), we can define A = α⊕V as
the affine space over V with vector α, by applying the XOR
between α and each point of V . Given an affine space A, we
can partition the input variables into two classes: canonical and



non-canonical variables. The canonical variables are the truly
independent variables in A, which can assume all possible
combinations of 0-1 values. In contrast, the non-canonical
variables are not independent because they can be defined as
XORs of the canonical ones or have a constant value. Any
affine space A can be represented by an algebraic expression
(CEX) that is an AND of XOR factors [2], [3], [7]. In partic-
ular, a 2-CEX contains XOR factors of at most two literals,
i.e., it is an AND of XOR factors that contain at most two
variables: a non-canonical variable and possibly a canonical
one. For example, the CEX (x1⊕x2)(x1⊕x3)x4(x5⊕x7)x8

in {0, 1}9 is a 2-CEX, with two canonical variables, x1 and
x5. Notice that the non-canonical variables are either constant
(x4 = 1, x8 = 0) or depend on the canonical ones (e.g.,
x2 = x1 and x7 ̸= x5).

B. QRBDD-based circuit

A Binary Decision Diagram (BDD) is a directed, acyclic
graph, where each internal node is labeled by a Boolean
variable xi and has exactly two outgoing edges, the 0-edge
and the 1-edge, pointing to two nodes called the 0-child and
the 1-child, respectively. The terminal nodes are labeled 0
or 1. BDDs are typically used to efficiently represent and
manipulate Boolean functions [5], [6].

A BDD is ordered if all variables are sorted according to
a total order x1, . . . , xn. A BDD is reduced if no redundant
nodes or isomorphic subgraphs exist. A reduced and ordered
BDD is called ROBDD. The size of a BDD is defined as the
number of its internal and terminal nodes, while the width is
the maximum number of nodes on the same level. Finally, an
ordered BDD is Quasi-Reduced (QRBDD) if only isomorphic
subgraphs are reduced, while redundant nodes are kept in the
diagram (see, e.g., Fig. 1) [12]. In a QRBDD every path from
the root node to a terminal node contains every input variable.
QRBDDs can be exploited to construct small-depth circuits,
following the synthesis method presented in [12]. The idea is
to build a circuit Cf that describes the reachability between the
root-node of the QRBDD for a function f and the two terminal
nodes. This is done by first using Reachability Matrices (RMs)
to describe the reachability between the nodes of adjacent
levels. For levels ℓ and ℓ + 1 with width wℓ and wℓ+1,
respectively, this is a matrix RMℓ,ℓ+1 of dimension wℓ×wℓ+1

whose entry (i, j) is a literal or a constant that describes how
the j-th node on level ℓ + 1 is reached from the i-th node
on level ℓ: through a negative edge (xℓ), a positive edge (xℓ),
both edges (1) or no edge (0). Then, all RMs are multiplied
in pairs using Binary Matrix Multiplications (BMMs), e.g.,
BMMℓ,m then describes the reachability of nodes on level
m from nodes on level ℓ. The BMMs are aligned in a tree-
shaped manner to reduce the depth (see Fig. 2). In particular,
the matrix BMM0,n describes the reachability between the
root and the terminal nodes and therefore represents f .

In practice, Cf can be implemented as follows. Each RM
contains only literals and/or constants and is simply imple-
mented using connections without gates. As the entries of
BMMs are sums of products (SOPs), they are implemented by

first combining the inputs using a level of fan-in 2 AND-gates
and then using levels of fan-in 2 OR-gates to combine their
results. For a QRBDD with maximum width w, this results in
a number of gates in O(w3) per BMM and a depth in O(logw)
due to the tree-like sorting of the OR gates. The overall circuit
Cf has a maximum size in O(nw3), since the circuit consists
of n − 1 BMMs, and the maximum depth is O(log n logw),
as stated in Theorem 3 of [12]. Thus, if the QRBDD for f
has a maximum width that is polynomial in n, the circuit Cf

has polynomial size and logarithmic depth.

III. POLYNOMIAL VERIFICATION OF 2-AFFINE SPACES

We investigate the size of the ROBDD and QRBDD repre-
sentation of 2-XOR affine spaces, and prove that the size of
the QRBDD is linear in the number of input variables. This
allows us to derive a compact QRBDD-based circuit Cf for
the given 2-XOR affine space. We then show that the size of
all ROBDDs constructed during the symbolic simulation of
the circuit Cf is linear in the number of variables.

A. ROBDDs and QRBDDs for 2-Affine Spaces

The optimal ROBDD representation of 2-XOR Boolean
affine spaces is studied in [4]. In the sequel, we show that
the optimal representation is linear, in the number of input
variables, for both ROBDDs and QRBDDs. Moreover, we
prove that the maximum widths of the ROBDD and QRBDD,
representing a 2-affine space, are constant. In this section, we
always refer to ROBDDs and QRBDDs in the optimal variable
ordering described in [4]. For the sake of clarity, we only
consider 2-CEXs without complemented variables in the 2-
XORs (all results can be easily extended to general 2-CEXs).

Lemma 1: The size of the ROBDD that represents a 2-affine
space is at most 2(n + 1) − k, where k is the dimension of
the affine space. The maximum width of the ROBDD for a
2-affine space is at most 2.
Proof. Follows from [4].

Lemma 2: The size of the QRBDD representing a 2-affine
space is at most 3n − k + 1. The maximum width of the
QRBDD representing a 2-affine space is at most 3.
Proof. Recall that we can partition the input variables into
two subsets: the subset of the k canonical (i.e., independent)
variables and the remaining n− k non-canonical ones. In the
ROBDD, each non-canonical variable is directly connected to
the variable in the next level and to the 0 terminal with the
other branch. Therefore, to make the ROBDD quasi-reduced,
we need to insert one chain of new redundant nodes containing
all the variables (in the ordering) from the upper non-canonical
variable to the 0-terminal. Each non-canonical variable instead
of being directly connected to 0, is connected to the next
variable in this redundant chain. The nodes corresponding to
the canonical variables are always connected to the variables
in the next level and do not originate any chain in the QRBDD.
Therefore, each QRBDD level has a width of at most 3 (the
2 nodes of the corresponding ROBDD plus the additional
redundant node in the chain). Recalling that the number of
levels is n, we have two cases: 1) if the root is a non-canonical
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Fig. 1. QRBDD of the function f = x0x1(x2⊕x3)(x2⊕x4)(x5⊕x6)(x5⊕
x7)(x5 ⊕ x8)(x5 ⊕ x9)

variable, then the additional chain contains all the variables
but one, since in the ROBDD it is directly connected to 0;
2) if the root is a canonical variable, then the additional chain
contains all the variables but two, since in the ROBDD it is
not connected to 0. Therefore, by Lemma 1, the total number
of nodes is at most n− 1 + 2(n+ 1)− k = 3n− k + 1.

By Lemmas 1 and 2 we obtain the following proposition.
Proposition 1: The size of ROBDDs and QRBDDs rep-

resenting 2-affine spaces is linear (that is, is in O(n)). The
maximum widths of ROBDDs and QRBDDs representing a
2-affine space are constant.

Finally, combining Proposition 1 with Theorem 3 of [12],
we obtain the following result.

Proposition 2: Let Cf be the QRBDD-based circuit for
a function f representing a 2-XOR affine space, with n
variables. Cf has linear size in O(n) and depth in O(log n).

Example 1: Let us consider the CEX f(x0, . . . , x9) =
x0x1(x2⊕x3)(x2⊕x4) ·(x5⊕x6)(x5⊕x7)(x5⊕x8)(x5⊕x9)
representing a 2-XOR affine space with canonical variables x2

and x5. The QRBDD representing f is shown in Fig. 1, with
the chain of redundant nodes represented on the left side. Note
how nodes in this chain can only reach other nodes within the
chain. Also, note how all levels contain at most three nodes.

B. Symbolic Simulation

In the previous subsection, we have shown that the QRBDD
representing a 2-affine space contains a linear number of
nodes and has a constant width. Thus, Cf has linear size and
logarithmic depth. In this section, we show that the symbolic
simulation of Cf can be performed in polynomial time.
Recall that we consider 2-CEXs without complementations.
Moreover, without loss of generality, we assume that all
singleton non-canonical variables are the first in the variable

ordering for the BDDs. First, let us discuss the size of all
ROBDDs constructed during the symbolic simulation of Cf .
The following proposition holds.

Proposition 3: Let Cf be the QRBDD-based circuit for a
function f , which is the characteristic function of a 2-affine
space. Each output signal of the BMMi,j subcircuits of Cf

can be computed with at most 3 AND gates and 2 OR gates of
fan-in 2. Moreover, one output signal of each row of BMMi,j

can be computed after the other signals on the same row, with
one inverter and at most one fan-in 2 OR gate.
Proof. First, observe that the maximum width of QRBDDf

is 3. Thus, each output signal BMMi,j subcircuit of Cf

corresponds to a matrix of dimension at most 3 × 3. Since
each output of BMMi,j is the inner product of at most three
inputs, then it can be computed with an SOP that contains at
most 3 AND gates and 2 OR gates of fan-in 2. Moreover, since
the sum of all entries in the rows of any BMM matrix must
be equal to 1, we can alternatively compute one output signal
in each row of BMMi,j as the complement of the other entry
or as the complement of the sum of the other two entries in
the same row. This strategy requires first to compute the other
signals in the same row, which are at most 2, and then to take
the complement of their OR, as shown in Fig. 3.

We now prove that all ROBDDs constructed during the
symbolic simulation of Cf have linear size.

Lemma 3: Let Cf be the QRBDD-based circuit for a func-
tion f with n variables, which is the characteristic function
of a 2-affine space. Let QRBDDf be the QRBDD for f .
Then, the size of all ROBDDs constructed during the symbolic
simulation of Cf is in O(n).
Proof. Each ROBDD constructed during the symbolic simu-
lation of Cf is either for an output signal or for an internal
signal of a binary matrix multiplication circuit, BMMi,j , with
0 ≤ i < j < n. We consider these two cases separately.
Output signals. Let us consider an ROBDD for an output
signal of a BMMi,j subcircuit. Recall that these signals
describe the reachability of nodes on level j of QRBDDf

starting from nodes on level i. We then study the QRBDD
that describes the reachability between two nodes xi,k and
xj,h, where 0 ≤ h, k ≤ 2 since the maximum width of
QRBDDf is 3, as observed in Proposition 3. Notice that
these reachabilities are formally described by the entries of
the matrix representing the output signals of BMMi,j . We
suppose that the chain of redundant nodes is on the left side
of the QRBDDf . Thus, let 0 be the index of the nodes in
the chain. Notice that nodes in the chain can only reach other
nodes in the chain. Since we have at most 3 nodes in each
level, we must consider 0 ≤ k, h ≤ 2. This can be divided
into three cases:

(1) k = 0 (unless xi,k is the root): In this case the node
xi,k lays on the chain. Therefore, only nodes in the chain can
be reached, and the ROBDDs representing these signals are
the terminal 1 for h = 0, and the terminal 0 for h = 1, 2.

(2) k = 1, 2 , h = 1, 2 or xi,k is the root: Here, the
constructed ROBDD represents a CEX derived from the
original one and therefore has linear dimensions. For this,



all singletons and XORs containing only variables preceding
xi and following xj in the variable ordering are eliminated.
Then, it consists of three parts: (i) A preceding product of
literals is computed, if xi,k is non-canonical associated to
some canonical variable xs. It describes how xi,k reaches the
closest following canonical variable xr or xj,h. This is done by
eliminating xs from all XOR factors, including and following
xi. If xi,k belongs to the branch where xs assumes the value
1, all literals in the product are complemented. Note that this
gives 0 if xi,k and xj,h are non-canonicals associated with the
same canonical, but on different branches of the canonical.
(ii) Following the variable order, all singletons and XOR fac-
tors containing xi, . . . , xj−1 are kept, excluding XOR factors
that contain xs if xi,k is a non-canonical associated with xs,
or ones that contain xr if xj,h is a non-canonical associated
with xr. This can be none if xi,k and xj,h correspond to
the same canonical variable, xj,h corresponds to xi,k or there
are no such XORs in between. (iii) A succeeding product of
literals is computed if xj,h is a non-canonical associated to
some canonical xr and xi,k is not associated to xr as well.
It describes how xj,h is reached from xr and is obtained
by taking all XOR factors that contain xr but no variable
following xj in the variable order, and eliminating xr. Again,
if xj,h belongs to the branch where xr assumes value 1, all
literals are complemented. Note that xr can be xi,k. Finally,
we multiply the CEX by xr or xr, depending on whether xj,h

belongs to the path starting from the 1- or 0-edge of xr.
(3) h = 0: Here, the node xj,h lays on the chain or is

the 0 terminal. We first show that the sum (OR) BS of the
ROBDDs describing the reachability of the other nodes on
the level j with h = 1 and h = 2, represents a CEX and is
therefore of linear size. This automatically holds if wj = 2.
As seen in Case 2, the two CEX obtained for h = 1 and
h = 2 are identical except for the complementation of all
literals in subcase (iii). For their sum, simply all XOR factors
that contain xr, but no variable following xj , are kept without
eliminating xr. Complementing BS , we obtain the ROBDD
representing the reachability of node xj,0, which must then
also be of linear size.
Internal signals. There are two possible cases.

(1) (AND) The internal signal is the output of an AND gate.
Notice that the input functions of this AND gate are the output
signals already discussed, each represented with a linear size
ROBDD. The size of their AND is therefore linear, since the
two ROBDDs are defined on disjoint sets of variables.

(2) (OR) Notice that there are at most three AND gates
(i.e., the maximum number of rows and columns of the BMM
matrices is three). Therefore, to sum up their outputs, we need
at most two OR gates, one internal OR and one external. Fur-
thermore, we can observe that the internal OR operation occurs
exclusively during the multiplication of a matrix BMMi,ℓ

with three columns and a matrix BMMℓ,j with three rows.
The first matrix BMMi,ℓ describes the reachability of nodes
associated with a non-canonical variable xℓ on level ℓ, starting
from any level i < ℓ in QRBDDf , including the level 0 of the
root. In contrast, the matrix BMMℓ,j describes the paths that

originate from the nodes on level ℓ, corresponding to the same
non-canonical variable xℓ, and reach the nodes on level j > ℓ.
Moreover, the internal OR in such a matrix product can only
be relevant if the node xi,k on level i is not in the chain and
corresponds to a canonical variable, a non-canonical variable
such that there is at least a canonical variable between levels
i and j, and the root; and if the target node xj,h on level
j is in the chain, i.e., h = 0, or is the 0-terminal. Indeed,
only in these cases the node xi,k can reach all nodes on the
level ℓ, corresponding to the non-canonical variable xℓ, and
all nodes on the level ℓ can reach the target node xj,h on the
level j. Otherwise, at least one of the results of the three AND
gates is 0 and thus, the internal OR is either 0 or equal to the
external OR (which corresponds to an external signal, already
studied above). In other words, during matrix multiplication,
the computation of a relevant internal OR is needed only to
derive the entries of the first column of BMMi,j . The entries
in all other columns are the result of only external ORs, and
we already know that they can be computed by ROBDDs
of linear size. Since the sum of all entries in the rows of
any BMM matrix must be equal to 1, we can now compute
the entries of the first column of BMMi,j [k, 0] for k ≥ 0,
replacing the inner product computation, which requires two
ORs, with an alternative strategy: we first compute the other
entries BMMi,j [k, h] with h > 0, and then we complement
their sum. More precisely, we compute BMMi,j [k, 0] com-
plementing the entry BMMi,j [k, 1] if level j contains only
two nodes, or complementing the sum of the other two entries
BMMi,j [k, 1]+BMMi,j [k, 2] when level j corresponds to a
non-canonical variable xj in a 2-XOR factor and contains three
nodes. The first case simply requires to complement a CEX
represented by a ROBDD of linear size, obviously resulting
in a ROBDD of linear size. In the second case, we first need
to compute a ROBDD for BMMi,j [k, 1] + BMMi,j [k, 2].
We know from the analysis conducted for external signals,
that these two entries are CEXs that can differ only for the
complementation of the succeeding product of literals. Thus,
their sum is again a CEX, represented by a ROBDD of linear
size. Complementing this ROBDD, we eventually obtain a
linear size ROBDD representing the entry BMMi,j [k, 0].

Example 2: Let us consider the QRBDD depicted in Fig. 1,
representing the 2-affine space f = x0x1(x2 ⊕ x3)(x2 ⊕ x4)(x5 ⊕
x6)(x5 ⊕ x7)(x5 ⊕ x8)(x5 ⊕ x9), in particular the following RMs
for QRBDDf :

RM4,5 =

 1 0
x4 x4
x4 x4

 RM5,6 =

(
1 0 0
0 x5 x5

)

RM6,7 =

 1 0 0
x6 x6 0
x6 0 x6

 RM7,8 =

 1 0 0
x7 x7 0
x7 0 x7



All RMs are multiplied in a tree-like arrangement, as depicted in
Fig. 2. This gives the following BMMs:

BMM4,6 = RM4,5 · RM5,6 =

 1 0 0
x4 x4x5 x4x5
x4 x4x5 x4x5


BMM6,8 = RM6,7 · RM7,8 =

 1 0 0
x6 + x7 x6x7 0
x6 + x7 0 x6x7


BMM4,8 =

 1 0 0
x4 + (x5 ⊕ x6) + (x5 ⊕ x7) x4x5x6x7 x4x5x6x7
x4 + (x5 ⊕ x6) + (x5 ⊕ x7) x4x5x6x7 x4x5x6x7





The entries of these matrices have been simplified and are repre-
sented as CEXs, or the complement of CEXs, rather than as SOPs, to
enhance readability. Based on these BMMs, we now provide explicit
examples for the proof of Lemma 3. We first consider the three cases
for the output signals of the RMi,j and of the BMMi,j sub-circuits
which describe the reachability between two nodes xi,k and xj,h,
where 0 ≤ h, k ≤ 2, and 0 ≤ i < j ≤ 9:

(1) k = 0 (unless xi,k is the root): Here, the entries in the BMMs
are 1 for h = 0 and 0 for h = 1, 2, which can be seen in the first
row of BMM4,6, BMM6,8, and BMM4,8.

(2) k = 1, 2 , h = 1, 2 or xi,k is the root: For example entry
x4x5x6x7 of BMM4,8 is again a CEX constructed by reducing
the original CEX. It describes the reachability between two non-
canonical variables x4 and x8, that are associated with different
canonical variables x2 and x5, respectively. In this case, all paths
between x4 and x8 lie outside the chain and pass through x5. The
preceding product of literals of (i) is x4, the succeeding product of lit-
erals of (iii) is x5x6x7. No part for (ii) is necessary, as no canonical
variables are in between x2 and x5, which means no XORs in between
have to be kept. We can notice that the CEX x4x5x6x7 occurring
in the same row, differs in the complementation of the literals in the
succeeding product of literals, as described in (iii). Meanwhile, the
CEXs below those two CEXs, differ in the complementation of the
preceding product of literals, as described in (i). Another example
can be seen in BMM6,8: The two non-canonical variables x6 and
x8 are associated with the same canonical variable x5. As stated in
(i), if xi,k and xj,h belong to different branches (i.e., k ̸= h) there
are no paths between them, and the corresponding entry in BMM6,8

is 0. However, if the two nodes are in the same branch then the path
is described by the product x6x7 for h = k = 1 (left branch), and
x6x7 for h = k = 2 (right branch).

(3) h = 0: This case, where the target node lies on the redundant
chain, is represented, for instance, by the first column of BMM4,8.
The paths are now described by the complementation of the union of
the other two CEXs in the same row. Notice that these two expressions
differ only in the complementations of the last literals, thus their
union is again a CEX representing a 2-affine space. For instance,
in the second row of BMM4,8, the sum of the two last entries is
x4x5x6x7 + x4x5x6x7, which is equivalent to the CEX x4(x5 ⊕
x6)(x5 ⊕ x7). The first entry of the second row of BMM4,8 is the
complement of this: x4 + (x5 ⊕ x6) + (x5 ⊕ x7).

Let us now consider the ROBDDs that are used in the computation
of the internal signals. An example for the disjoint sets of variables,
which causes the output of an AND gate to be a linear size BDD, can
be seen when comparing the two matrices BMM4,6 and BMM6,8.
An example for internal signals that are the output of an OR gate
and are computed as the complement of the sum of the other entries
in the same row is the first column of BMM4,8, already considered
for Case 3. The corresponding implementation is depicted in Fig. 3,
and requires an overall number of 7 fan-in 2 gates and one inverter,
organized in a depth 4 sub-circuit. The standard computation requires
instead 10 fan-in 2 gates organized in a depth 3 sub-circuit.

C. Circuit Synthesis based on QRBDDs
We now evaluate the runtime of each ITE-operation carried

out during symbolic simulation for AND and OR gates,
essential for the overall runtime. For the AND operation, we
recall from [8] the following lemma.

Lemma 4 ([8]): Let Cf be the QRBDD-based circuit for a
function f with n variables. Let Ai be an AND gate in Cf and
F and G the ROBDDs of the inputs of Ai. Then the runtime
of the ITE operator that constructs the output-ROBDD of Ai

during the symbolic simulation of Cf is in O(1).
The proof of this lemma exploits the fact that the supports

of the inputs of the AND gates are disjoint. Meanwhile, for

x0 x̄0 x1 x̄1 x2 x̄2 x3 x̄3 x4 x̄4 x5 x̄5 x6 x̄6 x7 x̄7 x8 x̄8 x9 x̄9

RM0,1 RM1,2 RM2,3 RM3,4 RM4,5 RM5,6 RM6,7 RM7,8 RM8,9 RM9,10

BMM0,2 BMM2,4 BMM4,6 BMM6,8 BMM8,10

BMM0,4 BMM4,8

BMM0,8

BMM0,10

f̄ f

Fig. 2. Structure of a QRBDD-based circuit Cf for the function f of the
running example.

BMM4,6 BMM6,8

A0 A1 A2 A3

O0 O1

O2

N0

Fig. 3. Computation of the second row of outputs of BMM4,8 exploiting
the fact that the sum of all entries in a row must be 1.

the OR operation, we exploit the fact that the inputs of all OR
gates required for the computation of the BMMs (for both
internal and external signals) are always 2-CEXs that differ
only for the polarities of their last terms, as observed in the
proof of Lemma 3. In this case, the OR of the two ROBDDs
can be computed in linear time, that is, O(n) (the proof will
be inserted in the extended version of the paper):

Lemma 5: Let Cf be the QRBDD-based circuit for a
function f with n variables. Let Oi be any OR gate in Cf

and F and G the ROBDDs of the inputs of Oi. Since F and
G represent 2-CEXs that differ only in the polarities of their
last factors, then the runtime of the ITE-operator constructing
the output-ROBDD of Oi during the symbolic simulation of
Cf is in O(n).

Combining all results derived or reviewed so far, we can
finally provide an overall upper bound for the formal verifica-
tion of QRBDD-based circuits for 2-affine spaces.

Theorem 1: Let Cf be the QRBDD-based circuit for a func-
tion f with n variables, which is the characteristic function of
a 2-affine space. Let QRBDDf be the QRBDD for f . Then
the symbolic simulation of Cf has time complexity in O(n2)
and space complexity in O(n2).
Proof. The overall runtime depends on the number of ITE-
operations during the symbolic simulation of Cf and on
their runtime. From Lemma 3 it follows that the ROBDD
constructed after each gate has a maximum size of O(n).
Moreover, Lemma 4 implies that the ITE operator for AND-
gates needs at most O(1) steps, while Lemma 5 implies that
the ITE operator for OR-gates needs O(n) steps. Recall from



TABLE I
EXPERIMENTAL RESULTS FOR EACH TESTCASE.

2-CEX n #Gates #Nodes QRBDD #Nodes ROBDD Runtime
x5(x2 ⊕ x7)(x1 ⊕ x6) 5 48 13 (≤ 15) 9 (≤ 10) 0.0622s
(x1 ⊕ x5)(x1 ⊕ x4)(x0 ⊕ x7)(x1 ⊕ x3)(x0 ⊕ x6)(x1 ⊕ x2) 8 96 22 (≤ 24) 16 (≤ 16) 0.0680s
(x7 ⊕ x8)(x7 ⊕ x9)x2x4(x5 ⊕ x0)(x5 ⊕ x3)(x5 ⊕ x1)(x5 ⊕ x6) 10 130 27 (≤ 30) 18 (≤ 20) 0.0842s
x5(x12 ⊕ x8)x3x13(x1 ⊕ x9)(x7 ⊕ x4)(x12 ⊕ x2)(x7 ⊕ x11)(x7 ⊕ x14)(x1 ⊕ x6) 15 203 40 (≤ 45) 26 (≤ 30) 0.0835s

(x1 ⊕ x10)(x7 ⊕ x0)
(x0 ⊕ x7)(x2 ⊕ x6)(x1 ⊕ x5)(x2 ⊕ x3)(x0 ⊕ x4)(x8 ⊕ x15)(x9 ⊕ x12)(x8 ⊕ x11) 20 291 54 (≤ 60) 36 (≤ 40) 0.0995s

(x10 ⊕ x13)(x10 ⊕ x16)(x9 ⊕ x18)(x1 ⊕ x14)(x2 ⊕ x19)(x10 ⊕ x17)
(x12 ⊕ x9)(x5 ⊕ x15)(x5 ⊕ x19)(x5 ⊕ x25)(x12 ⊕ x2)(x21 ⊕ x16)x3x7x23x8x26 30 467 80 (≤ 90) 51 (≤ 60) 0.1428s

(x5 ⊕ x24)(x14 ⊕ x0)(x1 ⊕ x6)(x1 ⊕ x4)(x1 ⊕ x27)(x1 ⊕ x17)(x28 ⊕ x29)
(x1 ⊕ x22)(x5 ⊕ x20)(x5 ⊕ x18)(x5 ⊕ x10)(x12 ⊕ x13)(x5 ⊕ x11)

(x1 ⊕ x22)(x2 ⊕ x39)(x4 ⊕ x18)(x35 ⊕ x5)(x28 ⊕ x30)(x6 ⊕ x20)(x1 ⊕ x36) 40 591 104 (≤ 120) 65 (≤ 80) 0.2230s
(x7 ⊕ x29)(x28 ⊕ x23)(x8 ⊕ x14)(x6 ⊕ x27)(x28 ⊕ x0)x9x3x12x21(x2 ⊕ x19)
x10x25(x11 ⊕ x37)(x28 ⊕ x13)(x15 ⊕ x26)(x6 ⊕ x33)(x16 ⊕ x38)(x28 ⊕ x17)
(x35 ⊕ x24)(x11 ⊕ x32)(x7 ⊕ x34)(x28 ⊕ x31)

Total average (on the set of 1000 2-CEXs) 6 55 16 (≤ 19) 11 (≤ 13) 0.0715s

Fig. 4. BDD-sizes during verification of (x1⊕x5)(x1⊕x4)(x0⊕x7)(x1⊕
x3)(x0 ⊕ x6)(x1 ⊕ x2).

Proposition 2 that the size of Cf is in O(n), thus implying
at most O(n) ITE-operations of at most O(n) runtime. Thus,
we get an overall runtime of O(n2). The space complexity
depends on the number of ROBDDs that are needed simul-
taneously. Cf consists of levels of RMs or BMMs, and the
BMMs consist of levels of AND and OR-gates. All ROBDDs
constructed on the same level need to be built simultaneously
to simulate the next level. The number of BMMs on a level is
at most ⌊n/2⌋. Since QRBDDf has a maximum of 3 nodes
on each level, both dimensions of each RM are bounded by
3. Therefore, each BMM computes at most nine matrix cells
on the same level, and each cell requires at most eight gates
(i.e., 4 AND-gates, three ORs and an inverter; see Fig. 3). It
follows that overall at most ⌊n/2⌋ · O(1) ∈ O(n) gates are
on the same level. Since the maximum size of the ROBDDs
constructed during the simulation is in O(n), the overall space
complexity is in O(n2).

IV. EXPERIMENTAL RESULTS

The symbolic simulation of 2-CEXs was implemented in
C, using CUDD [15] for ROBDD operations and a version
of the ROBDD package iBDD1 [13] for QRBDD operations.
This was executed for 7 testcases with up to n = 40 on a
3.8-4.8 GHz Intel Core Ultra 7 155U CPU with 64 GB RAM.
The results can be seen in Table I. Each 2-CEX is given in
the first column, n in the second column, and the number

1R. Krauß, FrEDDY (previously iBDD) [Source code],
https://github.com/runekrauss/freddy, 2025 (accessed on 2025-07-22)

of gates of the resulting circuit is given in the third column.
The number of nodes of the respective QRBDD and ROBDD
are in the fourth and fifth column, and the execution time of
the symbolic simulation can be found in the last column. For
comparison, the values 3 · n and 2 · n are added in brackets
next to the QRBDD size and the ROBDD size, respectively.
As the sizes never exceed both of these linear bounds, this
supports Proposition 1. The measured runtimes never exceed
0.3s which underlines the efficiency of the proposed approach.
Further, a set of 1000 2-CEXs used in [4] was verified. The
rounded average result is given in the last row of Table I and
is similar to the results of the other testcases.

To further analyze blowups during the verification, the size
of each ROBDD constructed during the symbolic simulation
was measured. The ROBDD size per BMM can be seen in
Fig. 4 for the testcase with n = 8. The ROBDDs constructed
at an output signal are marked with orange crosses, and the
ROBDDs constructed inside a BMM are marked with blue
dots. For comparison, the upper bound 2 · n is marked as
an orange line. This line is never exceeded by any measured
ROBDD size, which underlines the bound of O(n) given in
Lemma 3 for the size of all ROBDDs. The results for the
remaining testcases listed in Table I are similar.

V. CONCLUSION

In this paper, we have proved a quadratic upper bound
on the resources needed for PFV of 2-affine spaces. In this
research area, a main future goal is to further identify classes
of functions that can be verified in polynomial time and space.
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