
Late Breaking Results: PolyRAD - Polynomial
Formal Verification of Restoring Array Dividers

Mohamed Nadeem⋓, Chandan Kumar Jha⋓, Rolf Drechsler⋓,†
University of Bremen, Bremen, Germany⋓

DFKI GmbH, Bremen, Germany†
mnadeem@uni-bremen.de, chajha@uni-bremen.de, drechsler@uni-bremen.de

Abstract—Formally verifying divider circuits is complex, and
multiple effective methods have been developed. However, none of
these methods provides an upper bound on the verification time,
which limits their scalability for large divider circuits. Recently,
Polynomial Formal Verification (PFV) based approaches have been
investigated to ensure circuit correctness in polynomial time and
space. However, there is no PFV based approach for the formal
verification of dividers. In this paper, we introduce for the first
time a two-level partitioning strategy and present PolyRAD, a
novel PFV approach for verifying Restoring Array Divider (RAD).
Finally, we prove that verification of RAD can be achieved in
polynomial time, and conduct experimental evaluation on RAD
of different sizes to validate our theoretical findings.

Index Terms—Polynomial Formal Verification, Circuit Parti-
tioning, Restoring Array Dividers.

I. INTRODUCTION

As circuit designs become increasingly complex, ensur-
ing correctness is crucial, underscoring the need for formal
verification of arithmetic circuits, such as division. Several
methods have been introduced for the verification of Restoring
Array Divider (RAD) [1]–[6]. However, they fail to provide an
upper bound on verification time, which can make verification
unpredictable and resource-intensive, especially for large RAD
sizes. Similar challenges occur in verifying other arithmetic
circuits. Therefore, Polynomial Formal Verification (PFV) [7],
[8] is a promising direction to ensure polynomial upper bounds
on time and space for verification. PFV has been employed
with Circuit Partitioning [9], [10] (i.e., Cutwidth Partitioning)
to provide polynomial-time verification approaches for several
types of simple arithmetic circuits (e.g., adders). However, for
complex circuits such as dividers, we show that PFV can be
applied to achieve formal verification in polynomial time.
• We introduce, for the first time, a divide-and-conquer parti-

tioning strategy for RAD circuits and propose PolyRAD, a
novel PFV approach for RAD based on this strategy.

• We prove that RAD can be verified in polynomial time and
conduct an experimental evaluation to confirm our findings
and demonstrate the scalability of our approach.

II. POLYRAD APPROACH

A. Restoring Array Divider
RAD takes a 2N -bit dividend X and an N -bit divisor Y and

produces an N -bit quotient Q and remainder R. The division is
performed using a sequence of Controlled Subtractor (CS). In
the first stage, Y is subtracted from the N most significant bits
of X; in subsequent stages, it is subtracted from the N most
significant bits of the partial remainder, with Y shifted right by
one bit after each step. The sign of each subtraction determines
the quotient bit Qi and is forwarded to the next stage as the

This work was supported by the German Research Foundation (DFG) within
the Reinhart Koselleck Project PolyVer (DR 287/36-1) and by the Data Science
Center of the University of Bremen (DSC@UB) funded by the State of
Bremen.

CS CS CS CS

CS CS CS CS

CS CS CS CS

CS CS CS CS

(a) RAD Horizontal Partitioning

Subtractor

MUX CS
10

(b) CS

CS CS CS CS

(c) Vertical Partitioning

Fig. 1: Overview of the RAD and its CS, together with the partitioning strategy.

control signal Sqi. If the partial remainder becomes negative,
the subtractor restores it by adding Y back, and this sign is
propagated as the control signal to the next stage. The overview
of 8/4 RAD can be seen in Fig. 1(a), where the dividend is
8-bits, and the divisor is 4-bits.

B. Circuit Partitioning
To ensure that our partitioning can be applied to any RAD

architecture (i.e., simple modular design (Clean) or highly opti-
mized and merged design (Dirty)) without requiring knowledge
of its internal structure, we propose two partitioning strategies
that use only the RAD ’s inputs and outputs, where the circuit
is represented as an And-Inverter Graph (AIG) [11].

1) Horizontal Partitioning: In this step, the RAD is par-
titioned horizontally by iteratively selecting each Qi (from
QN to Q0) and traversing its fan-in until reaching either the
primary inputs Sqi, X , and Y , or an intermediate gate (called
Intermediate Input) that was already visited in a previous
subcircuit (i.e., previous stage). The intermediate input has to
represent one of the following cases:
(Clean): It is the previous stage’s remainder and thus serves

as an intermediate input to the CS in the current stage.
(Dirty): It is a sub-function of the previous stage’s remainder,

which is combined with the current stage’s gates to compute
the remainder.

We refer to the intermediate gate passed to the next quotient
subcircuits as Intermediate Output. To ensure that the Inter-
mediate Output preserves only one of the previous cases, it
must correspond to a Cone Gate—i.e., the sub-function (fan-
in) that can be traversed from the subcircuit inputs and passed
to the next quotient subcircuits. Given the 8/4 RAD, 4 quotient
subcircuits (highlighted in gray) are obtained as shown in
Fig. 1(a).

2) Vertical Partitioning: In this step, each quotient sub-
circuit Qi is partitioned vertically into cell subcircuits, where
each cell subcircuit starts from its primary inputs Sqi, X (if
it exists), and Y , and traverses its output gates until reaching
the cone nodes. At this stage, the cell subcircuit may contain
intermediate inputs coming from either the previous quotient

subcircuit or the previous cell subcircuit. The intermediate gate
can be added if it is a fan-in of a gate whose other fan-in
is reachable from the cell primary inputs. In this case, the
intermediate input represents one of the following:
(Quotient intermediate): It corresponds to a remainder from

the previous quotient.
(Cell intermediate): It corresponds to the input borrow or a

sub-function of the input borrow used by the current CS.
Given a quotient subcircuit Qi, 4 cell subcircuits (highlighted
in light blue) are obtained as shown in Fig. 1(c). These two
partitioning steps allow partitioning any RAD circuit without
having information on its internal structure.
C. PolyRAD Verification Approach

DUV
(.v)

DUV
(.aig)

Yosys

GD
(.v)

GD
(.aig)

Yosys

Miter
Circuit
(.aig)

Horizontal
Partitioning

Vertical
Partitioning

Subcircuit
Selection

Valid?

Yes

DB
Intermediate

Inputs

DB
Intermediate

Outputs

No

Buggy

Next Subcircuit

Fig. 2: PolyRAD Verification Approach.

The overview of PolyRAD is shown in Fig. 2. The approach
takes two designs, the Design Under Verification (DUV) and
the Golden Design (GD), and constructs a miter circuit in
AIG format. Horizontal partitioning is then applied, followed
by vertical partitioning. Next, the cell subcircuits are verified
iteratively. If a cell is correct, its intermediate outputs are stored
in a database and used as intermediate inputs for subsequent
cell subcircuits. Otherwise, it is buggy (for details, see [9]).

Theorem II.1 (PolyRAD Complexity). PolyRAD has time
complexity O(G+ (#C × 2CW)), where G is the gate count,
#C is the number of cell subcircuits, and CW is the maximum
number of inputs among them.

Proof: The horizontal partitioning (recall Section II-B1) is
employed such that each subcircuit starts from a quotient Qi

and traverses the input gates towards the primary inputs. To
ensure that the intermediate gates (i.e., intermediate inputs and
intermediate outputs) satisfy one of the cases (i.e., Clean and
Dirty), the subcircuit is traversed w.r.t. the current subcircuit
observed inputs to obtain the least number of cone gates (recall
Section II-B1) required to be passed to the next subcircuit. In
this step, it is required to check the edges (i.e., input wires) of
each gate. Since in the AIG, the AND gate is restricted to have
only two inputs, the number of edges can be, in the worst case,
equal to 2×G, where G is the number of gates appearing in
the circuit. Therefore, the complexity of horizontal partitioning
is Complexity(HP) = O(G+2G) = O(G). Let CN , . . . , C0

be the resulting subcircuits. Each Ci is then partitioned using
vertical partitioning (recall Section II-B2) w.r.t. the inputs
Sqi, Xi, Di such that each cell subcircuit starts from the
selected inputs toward the outputs until reaching either a cone
gate or the quotient Qi. This requires traversing the edges
within the subcircuit Ci (the number of edges is bounded by
2×G). Hence, vertical partitioning has complexity of O(G) to
partition all subcircuits CN , . . . , C0. Consequently, the overall
complexity of the two-level partitioning is characterized such
that O(DT) = O(G + G) = O(G). Let CSM , . . . , CS0 be
the resulting cell subcircuits across all subcircuits CN , . . . , C0.
Since each CSj represents a CS and its functional dependency,
the overall number of subcircuits #C is bounded by the

TABLE I: Comparison Between PolyRAD and Cadical approaches

Se
t Circuit PolyRAD Cadical

#C G CW DT Time Memory Time Memory

S1

8/4 16 147 6 0.02 1.45 1.99 0.0920129 0.0
16/8 64 571 7 0.09 2.89 2.01 0.6416 0.07
32/16 256 2291 8 0.63 9.42 2.04 4.36156 0.09
64/32 1024 9187 8 5.38 38.52 2.2 389.82 0.18
128/64 4096 36803 8 57.23 204.11 2.83 T.O. T.O.
256/128 16384 147331 8 742.55 1544.35 5.58 T.O. T.O.

S2

8/4 16 142 7 0.01 1.33 1.99 0.0814059 0.0
16/8 64 564 8 0.08 2.99 2.01 0.754663 0.07
32/16 256 2276 8 0.63 9.04 2.04 5.69457 0.09
64/32 1024 9156 8 5.5 38.66 2.19 336.655 0.18
128/64 4096 36740 8 63.36 228.52 2.84 T.O. T.O.
256/128 16384 147332 8 740.94 1545.88 5.6 T.O. T.O.

S3

8/4 16 148 7 0.02 1.35 1.99 0.089882 0.0
16/8 64 572 8 0.08 2.75 2.01 0.611331 0.07
32/16 256 2292 8 0.68 10.39 2.04 10.9393 0.09
64/32 1024 9188 8 6.04 43.43 2.19 342.306 0.18
128/64 4096 36804 8 56.6 204.58 2.84 T.O. T.O.
256/128 16384 147332 8 738.81 1544.81 5.61 T.O. T.O.

number of CS in the RAD (i.e., #C = M = N × N = N2,
where N is the size of the divisor Y). The verification is
performed iteratively over CSM , . . . , CS0 and starting from
CS0 of the first CS appearing in the quotient QN toward the
last subcircuit CS#C of Q0. We refer by INj to the inputs (i.e.,
primary or intermediate) appearing in the subcircuit CSj . The
complexity of PolyRAD approach can be characterized such
that O(PolyRAD) = O(DT +

∑j
#C(2

INj)) = O(G+#C×
2CW), where CW = max(|IN0|, . . . , |IN#C |).

III. EXPERIMENTAL RESULTS

We have implemented PolyRAD in Python. We compare
our approach with the modern-SAT approach Cadical [12] in
terms of time and memory consumption. All experiments were
performed on an Intel(R) Core(TM) i7-11370 with 3.30 GHz.
We set a timeout of 3600 seconds and limited available RAM
to 16 GB per instance.

We verify RAD circuits of different sizes, up to 256/128.
To demonstrate that our approach can be applied to any RAD
architecture, we generated three sets of DUV instances, each
produced using a different sequence of ABC [13] optimization
commands. A clean design is used as the GD. Both the DUV
and GD are synthesized into AIG format using Yosys [14]. The
optimization command sets are summarized as follows:
(S1): ”strash;refactor;resyn2”.
(S2): ”strash;refactor;resyn;resyn2;resyn3”.
(S2): ”strash;refactor;resyn;resyn2”.

Table I shows the results of PolyRAD and Cadical in terms
of wall time (seconds) and memory consumption (GB). Our
approach successfully verifies RAD circuits of different sizes
and under different optimization commands within the time
limit. In contrast, Cadical exceeds the time limit starting from
the 128/64 RAD. We can see that CW remains constant across
all circuit sizes. Also, G scales quadratically w.r.t. the size N
(i.e., G ≤ N2). Therefore, the overall complexity of RAD can
be simplified to O(N2 + #C × 2CW) = O(N2 + N2) =
O(N2). Hence, the verification time of the PolyRAD scales
quadratically w.r.t. the size N , aligning with the results in
Table I. Hence, RAD circuits belong to the PFV class of
circuits that can be verified in polynomial time (Theorem II.1).

IV. CONCLUSION

We introduced PolyRAD, a novel PFV of RAD based
on a two-level partitioning strategy that requires no internal
structural knowledge. We showed that RAD can be verified in
polynomial time and demonstrated PolyRAD’s scalability on
circuits up to 256/128. As future work, we plan to extend our
verification algorithm to other arithmetic circuits.

REFERENCES

[1] C. Scholl, A. Konrad, A. Mahzoon, D. Große, and R. Drechsler,
“Verifying dividers using symbolic computer algebra and don’t care
optimization,” in Design, Automation and Test in Europe, pp. 1110–1115,
2021.

[2] A. Konrad, C. Scholl, A. Mahzoon, D. Große, and R. Drechsler, “Divider
verification using symbolic computer algebra and delayed don’t care
optimization: theory and practical implementation,” Formal Methods in
System Design, pp. 1–37, 2024.

[3] M. H. Haghbayan and B. Alizadeh, “A dynamic specification to auto-
matically debug and correct various divider circuits,” Integration, vol. 53,
pp. 100–114, 2016.

[4] J. Dasari and M. Ciesielski, “Efficient formal verification and debugging
of arithmetic divider circuits,” in 2023 IEEE/ACM International Confer-
ence on Computer Aided Design (ICCAD), pp. 1–9, 2023.

[5] A. Yasin, T. Su, S. Pillement, and M. Ciesielski, “Functional verification
of hardware dividers using algebraic model,” in 2019 IFIP/IEEE 27th
International Conference on Very Large Scale Integration (VLSI-SoC),
pp. 257–262, 2019.

[6] M. H. Haghbayan and B. Alizadeh, “A dynamic specification to automat-
ically debug and correct various divider circuits,” Integr. VLSI J., vol. 53,
p. 100–114, Mar. 2016.

[7] R. Drechsler and A. Mahzoon, “Polynomial formal verification: Ensuring
correctness under resource constraints,” in International Conference on
Computer-Aided Design, pp. 70:1–70:9, 2022.

[8] R. Drechsler, “PolyAdd: Polynomial formal verification of adder cir-
cuits,” in IEEE Symposium on Design and Diagnostics of Electronic
Circuits and Systems, pp. 99–104, 2021.

[9] M. Nadeem, J. Kleinekathofer, and R. Drechsler, “Polynomial formal ver-
ification exploiting constant cutwidth,” in IEEE International Workshop
on Rapid System Prototyping, Association for Computing Machinery,
2024.

[10] M. Nadeem, C. K. Jha, and R. Drechsler, “Polynomial formal verification
of sequential circuits using weighted-AIGs,” in Design, Automation and
Test in Europe, 2025.

[11] A. Mishchenko, S. Chatterjee, and R. K. Brayton, “DAG-aware AIG
rewriting: a fresh look at combinational logic synthesis,” in Design
Automation Conference, pp. 532–535, 2006.

[12] A. Biere, T. Faller, K. Fazekas, M. Fleury, N. Froleyks, and F. Pollitt,
“Cadical 2.0,” in Computer Aided Verification: 36th International Confer-
ence, CAV 2024, Montreal, QC, Canada, July 24–27, 2024, Proceedings,
Part I, (Berlin, Heidelberg), p. 133–152, Springer-Verlag, 2024.

[13] “Abc: A system for sequential synthesis and verification.” available at
https://people.eecs.berkeley.edu/∼alanmi/abc/, 2018.

[14] C. Wolf, “Yosys open synthesis suite.” https://yosyshq.net/yosys/.

