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Abstract—RISC-V-based embedded systems are becoming
more and more popular in recent years. Performance estimation
of embedded software at an early stage of the design process
plays an important role in efficient design space exploration
and reducing time-to-market constraints. Although several cycle-
accurate RISC-V simulators at different levels of abstraction
have been proposed, they have an inherently high cost, both for
the development of the simulation setting and for obtaining the
software performance in terms of the number of cycles through
simulation. This results in a significant burden on designers to
perform design space exploration.

In this paper, we present a novel ML-based approach, enabling
designers to fast and accurately estimate the performance of a
given embedded software implemented on the RISC-V processor
at the early stage of the design process. The proposed approach
is evaluated against a real-world cycle-accurate RISC-V Virtual
Prototype (VP) using a set of standard benchmarks. Our exper-
iments demonstrate that our approach allows obtaining highly-
accurate performance estimation results in a short execution
time. In comparison to the cycle-accurate RISC-V VP model, the
proposed approach achieves up to more than 5× faster simulation
speed and less than 2.5% prediction error on average.

I. INTRODUCTION

RISC-V [1] is a free and open Instruction Set Architec-
ture (ISA), providing designers with a variety of advantages
including openness, modularity, simplicity, and extensibility.
Due to these benefits both academia and industry have shown
an increasing interest in using RISC-V for their applications.
The advantages of RISC-V also make it ideal for a wide variety
of modern embedded systems in several application areas such
as IoT and Edge devices.

In modern embedded system design, the importance of
software and its impact on the overall system performance is
continually increasing. Such embedded systems are designed
to handle specific tasks and usually are connected to a set
of tight constraints such as performance, time-to-market, and
overall cost of the product [2]. Therefore, software perfor-
mance analysis for fast design space exploration is a crucial
issue. In order to cut down the cost of the final product and
meet the design constraints, a reliable performance estimation
of the software at the early stage of the design process is
required. This can help make decisions of hardware/software
partitioning and provides designers with information for the
design space exploration of software design to achieve a high
overall performance of the entire system.

This work was supported in part by the German Federal Ministry of
Education and Research (BMBF) within the project VerSys under contract
no. 01IW19001, and by the University of Bremen’s graduate school System
Design (SyDe).

There are various implementations of the RISC-V processor
at different levels of abstraction that differ in simulation speed,
level of accuracy, and implementation details [3]. They range
from slow RTL implementation [4] with precise cycle count
to very fast functional simulators [5] without cycle count
or timing information. At the algorithmic level, functional
simulators are used to validate the functionality of a given
embedded software with respect to the target ISA, achieving
the same functions as the modeled hardware. As they do not
consider any cycle count, they have the fastest simulation
speed over all types of simulators. At the Electronic System
Level (ESL) [6], [7], Virtual Prototype (VP) is considered
as the first implementation of the real hardware that allows
cycle-accurate simulation [8], [9]. Essentially, a VP is an
executable software model of the entire hardware platform
that is commonly implemented in SystemC (C++-based li-
brary) [10], [11] and is widely used for hardware/software
co-design [12]. While the exact number of cycles required
by an embedded software can be obtained by cycle-accurate
simulation on the VP, it has an inherently high cost, both for
the development of the simulation setting and for obtaining the
number of cycles through simulation, even when simulation
parallelization is used. Therefore, the VP simulation speed is
considerably slower than functional simulators.

We are motivated by the large differences in simulation
speed between functional simulators and cycle-accurate sim-
ulators (even at the ESL using VP) in Application-Specific
Instruction Set Processor (ASIP) designs that put a significant
burden on design space exploration of embedded software.
Hence, we aim at filling this research gap and particularly
focusing on providing a reliable and fast analytical per-
formance estimation approach targeting embedded software
on RISC-V processors. In this paper, we propose a novel
analytical approach by taking advantage of a hybrid technique
where dynamic analysis (through a fast functional simula-
tor and a RISC-V VP) is used for features extraction and
linear regression (a fast ML-based technique) is utilized for
the performance estimation model generation. The proposed
approach allows designers to perform a fast and accurate
performance estimation of a given embedded software on
RISC-V processors at the early stage of the design process.

We evaluate the accuracy and performance of the proposed
approach for two ISAs (RV32I and RV32IM) against the
real-world RISC-V VP [13], [14] using different standard
embedded software benchmarks from three benchmark suites:
Embench [15], TACLeBench [16] and RV8-bench [17]. Ex-
perimental results demonstrate that, on average, the simulation978-1-6654-9431-1/22/$31.00 ©2022 IEEE
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Fig. 1: An overview of the proposed performance estimation methodology workflow.

speed is 4× to 5× faster than VP and the obtained prediction
error is less than 2.5% for the best predictive model (RV32IM).

The rest of paper is organized as follows: Section II de-
scribes the related work, Section III presents the experimental
procedure, Section IV presents and analyzes the results and
Section V concludes this paper and introduces future work.

II. RELATED WORK

Early performance estimation is widely used in different
applications such as parallel applications [2] and streaming
applications [18]. It can be divided into two broad categories:
simulation-based [13], [19] and analytical models [20], [21].
According to the different degrees of accuracy, the simulation-
based approach can be classified into Instruction Set Sim-
ulator (ISS) and Source-Level Timing Simulation (SLTS).
There exist a number of RISC-V ISS at different levels of
abstraction ranging from slow Register Transfer Level (RTL)
simulation with cycle accuracy such as BRISC-V [22], cycle-
accurate VP models at the ESL [13], [14] to very fast
functional simulation at the algorithmic level with no cycle
and timing information such as RV8 [23]. VPs can provide
designers with total abstract models of hardware platforms
and verify software in terms of functionality and performance
without any actual hardware. However, the simulation speed
is considerably slower than functional simulators and ana-
lytical models. Among the aforementioned ISS techniques,
the trade-off between accuracy and simulation speed is very
challenging. SLTS is based on a mapping between source
code and binary code and can enable high-speed performance
simulation. However, it is very difficult to obtain an accurate
mapping between source code and binary code, resulting in
inaccurate simulation results. The method in [24] presents a
transaction accurate simulation methodology by utilizing GNU
gcov to profile execution statistics of given C code during the
native simulation and using annotation based on the collected
information.

Analytical models are powerful techniques for fast design
space exploration. They can provide linear and non-linear
solutions for complex systems and can be used in different
architectures. In [25], performance models are built for the
ARM926EJ-S and the LEON3 processor. Linear regression is
performed on three different numerical features of embedded
software. In [21], linear regression is used to predict the

software performance and evaluate the method against ARM
v5 implementation. The method in [26] derives the perfor-
mance regression models and validates the models against
the POWER4 RTL model and hardware implementation. The
method in [27] takes advantage of neural networks to esti-
mate the software performance and compared the results with
PowerPC 750 cycle-accurate model.

To the best of our knowledge, there exists no analytical
approach for performance estimation of embedded software
on RISC-V processors. We aim at filling this research gap
by proposing an analytical performance estimation model to
obtain an approximation of the exact number of cycles of a
given embedded software on RISC-V processors. The results
of our approach can significantly help designers in performing
a fast high-level design space exploration.

III. PERFORMANCE ESTIMATION METHODOLOGY

The proposed performance estimation framework and its
overall workflow are illustrated in Fig. 1. The framework is
divided into four phases which are:

1) generating a set of training embedded software and
compiling them through the RISC V GNU Toolchain,

2) creating a set of training data using the extracted data
from VP as the input of the learning phase,

3) generating performance Predictive Model (PM)
4) validating the generated PM using new embedded soft-

ware.
In the following, we explain each phase of the proposed

framework in detail.

A. Source Codes Compilation and Linking

In order to obtain a robust ML-based performance esti-
mation model that ensures the quality of results for a given
new embedded software, a comprehensive set of training
data is necessarily required. As shown in the first phase of
Fig. 1, a comprehensive set of training software is provided
ranging from simple to complex programs with different input
variables that can cover all ISA instructions. In this paper,
two RISC-V ISAs are considered which are the base integer
instruction set (RV32I) and its M extension (RV32IM). For
RV32IM, in addition to using the same method to generate
training programs, part of the programs selected from standard
benchmarks. Based on the binary encoding of an operation,



1 void ISS::performance_and_sync_update(Opcode::Mapping
executed_op){

2 if (executed_op == Opcode::ADDI){
3 I_type += 1; // ADDI belongs to I-type format
4 } else if (executed_op == Opcode::SUB){
5 R_type += 1; // SUB belongs to R-type format
6 }
7 // catagorize other executed instructions
8 }

Fig. 2: Part of the Information Extractor module integrated
into the RISC-V VP.

all instructions can be categorized into six formats; R-type,
I-type, S-type, B-type, U-type, and J-type. Since each training
software needs to be run on the RISC-V processor for run-time
information extraction (i.e., the accurate cycle counts and trace
log of instructions) in the next phase, its RISC-V compatible
executable model must be generated.

To do this, we take advantage of the cross-compilation
from our host computer to RISC-V processor where RISC-V
GNU compiler Toolchain [28] is used to produce the RISC-
V executable ELF files of each training embedded software.
We also perform the same process for new software programs
which are used in the performance predictive model validation
phase. This is done by cross-compiling the source codes and
optionally linking them with the system library. For each ISA,
the RISC-V GNU compiler Toolchain is configured separately.

B. Training Dataset Creation

The performance (accurate number of cycles) of a given
embedded software running on a processor is very related
to the number and type of instructions. In order to create
the training dataset, this information needs to be extracted.
Hence, the executable file of each embedded training software
generated in the previous phase is run on the RISC-V proces-
sor to obtain two goals which are extracting 1) the accurate
number of cycles and 2) a detailed run-time trace of executed
instructions. To do this, we take advantage of a Virtual
Prototype (VP) implementation of the RISC-V processor. The
RISC-V VP mimics the behavior of real hardware and is
cycle-accurate. By running each embedded software on the VP,
the accurate number of cycles is obtained. However, the VP
itself does not provide designers with a detailed count of each
instruction format. To retrieve this information, we implement
a run-time information extractor module and integrate it into
the VP. Fig. 2 shows a part of the information extractor
module, counting the number of instructions for each RISC-
V instruction format. Therefore, by executing the ELF file
of each training software on the RISC-V VP, the number
of instructions for each format, the total instructions count,
and the total number of cycles are extracted. As illustrated
in Fig. 1 – Phase 2, this information is stored in the Run-
time Trace Log file. For each training software, the detailed
parameters stored in this file are shown in Table I.

In the next step, we take advantage of the extracted infor-
mation in the Run-time Trace Log file to build the training
dataset D based on the following definition.

D = {dj |dj = {yj , (xj ,1 , xj ,2 , ...)}; 1 ≤ j ≤ N } (1)

TABLE I: Overview of parameters
Parameters Description

x1 Total instruction count
x2 R-type: instructions using 3 register operands
x3 I-type: instructions with immediate, loads
x4 S-type: store instructions
x5 B-type: branch instructions
x6 U-type: instructions with upper immediate
x7 J-type: jump instructions
y Total cycles

Where D is a set of observations consists of a pair of inputs
(predictors) and an output. For j th observation, the inputs are
the parameters xj ,1 , xj ,2 and the output is yj .

In order to find the best performance PM, for each ISA,
two different training datasets are created which are based
on the total instruction count Dtotal and the number of each
instruction format Dformat . The training datasets of these two
models are represented as follows:

Dtotal = {dj |dj = {yj , xj ,1}; 1 ≤ j ≤ N } (2)
Dformat = {dj |dj = {yj , (xj ,2 , ..., xj ,7 )}; 1 ≤ j ≤ N } (3)

C. Performance Predictive Model Generation

After generating the training dataset, we take advantage of
machine learning techniques to find the relationship among
extracted features and then use them to make predictions.
The linear regression algorithm is one of the most well-
known and best-understood machine learning algorithms that
is widely used in different application domains for predictive
models generation [29], [30]. Hence, we consider a linear
regression model to estimate the executed cycles count of a
given embedded software running on the RISC-V processor.

In general, linear regression [31] is a linear approach to
model the relationship between independent variables (input
parameters) and dependent variable (output) in a simple way.
A simple linear regression model has the form as follows:

y = β0 +

m∑
i=1

βixi + ε (4)

where y is the output variable and xi are input pa-
rameters with 1 ≤ i ≤ m . The parameters β0 and βi are
called regression coefficients. The parameter ε indicates
the error of model due to the lack of fit. In order to
take advantage of the computation power of the computer
and speed up the learning phase, we vectorize the linear
model as y = Xβ + ε with y =

[
y1, ... yj , ... yN

]T
.

The parameter yj is the output of j th embedded soft-
ware. The training dataset X has the dimension of
N × (m + 1 ) with X =

[
xT
1 , ... xT

j , ... xT
N

]T
. For j th

embedded software, the m + 1 input parameters are formed
as xj =

[
1, xj,1, ... xj,m

]
. The regression coefficients

and errors are represented as β =
[
β0, ... βm

]T
and

ε =
[
ε0 ... εN

]T
, respectively. The parameter N indicates

the number of embedded software compiled and executed on
RISC-V VP to generate the training dataset.

In Optimizer module (Fig. 1 – Phase 3), the suitable
regression coefficients are calculated by minimizing the Mean
Squared Error (MSE) illustrated in (5) interactively until it
reaches convergence.



Algorithm 1 Generating Predictive Model
Data: training dataset D = {y,X}, learning rate η, maximum number of

iterations K, cost function J
Output: PM

1: initialize regression coefficients of β with uniform distribution from
range

(
−
√

6
m+1

,+
√

6
m+1

)
2: for iteration in 1...K do
3: ŷ← Xβ
4: J ← f1 (y, ŷ)
5: β0 ← β0 − η ∂J

∂β0
6: for i in 1...m do
7: βi ← βi − η ∂J

∂βi
8: end for
9: convergence test: calculate J

10: end for
11: return β0, ..., βm

12: R2 ← f2 (y, ŷ)
13: PM ← β0, ..., βm

MSE =
1

N
∥ε∥22 (5)

In order to assess the strength of the linear relationship
between inputs and the corresponding output and indicate
how good the performance of the model is, the coefficient of
determination R2 is considered. The metric R2 is represented
as a value between zero and one, where the value of one
indicates a perfect fit and can be used for a highly accurate
model for future estimation, while the value of zero indicates
that the model fails to accurately model the training dataset at
all. The metric R2 is defined based on the following equation:

R2 = 1 −
∥ε∥22

∥y − ȳ∥22
(6)

where ȳ is the mean of output vector y.
Algorithm 1 shows the method used in the Optimizer mod-

ule to generate the PM using the training dataset D , learning
rate η, cost function J and the maximum number of iterations
K. The parameter ŷ is the vector of estimated outputs. The
algorithm consists of three main steps in each iteration. First,
the estimated output vector and cost function based on current
regression coefficients are calculated (Line 3 to 5) The cost
function is defined as MSE. In the next step, each regression
coefficient is updated based on the learning rate and cost
function (Line 5 to 8). The learning rate is in the range between
zero and one. It determines how quickly the cost function
can achieve convergence. Finally, when the cost function
converges, the regression coefficients are obtained (Line 9).
The coefficient of determination can be calculated and PM is
expressed in mathematical form as follows:

ŷ = β0 +
m∑

i=1

βixi (7)

D. Performance Predictive Model Validation
In this phase, the PM is tested by new embedded software.

The new software is compiled and the corresponding RISC-V
ELF file is generated as described in Section III-A. Since the
generated ELF file is compact and is not a human-readable
file, we take advantage of RV8 [23] – an open-source RISC-V
functional simulator – and integrated it into our framework
to provide an expanded and unrolled assembly version of

the ELF file. In general, analyzing the result of disassembler
(a compact assembly code) is very difficult as it does not
contain information such as the length of the loop and jump
instructions based on the comparison. On the other hand, the
trace result of the RV8 is a flattened and unrolled version of
the assembly code where a detailed trace of the instructions is
available. By this, it is possible to analyze the generated file
and extract the required information to be passed as the input
of PM for the performance prediction of the given software.

While RV8 allows fast execution of the ELF file and
supports most extensions and the ability to trace the soft-
ware execution and register values, it does not provide any
information about the numbers of each instruction format.
Hence, as illustrated in Fig. 1 – Phase 4, the Information
extractor module is integrated into RV8 in a similar way as
shown in Fig. 2. After executing the ELF file on RV8, the
total instruction count and the number of instructions for each
format are extracted and stored in the Instruction Information
file. Then, the testing dataset Dtest is generated in a similar
way as the training dataset, except that the cycle count is not
included. It is represented as the following equation.

Dtest = {x1, ..., xm} with m =

{
1; total instruction count
6; different format counts (8)

where x1 to xm are input variables and parameter m indicates
the number of input variables. According to the PM generated
in third phase and the testing dataset, the total cycle count of
new software ŷ is estimated based on (7).

IV. EXPERIMENTAL EVALUATION

This section presents the experimental evaluation of our
proposed performance estimation approach. The benchmarks
are provided by Embench [15], TACLeBench [16] and RV8-
bench [17], covering different domains, such as filters, matrix
manipulations, and sorting algorithms. They are freely avail-
able and specifically target embedded systems. We evaluated
the obtained results of the generated PMs by comparing them
against the real-world RISC-V VP model [13], [14] in terms
of simulation speed and number of cycles accuracy. Two ISAs
are considered by configuring RISC-V GNU Toolchain with
different parameters. For each ISA, two PMs were generated
based on the total number of instructions and the number
of instruction formats. Hence, we divide the experimental
evaluation into two parts. First, characteristics of PMs for
RV32I ISA are presented. Second, we explain the features
of the generated PMs for RV32IM ISA. The underlying
linear regression for each PM was implemented using Ten-
sorFlow [32]. All experiments were carried out on a Linux
system with 38 GB RAM and an AMD Ryzen 7 PRO 4750U
processor running at 1.4 GHz.

Table II and Table III illustrate the experimental results
of applying different standard benchmarks to our proposed
performance estimation approach. The first column lists the
names of benchmarks. The following two columns shows the
total instruction counts and Lines of Code (LoC) of each
benchmark. Column VP includes the cycle count (# Cycle)
and simulation time (Time) reported from VP. Column Ours
shows the execution time of the proposed approach and the
obtained speed-up compared to VP. The reported execution



TABLE II: Experimental Results of all Benchmarks used for Validation of PMs on RV32I
Benchmark #instr-exec. LoC VP Ours PM1 PM2

#Cycle Time (ms) Time (ms) Speed-up #Cycle Error #Cycle Error
adpcm enc2 2 898 910 413 3 636 185 1 877 561 3.346 3 946 579 +8.54% 3 857 302 +6.08%
ammunition2 724 331 550 2 449 1 046 797 153 511 228 119 414 4.281 986 105 480 -5.80% 1 010 774 689 -3.44%
cubic1 32 156 510 125 39 541 102 19 168 5 268 3.645 43777896 +10.71% 42 008 676 +6.24%
dhrystone3 7 160 022 427 241 11 380 028 888 5 508 120 1 199 379 4.592 9 747 659 677 -14.34% 11 137 231 472 -2.13%
gsm enc2 26 855 420 1 793 34 399 663 17 019 4 299 3.959 36 560 989 +6.28% 36 729 549 +6.77%
miniz3 5 155 692 007 6 558 8 392 723 486 3 847 009 930 693 4.133 7 018 964 499 -16.37% 7 600 800 104 -9.44%
norx3 14 809 875 368 21 410 709 13 293 2 624 5.066 20 162 145 -5.83% 20 626 833 -3.66%
picojpeg1 13 751 505 263 22 157 267 10 300 2 156 4.777 18 721 310 -15.51% 22 923 623 +3.46%
st1 18 327 848 117 23 469 543 10 807 3 083 3.501 24 951 546 +6.31% 23 874 972 +1.73%
ud1 14 192 285 95 20 543 388 9 672 2 369 4.083 19 321 388 -5.95% 19 516 397 -4.50%
MAE 9.56% 4.50%
R2 0.950 0.998

The Benchmarks are provided by 1Embench [15], 2TACLeBench [16] and 3RV8-bench [17]. Time is reported with unit millisecond (ms).

TABLE III: Experimental Results of all Benchmarks used for Validation of PMs on RV32IM
Benchmark #instr-exec. LoC VP Ours PM1 PM2

#Cycle Time (ms) Time (ms) Speed-up #Cycle Error #Cycle Error
ammunition2 329 312 597 2 449 535 361 750 232 868 55 143 4.223 492 679 360 -7.97% 533 658 750 +0.32%
audiobeam2 3 815 806 6 649 3 815 806 2 582 671 3.848 5 708 771 -4.71% 5 477 313 -0.47%
cosf2 279 995 631 385 620 210 60 3.500 418 900 +8.63% 370 838 -3.83%
cubic3 8 369 615 125 11 824 285 5 563 1 434 3.880 12 521 652 +5.90% 12 113 882 +2.45%
epic2 34 890 806 982 47 062 629 21 516 5 502 3.906 52 199 584 +10.91% 45 778 636 -2.73%
fft2 3 056 010 492 4 414 382 2 017 511 4.123 4 572 053 +3.57% 4 303 558 -2.51%
fmref2 6 402 343 684 8 845 407 4 031 1 054 3.834 9 578 448 +8.29% 8 618 082 -2.57%
g723 enc2 859 693 263 1 447 336 685 170 4.029 1 286 178 -11.13% 1 529 837 +5.70%
lms2 2 251 965 114 3 043 479 1 468 386 3.803 3 369 134 +10.70% 3 079 731 +1.19%
st2 1 937 169 127 2 664 519 1 263 323 3.827 2 898 173 +8.77% 2 585 080 -2.98%
MAE 8.06% 2.48%
R2 0.955 0.996

The Benchmarks are provided by 1Embench [15], 2TACLeBench [16] and 3RV8-bench [17]. Time is reported with unit millisecond (ms).

time consists of two parts that are 1) the required time for
RV8 to generate the run-time trace of a given software, and
2) the time used by PMs to estimate the cycle count of the
new software. Since the time used by PMs is negligible in
comparison to RV8 simulation time, the simulation time on
RV8 can be seen as the time used to estimate the number of
cycles of the new software. Columns PM1 and PM2 represent
the predictive models based on the total number of instructions
and the number of instruction formats, respectively. The fol-
lowing sub columns Cycle and Error indicates the number of
estimated cycles and the error percentage of each software in
comparison to the VP, respectively. In addition, we evaluated
the quality of each generated PM using two metrics MAE and
R2 introduced in (5) and (6), respectively. The average values
for the above metrics are reported in Table II and Table III.

A. Predictive Models for RV32I ISA

In this experiment, we took advantage of 125 programs
as training software to create a training dataset. The total
instruction counts of the training software set range from
1.5×106 to 3.7×107. For the validation phase, 10 benchmarks
were used for each PM. Please note that the software used
in the validation phase was completely different from the
software used in the training phase to create the training
dataset. The generated PM based on the total number of
instructions is presented as the following equation.

ŷ = 2 .36 + 1 .36 ∗ x1 (9)

The generated PM based on the number of instruction formats
is shown in (10). The absolute values of the regression coeffi-
cient are used to rank the inputs. Due to its larger coefficient,
the fifth input variable (x6 ), i.e. U-type count, appears to be
more important for determining the number of cycles.

ŷ = 2 .46 − 0 .82 ∗ x2 + 1 .94 ∗ x3 + 2 .11 ∗ x4 (10)
+1 .20 ∗ x5 + 2 .76 ∗ x6 − 2 .6 ∗ x6

The experimental results in Table II show that our approach
achieves a speed-up up to more than 5× in comparison to the
cycle-accurate VP. While the quality of both PMs based on the
average MAE and R2 metrics lays in acceptable boundaries,
the linear relationship of PM2 is stronger than PM1 due to
its higher R2 (0.998) and lower average MAE (4.50%). This
can also be seen in the Table where for each benchmark, PM2
provides better estimation results than PM1 and has a smaller
error rate. The main reason for the high prediction accuracy
is that PM2 takes advantage of the instruction formats classi-
fication in the training phase where more detailed information
for the underlying regression algorithm is provided.

B. Predictive Models for RV32IM ISA
In the second experiment, 80 programs were used as training

software to create the training dataset. The total instruction
counts of the training software set range from 2.0 × 105

to 1.1 × 108. The PMs are validated using 10 benchmarks.
The software programs used for validation were completely
different from the software used to generate the training
dataset. The following equation can be used to calculate the
PM based on the total number of instructions.

ŷ = 6 .29 + 1 .50 ∗ x1 (11)

The generated PM based on the number of instruction formats
is expressed as (12). The third input variable (x4 ), S-type
count, has a greater impact on determining the number of
cycles due to its greater coefficient.

ŷ = 17 .32 + 1 .16 ∗ x2 + 1 .70 ∗ x3 + 4 .29 ∗ x4 (12)
−0 .43 ∗ x5 − 0 .52 ∗ x6 + 1 .06 ∗ x6



The experimental results in Table III demonstrate that our
proposed approach can estimate the number of cycles up to
4.2× faster than VP. Similar to the first experiment, for each
benchmark, PM2 has higher accuracy than PM1 thanks to the
instruction formats classification in its training phase where
more detailed information for the underlying regression algo-
rithm is provided. While the quality of both PMs based on the
average MAE and R2 metrics lays in acceptable boundaries,
the linear relationship of PM2 is stronger than PM1 due to its
higher R2 (0.996) and lower average MAE (2.48%).

The results of both experiments demonstrate that the gener-
ated PMs (especially PM2 generated based on the instruction
formats classification) can accurately predict the embedded
software performance. The remaining accuracy gap is mostly
due to the following reasons: 1) the similarity between the
training software set and the testing benchmarks can be large
for some cases and 2) more input variables are needed.
For both cases, adding more training software from various
domains can overcome these issues and improve the quality
of the estimation results.

Overall, the proposed approach allows designers to analyze
the performance of a given embedded software on RISC-
V processors up to more than 5× faster than even cycle-
accurate VP at the ESL (which have orders of magnitude
faster simulation speed than RTL simulators). The gain of
performance using our proposed performance estimation ap-
proach is paid with a slight loss of accuracy, but the estimates
are accurate enough to perform design space exploration of
embedded software and overall help designers to make high-
level decisions of system designs.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel analytical approach
to estimate the performance of a given embedded software
on RISC-V processors. The proposed approach is based on
applying linear regression along with a functional simulator to
obtain the number of cycles. The quality of the proposed ap-
proach for two ISAs was validated against a real-world cycle-
accurate RISC-V VP model in terms of simulation speed and
number of cycles accuracy using several standard benchmarks.
We demonstrated the applicability and effectiveness of linear
regression in the reliable estimation of embedded software
performance. Moreover, we have shown applying machine
learning in performance estimation can balance the simulation
cost and prediction accuracy at the early stage. High-level
performance estimation allows designers to perform design
space exploration, where fast evaluations of the software
performance are required, in order to decide on the adequacy
of a given processor or of a given partitioning of tasks among
processors, w.r.t system performance requirements. As future
work, we plan to extend our approach to more RISC-V
extensions, such as F and D extensions.
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