
Equivalence Checking of System-Level and
SPICE-Level Models of Linear Analog Filters

Kemal Çağlar Coşkun∗ Muhammad Hassan† Rolf Drechsler∗†
∗University of Bremen, Institute of Computer Science, 28359 Bremen, Germany

†Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany
muhammad.hassan@dfki.de {kcoskun,drechsle}@informatik.uni-bremen.de

Abstract—Due to the increasing complexity of analog circuits
and their integration into System-on-Chips (SoC), the analog
design and verification industry would greatly benefit from an
expansion of system-level methodologies, which provide speed
benefits in comparison to SPICE simulations and allow interop-
erability with digital tools at the system-level. However, a key
barrier to the expansion of system-level tools for analog circuits
is the lack of confidence in system-level models implemented
in SystemC AMS. To overcome this, functional equivalence of
system-level models to respective SPICE-level models needs to
be demonstrated. In this paper, we develop a novel, graph-based
methodology to formally check equivalence between system-level
and SPICE-level representations of linear analog filter circuits,
such as Low-Pass Filters (LPF). To do this, we propose an
intermediate representation in the form of a Signal-flow Graph
(SFG), which acts as a mapping function from the SPICE-level to
the system-level. We create the intermediate representation with
linear graph modeling from the SPICE-level model and use graph
manipulation to transform the intermediate representation to the
equivalent system-level model. We demonstrate the applicability
of the proposed methodology by successfully applying it to two
example filters.

Index Terms—Equivalence checking, formal verification, linear
circuits, filters, circuit analysis, transfer functions

I. INTRODUCTION

The rising complexity of analog circuits and the ever increas-
ing system integration of analog and digital components have
created a bottleneck for analog design verification. A major
challenge in this regard is the simulation speed of SPICE-level
models [1]. They often fail for large systems due to convergence
related problems or are prohibitive in terms of computational
time required. Traditionally, SPICE-level simulations [2] are
used often with manual inspection of the results. These simu-
lations, while slow, are still considered a golden standard and
cannot be ignored. However, different levels of design abstrac-
tions and alternate representations (e.g., a behavioral model) of
the circuit can be used to achieve significantly better simulation
performance and earlier design verification of the Design Under
Verification (DUV).

As a consequence, analog designs are moving towards a top-
down approach. In this regard, Virtual Prototyping (VP) at the
abstraction of Electronic System Level (ESL) is nowadays an
established practice [1], [3], [4], [5], [6], [7], [8], [9], [10], [11].

This work was supported in part by the German Federal Ministry of
Education and Research (BMBF) within the project AUTOASSERT under
contract no. 16ME0117.

The Timed Data Flow (TDF) Model of Computation (MoC)
available in SystemC AMS offers a good trade-off between
accuracy and simulation-speed at the system-level, and can
provide a speed increase of over 100, 000× [1] in comparison
to SPICE-level simulations. TDF defines time domain process-
ing, and is used to model the pure algorithmic or procedural
description of the underlying design. In particular, TDF provides
utilities to implement Laplace Transfer Functions (LTF)1 of
linear systems. Because of earlier availability and significantly
faster simulation speed as opposed to SPICE-level simulations
[1], the TDF models provide a design refinement methodology
and enable early verification for analog/mixed-signal systems.

However, one of the main challenges in adopting SystemC
AMS system-level models is the lack of equivalence checking
methodologies for SystemC AMS and SPICE-level models.
Equivalence checking proves the general functional equality of
two implementations of a design. The implementations can be
of different abstraction levels and different description methods
such as transistor netlists and system-level languages. While
equivalence checking methods are well established in the digital
domain [12], [13], [14], analog circuit design flows are lacking
formal or at least formalized verification methodologies [15],
[16], [17]. When speaking about equivalence checking method-
ologies, we broadly consider approaches like state-space cov-
erage, model-checking, and reachability. Regardless of the spe-
cific approach, confidence in adopting SystemC AMS system-
level analog models is low. As a consequence, completely
relying on SystemC AMS system-level models gets difficult.
Due to the rising complexity of analog designs, this becomes
a serious problem.

Contribution: In this paper, we propose a novel equivalence
checking methodology, which is to the best of our knowledge the
first of its kind. Essentially, our approach operates directly on
the SPICE-level models by combining several transformations
of linear graph modeling techniques. The main challenge is to
show that the SPICE-level model is equivalent to the system-
level LTF functional model implemented in SystemC AMS. In
particular, the developed method is restricted to the class of
linear analog filters, e.g., Low-Pass Filters (LPF), High-Pass
Filters (HPF), etc. We leverage Signal-flow Graphs (SFG) as

1A transfer function model captures the frequency response of an analog
circuit and provides a suitable platform for applying non-simulation / formal
techniques to verify the circuit against its specification.

978-1-6654-9431-1/22/$31.00 ©2022 IEEE

an intermediate representation between the SPICE-level and the
system-level model. We demonstrate the applicability of the
developed methodology by successfully applying it to complex
filters.

Summarizing the main contributions of this paper:
• Novel equivalence checking methodology for system-level

and SPICE-level models
• Leverages SFGs and linear graph modeling techniques
• Applicable to the complete class of linear analog filters

irrespective of their order and complexity
• Demonstration of equivalence checking on complex filter

models

II. RELATED WORK

In their survey of equivalence checking, Zaki et al. [16]
summarized the literature until 2007 and pointed out that all
the presented methods employ a priori knowledge of the DUV
in the development process. A further comparison of some
equivalence checking methods was presented in [17] by Tarraf
et al. along with the proposal of a new equivalence checking
method based on reachability. It is observed in this work that
the definition of the coverage measures is a difficult task and
that many methods balance completeness against pessimism.

In their study of equivalence checking on the state-space,
Hedrich and Barke [15] compared the vector fields of the
systems on a point grid to check the equivalency of two different
representations of circuits. The method is applicable to single-
input single-output circuits that can be described by a set of
nonlinear time-invariant first-order differential equations. [18]
extended the method in [15] to circuits that are defined by
differential-algebraic equations, [19] applied the method to new
examples, and [20] generalized it to multi-input multi-output
circuits. The equivalence checking method proposed in [15] is
applicable to many circuits, but some important dynamics might
be missed since the points on the grid are fixed distances apart
on the canonical state space.

In an investigation into simulation-based equivalency check-
ing, Singh and Li [21] developed mapping techniques for com-
paring signals in different domains and decreased the high
computational burden of simulation-based approaches by de-
veloping techniques that reduce the input space. However, the
method relies on typical system-level simulation stimuli, which
cannot completely cover all behavior, and the authors highlight
this point by calling their method semi-formal. Ain et al. [22]
also worked on simulation-based equivalency and developed
a systematic methodology with a focus on circuit features.
However, no attempt was made to mitigate the possible incom-
pleteness of the externally given test bench. The coverage issue
of simulation-based verification was addressed by Saglamdemir
et al. [23] through an optimization-based method for automatic
generation of inputs. Unfortunately, a discussion on whether
all essential input shapes can be represented with the given set
of input parameters is missing. Another problem that was not
addressed is the possibility of the optimization to return a local
minimum.

In summary, a common deficiency of many methods in the
existing literature is that they do not check equivalence with

complete coverage of behavior. Therefore, even if these methods
claim equivalence, the models might still behave differently in
an overlooked gap. Our proposed equivalence checking method-
ology does not have this issue as the analysis and modification
methods used, such as linear graph modeling and graph reduc-
tion, statically analyze the structure of the models.

III. PRELIMINARIES

In this section, we present a brief summary of SFGs and
introduce our motivating example that led to the development
of our method. Please note, for brevity we refrain from giving a
proper introduction to SystemC AMS, and encourage the reader
to go through the SystemC AMS user guide [24].

A. Signal-Flow Graph

Consider the system of explicit algebraic equations shown in
Eq. 1:

x̄ = f(x̄) (1)

where x̄ is an array of variables. An SFG as introduced in [25] is
a representation of Eq. 1 in the form of a graph. But to simplify
the algebra [26], it is common to restrict the SFG to a linear form
that represents a system of linear explicit algebraic equations
written as x̄ = Ax̄ when arranged in matrix form. However, it
is easier to construct the SFG from the open form (Eq. 2) with
every variable (xi) given as a sum of all variables including itself
(xj) scaled by some constant aji.

xi =
∑
j

ajixj (2)

Since we consider the class of linear filter circuits in this work,
the linear SFG is sufficient for our purposes. Therefore, we
restrict our SFGs to represent equations of the form Eq. 2, where
xi, xj , and aji depend on the Laplace variable s.

Fig. 1 shows an example SFG with its equivalent system of
linear explicit algebraic equations given in Eq. 3. The edges of
the SFG represent the summation terms in the equations and
the values of the nodes in the SFG are equal to the sum of the
incoming edges. For example, the edge going from x3 to x1 with
weight a31 represents the summation term a31x3 in the explicit
equation of x1 in Eq. 3.

x1 = a21x2 + a31x3 , x2 = a12x1 , x3 = a23x2 (3)

B. Motivating Example: Fifth-order LPF

As our motivating example for equivalence checking, we con-
sider a single-input (V1) single-output (Vo) analog fifth-order
passive LPF (Fig. 2) typically used in Radio Frequency (RF)
receivers. LPF is designed to allow signals with a frequency
lower than a certain cutoff frequency, and attenuate the signals

a31

a21

a12
a33a23x2x1 x3

Fig. 1. An example SFG

V1

SINE(0 1 0.2 0 0 90)

R1

1
C1

0.31

L1

0.89

L2

1.69
C2

1.38

C3

1.54

1
Vo

2 3

.tran 0 20 1m uic

Fig. 2. Motivating example: Analog fifth-order low-pass filter with compo-
nents Resistor (R), Capacitor (C), and Inductor (L).

with a frequency higher than that cutoff frequency. The LPF
circuit is taken from [27] with the following specifications:

• Low-frequency gain: 1
• Bandwidth: 1.0019 rad/s
• Cutoff frequency: 0.1595 Hz

The circuit is implemented in LTSpice [28] and exported as
a netlist. The system-level model of the LPF is implemented
in SystemC AMS TDF MoC, where its LTF (described by the
numerator and denominator coefficients) is shown in Eq. 4.

1.009

s5 + 3.226s4 + 5.252s3 + 5.249s2 + 3.26s+ 1.009
(4)

The coefficients are determined using modified nodal analy-
sis [29]. SystemC AMS provides a dedicated solver for contin-
uous time linear transfer functions in the Laplace domain under
the class sca tdf::sca ltf nd.

IV. SIGNAL-FLOW DRIVEN EQUIVALENCE CHECKING
METHODOLOGY

In this section, we propose an SFG-based equivalence check-
ing methodology for system-level and SPICE-level linear analog
filter models. First, we describe the overview of our proposed
methodology, followed by techniques to create and optimize
an SFG. In the end, we illustrate our methodology using our
motivating example from Section III-B.

A. Methodology Overview

A block-diagram overview of our methodology for equiva-
lence checking between system-level and SPICE-level models
is seen in Fig. 3. To generate a complete set of equations from
the netlist, we use the linear graph modeling method [30], which
consists of a normal tree generator and an equation generator.
We chose this method of analysis since it preserves the structure
of the circuit the best, loses the least amount of information, and
is also applicable to circuits with one- and two-port nonlinear
elements [30]. We then create an SFG of the circuit with our
SFG creator and reduce it to a minimal form with our SFG
simplifier. The simplification methods of the SFG simplifier are
detailed in Section IV-C and consist of removal of a non-input
node, parallel edge elimination, and reflexive edge elimination.
Our equivalence checker compares this minimal SFG to the
system-level model of the circuit.

Linear Graph Modeling

Normal tree
generator

SFG
creator

Equation
generator

SPICE-level
model

Equivalence
checker

SFG

simplifier

System-level
model (LTF)

Simplification
methods

Result

Fig. 3. Overview of the proposed equivalence checking methodology

B. Creating the Signal-Flow Graph with Linear Graph Mod-
eling

For the creation of an SFG, a set of linear explicit algebraic
equations in the form of Eq. 2 must be obtained from the SPICE-
level model. There are various circuit analysis methods that
can be used for this purpose, which use different methods and
different sets of representative variables. In principle, various
possible SFGs exist for a single circuit since SFGs are created
from sets of equations that were generated by one of these circuit
analysis methods.

The linear graph modeling method uses the voltages on
and currents through the circuit components as representative
variables of the circuit. This is in contrast to nodal-analysis and
loop-analysis, where the circuit equations are in terms of node
voltages and loop currents, respectively.

The linear graph model determines how the circuit vari-
ables relate to each other by informing whether to get the
explicit equations of a variable through elemental, compatibility
(Kirchhoff’s voltage law), or continuity (Kirchhoff’s current
law) equations. The first step of the linear graph modeling
method is to create a normal tree, which is a special type of
minimum spanning tree of the circuit graph. This is done by
the normal tree generator by repetitively adding the edges of the
circuit graph in the following order: Voltage sources, capacitors,
resistors, inductors, and current sources.

The normal tree must include voltage sources and may not
include current sources. Inductors in the normal tree and capac-
itors in the tree links are dependent energy storage elements.
Edges of the circuit graph that are not included in the normal
tree, are called the tree links of the normal tree.

For all unknown variables, an explicit expression is generated
by the equation generator according to the following rules:

• Voltages of components on the normal tree, from elemental
equations.

• Currents of components on the normal tree, from continu-
ity equations.

• Voltages of components on the tree links, from compatibil-
ity equations.

• Currents of components on the tree links, from elemental
equations.

This method generates equations in the form of Eq. 2, which
are used to construct an SFG as explained in Section III-A.

Removal of a

non-input node

Reflexive edge
elimination

Yes

No
Number of

nodes = 2?

Simplified
SFG

SFG

Parallel edge
unification

Fig. 4. Overview of SFG simplification process

C. Reducing the Signal-Flow Graph

The overview of the SFG simplification process is given in
Fig. 4. Simplification rules [31] given below are applied by the
SFG simplifier repeatedly in the given order until a minimal
graph with only a single edge between its input and output nodes
is obtained.

a) Removal of a non-input node: Input nodes in an SFG
are nodes whose values can be set arbitrarily. The voltages of
voltage sources and currents of current sources are examples of
input nodes. A non-input node nx may be removed after creating
edges from every ancestor of nx to every descendant of nx.
The weights of these new edges are such that, for a new edge
(ax, dx), its weight is

w((ax, dx)) = w((ax, nx)) · w((nx, dx))

where ax is an ancestor node of nx and dx is a descendant node
of nx.

b) Parallel edge unification: Parallel edges are edges
whose source and destination nodes are equal. According to the
distributive law for parallel edges, these can be merged into a
single edge by summing their weights.

c) Reflexive edge elimination: Reflexive edges are edges
of a node that point to itself. A reflexive edge with weight w can
be removed by dividing the weight of every incoming edge to its
node by 1− w.

D. Illustration

In this section, we illustrate our methodology on the LPF
model from Section III-B. As the first step of linear graph mod-
eling, we obtain the circuit’s normal tree in Fig. 5. Comparing
this with the circuit in Fig. 2, it is seen that it is indeed a
minimum spanning tree by observing that all nodes of the circuit
are present in the tree without forming any loops. It can also
be seen that the priority order as explained in Section IV-B
was followed since all voltages and capacitors of the circuit are
present on the tree.

V1
C1 C2

C30
1

2 3

Vo

Fig. 5. Normal tree of the low-pass filter

In the second step, we use this normal tree and the rules given
in Section IV-B to get the explicit equations; Eq. 5 and Eq. 6,
which are required for building the SFG. In Eq. 5, the equations
for the components on the normal tree are given.

VC1 =
1

0.31s
IC1 , IC1 = IR1 − IL1 ,

VC2 =
1

1.38s
IC2 , IC2 = IL1 − IL2 ,

VC3 =
1

1.54s
IC3 , IC3 = IL2 ,

IV 1 = −IR1 .

(5)

Whereas the equations for the components on the tree links
are given in Eq. 6.

VR1 = V 1− VC1 , IR1 =
1

1
VR1 ,

VL1 = VC1 − VC2 , IL1 =
1

0.89s
VL1 ,

VL2 = VC2 − VC3 , IL2 =
1

1.69s
VL2 .

(6)

While the linear graph modeling approach uses substitution
from this point on, we leave the equations as they are, and
construct an SFG right away to preserve the structure of the
circuit. The equations 5 and 6 are in the form of Eq. 2, from
which the SFG given in Fig. 6 can be created.

This SFG is then transformed according to the rules given
in Section IV-C. The first step of the transformation, which
resulted in the graph in Fig. 7a, is an example of a non-input
node removal, where node VC1 was removed. An example
of reflexive edge elimination is seen in the 11th step of the
simplification process, where the reflexive edge from IL1 to IL1

in Fig. 7b is removed to get the graph in Fig. 7c. The parallel
edge unification rule is not needed in this case since no parallel
edges were formed during the simplification process. After the
successive removal of 12 nodes according to these rules, the
minimal SFG in Fig. 8 is obtained. For equivalence checking, it
is observed that the SFG has equal input-output behavior to the
system-level LTF seen in Eq. 4. The numbers in these figures
were printed with reduced floating-point precision due to space
considerations.

-1 1

1

1 -1 1

1.12
s

-1

0.592
s

-1 1

3.23
s

-1 1

0.725
s

-1 1

0.649
s

VC1VR1V 1 VC2VL1 VC3VL2

IR1IV 1 IC1 IL1 IC2 IL2 IC3

Fig. 6. SFG of the low-pass filter

1

1 -1 1

1.12
s

-1

0.592
s

-1 1

− 3.23
s

3.23
s

-1 1

0.725
s

-1 1

0.649
s

VR1V 1 VC2VL1 VC3VL2

IR1IV 1 IC1 IL1 IC2 IL2 IC3

(a)

− 0.81
s2 -1

0.43
s2

− 0.59
s

1
0.65
s

3.6
s2+3.2s

− 3.6
s2+3.2s

V 1 VC3IL1 IC2 IL2

(b)

−0.81s−2.6
s3+3.2s2+3.6s

1

0.65
s− 0.59

s

-1

0.43
s2

3.6
s2+3.2s+3.6

V 1 VC3

IL1 IC2 IL2

(c)

Fig. 7. Some intermediate results of the simplification process for the low-
pass filter

1
s5+3.23s4+5.25s3+5.25s2+3.26s+1.0V 1 VC3

Fig. 8. Reduced SFG of the low-pass filter

V. EXPERIMENTAL EVALUATION

In this section, we demonstrate the general applicability of
our proposed equivalence checking methodology by applying
it on an example circuit that has a non-planar SFG, which
is a graph that cannot be drawn in a plane without crossing
any edges. First, the experimental setup is briefly discussed.
Later, we demonstrate our methodology described in Section IV
on the circuit by creating and simplifying an SFG for it. We
then show that the simplified SFG is equal to the system-level
representation of the circuit.

A. Experimental Setup

The filter used for this demonstration is the single-input (VS)
single-output (VRL) analog third-order passive band-stop filter
seen in Fig. 9. The component values of the filter are chosen
such that it is of type Butterworth, which has a maximally flat
response on the passband. The center frequency and frequency
difference of the filter are both 1 rad/s (0.1592 Hz) and the gain
at low and high frequencies is 0.5. Therefore, the filter blocks
signals with frequencies between 0.0984 Hz and 0.2575 Hz but
allows signals with frequencies outside this band.

The SPICE-level model of the filter is a netlist description,
whereas the system-level LTF model is implemented in Sys-
temC AMS TDF MoC. The SystemC AMS LTF model as shown
in Eq. 7 was found with the modified nodal analysis method.

0.5s6 + 1.5s4 + 1.5s2 + 0.5

s6 + 2s5 + 5s4 + 5s3 + 5s2 + 2s+ 1
(7)

C1

1

C2

0.5

C3

1

L1

1

L3

1

L2

2RS

1

RL

1

VS

V

Vo

 --- C:\programming\PhD\circuits\butterworthBandStop\ltspice_valued\butterworthBandStop_withInput.asc ---

Fig. 9. Butterworth band-stop filter example

B. Equivalence Checking
The process used to create the SFG once again consists of

obtaining the normal tree, finding the explicit equations 8 and
9 for the variables of the circuit, and putting these equations
together to create the SFG. The normal tree seen in Fig. 10
includes all voltages and capacitors. The inclusion of RS in the
normal tree instead of RL is arbitrary.

The explicit equations are found as

VC1 =
1

s
IC1 , IC1 = IL1 ,

VC2 =
1

0.5s
IC2 , IC2 = IL3 + IRL − IL2 ,

VC3 =
1

s
IC3 , IC3 = IL3 ,

VRS = IRS , IRS = IL1 + IL3 + IRL

(8)

for the components on the normal tree, and

VL1 = VS − VRS − VC1 , IL1 =
1

s
VL1 ,

VL2 = VC2 , IL2 =
1

2s
VL2 ,

VL3 = VS − VRS − VC2 − VC3 , IL3 =
1

s
VL3 ,

VRL = VS − VRS − VC2 , IRL = VRL

(9)

for the other components. These equations are in the form of
Eq. 2 and are used to construct the SFG seen in Fig. 11.

The graph reduction rules given in Section IV-C are then
applied to this SFG for simplification. An intermediate graph
with 6 nodes is seen in Fig. 12 whereas the final simplified SFG
is in Fig. 13.

Comparing the final SFG with the system-level LTF given in
Eq. 7, it is observed that both models are equivalent. Therefore,
any result generated with the system-level model can be ana-
lyzed more confidently.

VS

C1 C2RS C3
0

N001

N002

N003

N004Vo

Fig. 10. Normal tree of the Butterworth band-stop filter from Fig. 9

2.0
s

-1

-1

1

1

1

-1

1

-1

1
s

1
s

1

1

-1

1
s

0.5
s

-1
-1

1

-1

1
s 1

1 1

1

1

1

VRS

VL1

VC1

VS

VC2VL2

VL3

VC3

VRL

IL1

IC1

IL3

IC2

IRL

IL2

IC3 IRS

Fig. 11. SFG of the Butterworth band-stop filter

-1

s2

s2+1

− 2
s

s2+1
s2+s+1

1
s

− 1
s11

s
s2+s+1

s2

s2+1

s2+1
s2+s+1

− 2
s

-1

VS VL3VRL IL3

IC2

IRS

Fig. 12. An intermediate result of the simplification process for the
Butterworth band-stop filter

VI. CONCLUSION

In this work, we combined various analysis and modification
techniques in a novel way to create a graph-based, formal
equivalence checking method. We used linear graph modeling
on a SPICE-level model to create a behavioral SFG and we used
graph reduction techniques to compare this graph to an LTF
based system-level model implemented in SystemC AMS. By
observing the successful application of the methodology to the
provided examples, we learned that using graphs to show formal
equivalency is a viable option that merits further investigation.

The methods presented in this paper can be extended in
multiple ways. Since a slight difference between the SPICE-
level and system-level models might be tolerable, the method
can be modified to generate an error value between the models.
For this, the coefficients of the final transfer function can be
compared. Also, the current application scope of this work
is restricted to linear filter circuits. A generalization to linear
circuits and nonlinear circuits should be investigated. On the

0.5s6+1.5s4+1.5s2+0.5
s6+2.0s5+5.0s4+5.0s3+5.0s2+2.0s+1.0

VS VRL

Fig. 13. Reduced SFG of the Butterworth band-stop filter

system-level side, the methods can be extended to models that
are richer than simple LTF models. Another interesting research
direction is to leverage the graph-based representation by using
established search methods to map possible bugs between the
two models.

REFERENCES

[1] M. Barnasconi, “SystemC AMS Extensions: Solving the Need for Speed,” DAC Knowl-
edge center, May 2010.

[2] L. W. Nagel, “Spice-simulation program with integrated circuit emphasis,” Electronics
Research Laboratory, Univ. of California, Berkeley, 1973.

[3] C. Grimm, M. Barnasconi, A. Vachoux, and K. Einwich, “An introduction to modeling
embedded analog/mixed-signal systems using systemc ams extensions,” in Open SystemC
Initiative, 2008.

[4] M. Barnasconi, C. Grimm, M. Damm, K. Einwich, M. Louërat, T. Maehne, F. Pecheux, and
A. Vachoux, “Systemc ams extensions user’s guide,” Accellera Systems Initiative, 2010.

[5] M. Barnasconi, K. Einwich, C. Grimm, T. Maehne, and A. Vachoux, “Advancing the
SystemC analog/mixed-signal (AMS) extensions,” Open SystemC Initiative, 2011.

[6] M. Hassan, D. Große, H. M. Le, T. Vörtler, K. Einwich, and R. Drechsler, “Testbench
qualification for SystemC-AMS timed data flow models,” in DATE, 2018, pp. 857–860.

[7] F. Pêcheux, C. Grimm, T. Maehne, M. Barnasconi, and K. Einwich, “SystemC AMS based
frameworks for virtual prototyping of heterogeneous systems,” in ISCAS, 2018, pp. 1–4.

[8] M. Hassan, D. Große, H. M. Le, and R. Drechsler, “Data flow testing for SystemC-AMS
timed data flow models,” in DATE, 2019, pp. 366–371.

[9] M. Hassan, D. Große, T. Vörtler, K. Einwich, and R. Drechsler, “Functional coverage-
driven characterization of RF amplifiers,” in FDL, 2019, pp. 1–8.

[10] M. Hassan, D. Große, and R. Drechsler, “System-level verification of linear and non-linear
behaviors of RF amplifiers using metamorphic relations,” in ASP-DAC, 2021.

[11] ——, “System level verification of phase-locked loop using metamorphic relations,” in
DATE, 2021.

[12] R. Drechsler, Ed., Advanced Formal Verification. Kluwer Academic Publishers, 2004.
[13] P. Molitor and J. Mohnke, Equivalence checking of digital circuits: fundamentals, princi-

ples, methods. Springer Science & Business Media, 2007.
[14] R. Drechsler, Formal System Verification. Springer, 2018.
[15] L. Hedrich and E. Barke, “A formal approach to nonlinear analog circuit verification,” in

Proceedings of IEEE International Conference on Computer Aided Design (ICCAD), Nov.
1995, pp. 123–127.

[16] M. H. Zaki, S. Tahar, and G. Bois, “Formal verification of analog and mixed signal designs:
A survey,” Microelectronics Journal, vol. 39, no. 12, pp. 1395–1404, Dec. 2008.

[17] A. Tarraf, L. Hedrich, N. Kochdumper, M. Rechmal-Lesse, and M. Olbrich, “Equivalence
Checking Methods for Analog Circuits Using Continuous Reachable Sets,” in 2020 IEEE
Computer Society Annual Symposium on VLSI (ISVLSI), Jul. 2020, pp. 7–12.

[18] L. Hedrich and W. Hartong, “Approaches to Formal Verification of Analog Circuits,” in
Low-Power Design Techniques and CAD Tools for Analog and RF Integrated Circuits,
P. Wambacq, G. Gielen, J. Gerrits, R. van Leuken, A. de Graaf, and R. Nouta, Eds. Boston,
MA: Springer US, 2001, pp. 155–191.

[19] W. Hartong, R. Klausen, and L. Hedrich, “Formal Verification for Nonlinear Analog Sys-
tems: Approaches to Model and Equivalence Checking,” in Advanced Formal Verification,
R. Drechsler, Ed. Boston, MA: Springer US, 2004, pp. 205–245.

[20] S. Steinhorst and L. Hedrich, “Advanced methods for equivalence checking of analog
circuits with strong nonlinearities,” Formal Methods in System Design, vol. 36, no. 2, pp.
131–147, Jun. 2010.

[21] A. Singh and P. Li, “On behavioral model equivalence checking for large analog/mixed
signal systems,” in 2010 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), Nov. 2010, pp. 55–61.

[22] A. Ain, S. Sanyal, and P. Dasgupta, “A Framework for Automated Feature Based Mixed-
Signal Equivalence Checking,” in VLSI Design and Test, ser. Communications in Computer
and Information Science, B. K. Kaushik, S. Dasgupta, and V. Singh, Eds. Singapore:
Springer, 2017, pp. 779–791.

[23] M. O. Saglamdemir, G. Dundar, and A. Sen, “An analog behavioral equivalence checking
methodology for simulink models and circuit level designs,” in 2015 International Confer-
ence on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit
Design (SMACD), Sep. 2015, pp. 1–4.

[24] M. Barnasconi, C. Grimm, M. Damm, K. Einwich, M. Louërat, T. Maehne, F. Pecheux, and
A. Vachoux, “Systemc ams extensions user’s guide,” Accellera Systems Initiative, 2010.

[25] S. J. Mason, “Feedback Theory-Some Properties of Signal Flow Graphs,” Proceedings of
the IRE, vol. 41, no. 9, pp. 1144–1156, Sep. 1953.

[26] L. P. A. Robichaud, Signal Flow Graphs and Applications. Englewood Cliffs, N.J. :,
1962.

[27] P.-M. Lin, “Signal Flow Graphs in Filter Analysis and Synthesis,” in Circuit Analysis and
Feedback Amplifier Theory. CRC Press, 2006.

[28] Analog Devices, “Ltspice,” https://www.analog.com/en/design-center/
design-tools-and-calculators/ltspice-simulator.html.

[29] C.-W. Ho, A. Ruehli, and P. Brennan, “The modified nodal approach to network analysis,”
IEEE Transactions on circuits and systems, vol. 22, no. 6, pp. 504–509, 1975.

[30] D. Rowell and D. N. Wormley, System Dynamics: An Introduction. Upper Saddle River,
NJ: Prentice Hall, 1997.

[31] F. R. Rasim and S. M. Sattler, “Analysis of Electronic Circuits with the Signal Flow Graph
Method,” Circuits and Systems, vol. 8, no. 11, pp. 261–274, Nov. 2017.

