
Towards an Automated Debugging Approach for
Fault Identification in Quantum Circuits

Anton Maidl∗†, Abhoy Kole‡, Kamalika Datta†‡, Jannis Stoppe∗, Rolf Drechsler†‡
∗ Institute for the Protection of Maritime Infrastructure, German Aerospace Center (DLR e.V.), Bremerhaven, Germany

Email: anton.maidl@dlr.de
† Institute of Computer Science, University of Bremen, Bremen, Germany

‡ Cyber-Physical Systems, DFKI GmbH, Bremen, Germany

Abstract—In this paper, we propose a novel method for locating
and diagnosing bugs in quantum circuits. Debugging in the
quantum domain is especially challenging due to the inherent
inability of assessing the quantum state of a program. Moreover,
explaining the root cause behind unexpected outcomes is hard
due to the limited information gain provided by measurements.
Our approach aims to address both of these issue: Firstly, the
bug site is identified using a standard circuit slicing technique
combined with an associated measurement strategy. Secondly,
we provide information about the nature of the bug, generated
through repeated measurements. To minimize the number of
measurements, we introduce a notion of equivalence classes based
on unitary operations. This allows us to partition the gate
library into classes that produce indistinguishable results under
certain measurements. Finally, We assess the effectiveness and
measurement complexity of our method by applying it to relevant
primitive gate components and well-known quantum algorithms.
Our empirical results shows that in 95.79% of all cases, our
approach reveals the correct location of the bug along with a
valid set of fault candidates. Furthermore, we demonstrate that
the required number of circuit executions scales logarithmically
with the circuit depth or linearly with the number of qubits.

Index Terms—Quantum Circuits, Quantum Debugging, Quan-
tum Measurement

I. INTRODUCTION

Quantum computing promises a fundamental shift in the way
we solve problems computationally. Computations of this kind
are expected to have great potential in a variety of fields, such
as physics [1], chemistry [2] and finance [3]. More specifically,
it may trigger a paradigm shift in conventional computing, such
as in cryptography due to the threat posed by Shor’s factoring
algorithm [4], database search using Grover’s algorithm [5],
and finding solutions to optimization problems [6].

Currently, quantum programs are still severely limited by
the available hardware. However, the number of available
quantum hardware resources is constantly increasing, making
it possible to execute ever larger quantum algorithms. With
the growth of quantum algorithms, the complexity of the
associated debugging processes also increases and specialized
tools become crucial. The problems are mainly caused by the
limited observability of the quantum state, as measurements
only provide partial information about the internal quantum
state. In addition, the results of simulating quantum algorithms

This research has been partly supported by the Federal Ministry of Education
and Research (BMBF) within the project EASEPROFIT under grant no.
16KIS2127.

are non-deterministic, i.e. either a statistical analysis is neces-
sary or the circuit must be adapted. This often makes it more
complicated for a developer to isolate and eliminate bugs.

There has been considerable work in the direction of quan-
tum debugging in the past, including statistical analysis of
measurement outcomes [7] and runtime assertions based on
projective measurements [8]. While these approaches can detect
faulty segments, they don’t necessarily resolve the issue. A
developer must still locate and eliminate the bug causing
the error. This paper proposes a debugging framework that
identifies the bug location using circuit slicing and explains
the specific error type. We also introduce equivalence classes
based on unitary operations to group gates into identical classes
for a given measurement. Experiments were conducted on a set
of quantum algorithms to evaluate the measurement complexity
and effectiveness of our proposed method. Results reveal that
our approach achieves an average accuracy of 95.79% for the
considered benchmark.

The rest of the paper is organized as follows: In Section II,
the necessary context about quantum computing and related
works on debugging quantum circuits are presented. In Sec-
tion III, the proposed measurement-based debugging approach
is illustrated in detail. This includes the localization of bugs and
the process of generating corresponding explanations. In Sec-
tion IV, the implemented debugging technique is demonstrated
on a set of well-known quantum algorithms and the obtained
results are discussed. Finally, Section V concludes the paper
outlining future research in this domain.

II. BACKGROUND

In this section we briefly introduce the preliminaries neces-
sary to make the paper self-contained.

A. Quantum Computing

In quantum computing, the basic unit of information is
known as a quantum bit or qubit. A qubit can exist in the
basis states 0 or 1, which are represented in Dirac notation
as |0⟩ or |1⟩. In general, the state of a qubit is written as the
superposition of the basis states: |ψ⟩ = α|0⟩+β|1⟩. Here, α and
β are complex coefficients, or amplitudes, that state how the
qubit is related to the individual basis states. These coefficients
must satisfy the normalization criterion |α|2 + |β|2 = 1.

For a gate-based computing model, such qubit’s state is often
represented as a vector in a 2-dimensional Hilbert space, e.g.

• T† • T† T† S •

• ≡ S • • T† •

H T • T • H

1
Fig. 1. An example quantum circuit realizing 3-qubit Toffoli operation using
Clifford+T gates.

|ϕ⟩ = [α, β]
⊤. Computation is carried out by manipulating

states, applying quantum gates which are also referred to as
unitary operations. Such gates can be represented as unitary
matrices, i.e. an n-qubit unitary operator is designated by a
2n×2n unitary matrix. Some of the well known quantum gates
and their corresponding unitary matrices are shown below:

X =

[
0 1
1 0

]
Y =

[
0 i
−i 0

]
Z =

[
1 0
0 −1

]
S =

[
1 0
0 i

]
S† =

[
1 0
0 −i

]
H =

1√
2

[
1 1
1 −1

]
.

Quantum circuits are designed as a cascade of quantum
gates. For circuit description, gates from specific functionally
complete sets are often used, i.e. universal gate libraries. One
such gate library is Clifford+T [9], which consists of H , T , T †

and CNOT gates. The use of this library in practice is motivated
due to its fault-tolerant features. Fig. 1 shows the Clifford+T
realization of a Toffoli gate.

B. Related Works

Prior to this work, there has already been considerable
effort in the development of quantum debugging methods and
tools. Most notably, different kinds of assertions have been
considered, based on statistical methods [7] and projective
measurements [8].

For the statistical method, classical observations obtained
from the quantum program are analyzed using a χ2 test.
This approach can detect whether specific properties hold at
predefined breakpoints, such as whether an intermediate state
is in superposition, represents classical values, or is entangled.
While such assertions can provide some insight into the faulty
behavior of the system, they only offer partial information about
how the bug actually occurs and do not help to isolate the bug’s
exact location. Additionally, a large number of measurements
are necessary, which can impact the efficiency of the debugging
process and prevents debugging at runtime.

AUTOQ [10] is a formal system which promises to detect
bugs in quantum programs. At the core of this system is a
compact algebraic representation of quantum states in the form
of tree automata. This kind of representation exploits redundan-
cies in the complex values representing state vectors [11]. A
quantum program is then implemented by a set of transformers
which operate on such tree representations. AUTOQ can then
be used to check for bugs by performing an equivalence check
on the buggy circuit and the specified output. As such, the
method can reliably detect when an error is present but does
not provide information about its location or root cause.

There also exist several other works which aim to simplify
the handling of quantum circuits during the debugging process.

Most notably, the Cirquo tool [12] provides simple routines
to extract both vertical and horizontal slices from quantum
circuits. This enables the fast debugging of subroutines of a
quantum algorithm. Another work [13] provides an algorithm
which is able to quickly locate the position of a bug, based on
an enhanced binary search on such circuit slices. Here, a cost-
aware approach is selected to determine the next circuit cut,
together with relaxed requirements for the statistical accuracy
of intermediate outcomes. These approaches provide a system-
atic way to locate the faulty segment, but they lack a strategy
to interpret the faulty classical results and do not explain the
underlying cause of the bug.

While some of the reported approaches can successfully
detect and locate bugs, others, like AUTOQ, only indicate the
presence of an error without specifying its location. However,
none of these methods provide detailed insights into the under-
lying cause of the bug. In contrast, our approach achieves all
three objectives by not only detecting bugs but also locating
them and providing insights into their root cause. In doing so,
we perform the following:

1) Divide the gate library into equivalence classes based on
the expected outcome of projective measurements.

2) Utilize a combination of statistical analysis and binary
search to detect and locate bugs.

3) Use the equivalence classes to generate insight about the
root cause of the bug by repeated projective measurement.

4) Demonstrated the debugging ability on various bench-
marks constructed using the considered extended Clif-
ford+T gate library.

III. PROPOSED DEBUGGING APPROACH

In this section, we introduce our novel debugging approach
starting by defining the assumptions considered for the corre-
sponding debugging environment. The approach mainly con-
sists of two stages. In the first stage, the circuit is repeatedly
sliced vertically to find the segment which introduces a fault
into the circuit. This stage is inspired by the method in [12], but
we utilize multiple different measurements to gain confidence
in the correctness of intermediate outcomes. Secondly, and at
the core of our approach, we detail how possible bug types can
be deduced efficiently from repeated measurements.

A. Basic Assumptions

Throughout the debugging flow, we assume the existence of
a eq(m1, m2) method. Given two (possibly noisy) sets of
measurements m1 and m2, the eq method determines whether
the underlying probability distribution is identical. As shown
in [7], this can be realized, for example, by statistical tests.
Our debugging model assumes the presence of exactly one
bug within the circuit. However, it should be possible to use
our approach to diagnose multiple bugs by not terminating the
binary search procedure after a bug is found in the circuit. In
addition, we assume that the developer is able to arbitrarily
add and remove (possibly unknown) gates from the circuit to
observe intermediate measurement outcomes.

We assume that a bug manifests as an additional gate within
the circuit. This additional gate can be positioned arbitrarily

TABLE I
EQUIVALENCE CLASSES FOR GATE LIBRARY G AND MEASUREMENTS

ALONG THE THE z-, y- AND x-AXIS.

z [I, Z, S, S†, T, T †], [X], [H]

y [I], [H,X,Z], [S], [S†], [T], [T †]

x [I,X], [Z], [S], [S†], [T], [T †], [H]

in the circuit such that it does not behave equivalently to the
identity operator. Gate deletions are not modeled explicitly as
our library is constructed in a way such that deletions can be
thought of as the addition of the corresponding inverse gate.
With these assumptions, we primarily target bugs which are
introduced either by human developer or by faulty methods
during the transpilation of a circuit. As such, adaptions are
necessary to apply our approach when considering bugs that
occur due to noise on a device level. Throughout the following
definitions and the experimental evaluation, we consider the
gate library

G = {H,X,Z, S, S†, T, T †, CZ}. (1)

Nonetheless, to the best of our abilities, we provide general
definitions for the utilized concepts such that they can be used
for any arbitrary universal gate library. The library represents
a slightly adapted version of the universal Clifford+T set. The
significant difference lies in the design choice to employ the
controlled-Z operator instead of the conventional controlled-
X . However, the CZ operator possesses some properties that
promise to simplify the debugging process. Mainly, we selected
CZ due to its inherent symmetry and decide to decompose
any CX operator using CZ together with the Hadamard
transformation.

B. Equivalence Classes

To reduce the amount of necessary tests for each gate candi-
date, we first introduce the concept of gate equivalency. Given
two unitary operators U1, U2 and a projective measurement op-
erator M , we want to decide whether it is possible to distinguish
U1 and U2 when M is applied right after their application to
the circuit. Two unitary operators are not distinguishable by a
projective measurement operator if and only if the probability
of observing the associated eigenstate of M is equal for any
given state, i.e.:

∀ |φ⟩ ∈ H : ⟨φ|U†
1MU1 |φ⟩ − ⟨φ|U†

2MU2 |φ⟩
= ⟨φ|

(
U†
1MU1 − U†

2MU2

)
|φ⟩ !

= 0. (2)

If U ∈ Cn×n is a skew-hermitian matrix, i.e. U† = −U , it is a
well-known fact [14] that

U ∈ Cn×n is skew-hermitian ⇐⇒ ∀x ∈ Cn : x†Ux = 0.

Using this fact, we define the equivalence ≡M in relation to a
projective measurement operator M as

U1 ≡M U2 ⇐⇒ U†
1MU1 − U†

2MU2 is skew-hermitian.

For our gate library G and measurements along the z-, y- and
x-axis, we use ≡M to partition G into equivalence classes as

H

S†

T †

T

X

Z

measure at a

H

S†

T †

T

X

Z

measure at a+ 1

H

S†

T †

T

X

Z

recursion first half

H

S†

T †

T

X

Z

recursion second half

consistent

inconsistent

co
ns

is
te

nt
in

co
ns

is
te

nt

return segment

Fig. 2. Overview over the binary search strategy for a quantum circuit, starting
by measuring some index a. The red line indicates the current cut-off point,
meaning that the greyed out circuit elements are excluded from execution.

0 1 2 3 4 5 6 7 8 9

L R32 1

q0 : H • H

q1 : H T H

q2 : H • H

q3 : X H H • H H • H H

Fig. 3. Bernstein-Vazirani algorithm [15] with the secret string s = 101. An
additional T gate is present, shaded in gray. Values below circuit indicate the
slice index. Vertical red lines indicate the order of slicing using the binary
search strategy. The standard strategy is used to determine the next cut: Two
initial limits L and R are determined (here: L = 0, R = 8) and the cut is
performed at a = ⌊L+R

2
⌋. Depending on the result, L = a+1 or R = a− 1

is then set.

shown in Table I. By utilizing this table, the number of required
measurements can be reduced to identify a buggy gate. This is
achievable because, for instance, repeated probing with I , Z,
S, S†, T , and T † gates does not yield additional information
through measurement in the z-basis and can thus be omitted.

This concept can be extended for arbitrary multi-qubit oper-
ators by comparing the higher dimensional matrix representa-
tions of these operators. For our experiments, we selected CZ
as our only multi-qubit operator because no separation between
control and target is present due to its symmetry. Assuming
that a bug is present in the form of CZ, either 2, 1 or no
qubit will have undesired outputs. If both the qubits are buggy,
we know that CZ must have been the culprit as it is the only
multi-qubit gate. In case all of the outcomes are as expected
then the CZ does not count as a bug. When only a single qubit
is buggy, we consider a simplified case in which the effect of
CZ on that single qubit is not distinguishable from a single
qubit Z operation.

C. Segmentation

After the equivalence classes have been identified, the next
step is to find the bug location through circuit slicing. To
identify the vertical position of the bug in the quantum circuit, a
standard binary search algorithm is employed. This means that
the quantum circuit is repeatedly cut in half to locate the bug
site. Given a circuit which is cut at index a, we then verify
if the bug occurred at that position. In order to do so, it is
first verified whether the measurement outcomes at index a

U

S†

T

S†

I

S†

X

S†

H

S†

Ideal Bug, unknown gate U

Z Z Z

eq eq eq

{I, Z, S, S†, T, T †} ∪ {H}

{I, Z, S, S†, T, T †} {X} {H}

Fig. 4. Application of the getCandidates procedure using only the z-basis.
Starting from the ideal circuit, a new circuit is constructed for each of the
equivalence classes of basis z to deduce the unknown gate U . After executing
and comparing the measurement results, the union of all equivalence classes
is taken for which the measurements did match. For the specific example, we
assume that the circuit representing {X} did not match expectation.

are consistent with the belief about the correct values or not.
If the measurement is already inconsistent at slice a, the bug
must have occurred before and the binary search routine is
recursively called on the partition before index a.

If the outcomes are consistent with our expectation at a, we
can conclude that the bug must occur in the second half of the
circuit. However, before applying the search recursively to the
posterior partition, we first check if a itself is the bug site. To
verify if the bug occurred at slice a, slice a+1 is also measured.
Assuming that slice a is still consistent with the expectation,
but slice a + 1 is no longer, the bug must occur exactly in
the layer between a and a+ 1. If a+ 1 is also consistent, the
routine is applied to the second part of the circuit partition. A
graphical overview of this strategy is given in Fig. 2.

In order to check a slice for consistency, the quantum
state is measured with a set of three different measurement
bases. From the Bloch sphere representation of each individual
qubit, it is clear that three orthogonal measurements suffice to
distinguish different points on the sphere. For our purposes,
we utilize measurements in the x- and y-basis, together with
the computational basis. An example for the application of this
method can be seen in Fig. 3.

D. Generation of Candidate Sets

In the next step, we introduce the getCandidates proce-
dure. This method is the central component of our approach,
as it is used to recognize possible causes of errors and inform
the developer about them. Given is an ideal circuit and a faulty
circuit which are both segmented up to the fault location. For
some qubit index k, the getCandidates procedure now
aims to generate a set of gates which could be present at the
fault location at qubit k. These types of sets are made available
to the developer to detect possible errors. Furthermore, the

getCandidates method is used to determine the faulty qubit
at the fault-location.

A naive approach of generating such sets would be to repeat-
edly insert each gate in the given library into the fault location
and check if the measurement results are consistent with the
observed faulty results. However, as seen in subsection III-B,
this is not necessary since gates can be grouped in equivalence
classes which are indistinguishable under a given measurement.
Instead, for each available basis, a circuit is prepared for each
equivalence class.

The partial flow of the procedure is exemplified for the
z-basis in Fig. 4 using the classes from Table I. Given the
equivalence classes for some fixed basis, a set of circuits is
prepared by inserting an arbitrary representative from each
class into the ideal circuit at index k. Afterwards, each of the
circuits is measured and the resulting probability distribution
is compared to the observed faulty distribution using the eq
procedure. The basis-specific candidate set is then constructed
as the union of all equivalence classes whose measurement
result matched those of the buggy circuit.

For the getCandidate procedure, this principle is re-
peated for each of the available bases with their respective
equivalence classes, in our case x, y and z. The unknown
gate at qubit k must be consistent with all base-specific sets,
meaning that for each base it is part of the corresponding
set. Accordingly, the getCandidates procedure returns the
intersection of all basis-specific candidates.

E. Algorithm

The overall workflow of our debugging scheme is the
composition of the binary search algorithm and the repeated
application of the getCandidate procedure. In the first
stage, the binary search strategy is employed to find the segment
in which the bug occurs. Afterwards, the getCandidate
procedure is applied to find the faulty qubit and to generate
a candidate set which would explain the observed behaviour.

In order to find this faulty qubit, the procedure is applied
to each qubit individually. After generating the candidate set
for each qubit, the faulty qubit can be identified by comparing
its candidate set with the expected gate in the ideal circuit. If
the expected gate is in the set of candidate gates, the qubit’s
operation is indistinguishable from the intended behaviour,
ruling it out as faulty. On the other hand, if the desired gate
is not part of the candidate set, it can be concluded that the
operation of the qubit yields a result that does not correspond
to the expectation and that the bug is located at this qubit.

The runtime of the complete algorithm is composed from the
binary search and the application of getCandidates to each
qubit. The runtime for the binary search grows logarithmically
with the depth d of the quantum circuit. The number of circuit
executions required to execute the getCandidates method
depends on the number of overall equivalence classes, which
in turn is bounded by the size of the gate library. Since we
assume that the library has a constant size for different circuits,
the method itself can be executed in constant time. By applying
getCandidates to each of the n qubits, an overall runtime
of O(n+ log d) is given.

IV. EXPERIMENTAL RESULTS

We considered three algorithms that include Bernstein-
Vazirani’s, Grover’s and Shor’s algorithm for evaluation. For
Bernstein-Vazirani’s algorithm, random secret words of differ-
ent lengths were generated. In the case of Grover’s algorithm,
an oracle was generated for randomly selected SAT instances.
Shor’s algorithm was considered with the input combinations
(15, 2), (21, 4) and (35, 4). Further, individual components of
these algorithms, i.e. Grover’s oracle and diffusion operator,
Shor’s modular exponentiation operator and 2-qubit QFT were
also considered.

To assess the efficiency and effectiveness of our approach, a
total of 25 faulty versions were generated for each combination
of gate and circuit, yielding |G| · 25 = 200 experiments per
circuit. For each experiment, the current gate is injected at a
randomly selected segment and qubit. We did not allow for
the replacement or deletion of existing gates. However, a new
gate can be placed at any location in the circuit, including
the addition of gates between two previously neighbouring
gates. For each execution, the number of measurements was
reported, in addition to the output of the method itself. All
experiments were conducted on a quad core 1.80 GHz Intel
Core i7 processor with 8GB RAM.

A. Effectiveness

Table II was constructed from the observed values during
our experimentation. Overall, our debugging scheme is able
to find the correct location and a correct set of candidate
gates in 95.79% of all considered buggy circuits. On closer
examination of the values, however, it becomes clear that the
current treatment of the CZ gate does not work in all cases,
prompting the need for further refinement of the strategy for
CZ. Nevertheless, overall we assume a high accuracy of our
approach, especially given the almost 100% success rate of the
single qubit gates.

Another advantage of our approach compared to AUTOQ is
also demonstrated in Table II. Although AUTOQ was able to
indicate in 100% of the experiments when an error was present,
the procedure is unable to determine the specific location
or nature of the bug, only indicating that an issue existed
somewhere in the circuit. In most cases, we are not only able
to decide the presence of a bug, but also construct a set of
gates that indicate possible erroneous additions of gates from
the library, aiming to provide the developer information about
possible sources of the faulty behaviour.

B. Efficiency

We plot the number of required circuit executions for each
circuit in our benchmark in Fig. 5. Overall, the number of mea-
surements appear to follow a logarithmic trend. As the runtime
scales with O(n + log d), this matches our expectation, since
n ≪ d for most of our benchmarks. Additionally, for all the
individual components of our algorithms, we give a comparison
to the execution time of AUTOQ in Table III. For each of
the primitives, we injected a randomly selected bug for each
gate into the circuit and applied the AUTOQ implementation to

0 100 200 300 400

20

40

60

80

Depth

M
ea

su
re

m
en

ts

Total Number of Measurements

Fig. 5. Total number of measurements required versus circuit depth for our
benchmarks.

it. We report the execution time in milliseconds and provide
the average number of circuit executions for our approach,
generated by the previous experiment.

Although AUTOQ is able to check comparatively large
benchmarks, we observe that the scalability for actual full-scale
quantum algorithms is unclear. In addition to that, we observed
that the runtime of AUTOQ appears to increase exponentially for
some specific benchmarks, such as Grover’s diffusion operator.
While a direct comparison in runtime is hard, the values for our
approach do not seem to indicate an exponential increase in the
number of required circuit execution. This is because we try
to utilise quantum resources to perform non-trivial tasks, while
AUTOQ relies solely on the utilisation of classical resources.

V. CONCLUSION

In this paper we propose a debugging approach to locate
and diagnose bugs in quantum circuits. In order to do so,
we utilize a binary search approach and we introduce the
notion of equivalence classes for indistinguishable gates. Our
experiments reveal that our method performs well in terms
of both accuracy and efficiency. In terms of accuracy, we
were able to detect the location of a bug together with a
valid set of possible bugs in 95.79% of all cases. In terms
of effectiveness, we showed that our tool is not only able to
find the presence of a bug, but also the exact location and
type in most of the cases. For efficiency, we provide evidence
that our tool may be able to be applied to particularly large
circuits, given a quantum computer on which to run them. In
future work, we plan to further refine the binary search strategy.
While this strategy may be used to locate faulty segments in
a number of circuit executions that scale logarithmically with
circuit depth, it depends on reliably determining whether the
measurement results match expectation, which is challenging in
noisy circuits. We plan to explore methods, such as statistical
tests, to achieve this task given a specific gate library and noise
model. Furthermore, we also want to investigate the possibility
of using the circuit slicing approach to handle multiple bugs.

REFERENCES

[1] R. P. Feynman, “Simulating physics with computers,” in Feynman and
computation. CRC Press, 2018, pp. 133–153.

[2] A. Aspuru-Guzik, A. D. Dutoi, P. J. Love, and M. Head-Gordon,
“Simulated quantum computation of molecular energies,” Science, vol.
309, no. 5741, pp. 1704–1707, 2005.

TABLE II
ACCURACY FOR THE CONSIDERED BENCHMARKS. THE NUMBER OF QUBITS, CIRCUIT DEPTH AND NUMBER OF GATES IS GIVEN BY n, d AND g

RESPECTIVELY. FOR EACH GATE IN OUR LIBRARY WE REPORT THE ACCURACY OF DETECTION DURING THE EXPERIMENT, WHERE A DETECTION INCLUDES
THE CORRECT LOCATION AND A VALID SET OF CANDIDATE GATES. THE LAST COLUMN INDICATES THE AVERAGE SUCCESS RATE FOR ALL RANDOMLY

INJECTED BUGS.

Benchmark n d g H S S† T T † X Z CZ Ø
BV5 5 9 17 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
BV7 7 12 24 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
BV10 10 15 33 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
BV12 12 18 40 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
GA5 5 86 118 1.000 1.000 1.000 1.000 1.000 0.960 1.000 0.640 0.950
GA8 8 145 214 1.000 0.960 0.960 1.000 1.000 1.000 0.960 0.480 0.920
GA9 9 123 188 1.000 0.960 0.960 1.000 1.000 1.000 0.960 0.200 0.885
GA12 12 424 676 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.480 0.935
Shor_15_2 6 90 119 1.000 1.000 1.000 0.960 0.960 1.000 0.920 0.280 0.890
Shor_21_4 7 86 113 1.000 1.000 0.920 1.000 0.960 0.960 0.960 0.240 0.880
Shor_35_4 8 227 326 1.000 0.920 0.960 1.000 1.000 0.960 0.840 0.320 0.875
qft2 2 9 11 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
GA5_ORACLE 5 75 99 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.880 0.985
GA8_ORACLE 8 134 195 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.920 0.990
GA9_ORACLE 9 94 139 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.920 0.990
GA12_ORACLE 12 342 537 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
DIFF3 3 27 41 1.000 0.960 1.000 1.000 1.000 0.880 0.960 0.560 0.920
DIFF4 6 80 129 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.600 0.950
DIFF5 8 112 187 1.000 0.960 1.000 1.000 1.000 0.960 1.000 0.760 0.960
DIFF6 10 144 245 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.720 0.965
DIFF7 12 176 303 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.640 0.955
DIFF8 14 208 361 1.000 1.000 1.000 1.000 1.000 0.960 0.960 0.800 0.965
MCT3 3 21 27 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.360 0.920
MCT4 6 74 111 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.720 0.965
MCT5 8 106 165 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.800 0.975
MCT6 10 138 219 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.760 0.970
MCT7 12 170 273 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.760 0.970
MCT8 14 202 327 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.800 0.975
CU_k15_a2_0 3 4 6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
CU_k15_a2_1 5 76 99 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.640 0.955
CU_k21_a4_0 3 26 33 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.480 0.935
CU_k21_a4_1 4 50 66 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.840 0.980
CU_k35_a4_0 5 83 117 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.720 0.965
CU_k35_a4_1 5 83 117 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.560 0.945

TABLE III
COMPARISON OF THE EFFICIENCY OF AUTOQ AND OUR METHOD. FOR

AUTOQ WE INDICATE THE REPORTED RUNTIME IN MILLISECONDS. FOR
OUR APPROACH, WE INDICATE THE AVERAGE NUMBER OF REPORTED

CIRCUIT EXECUTIONS.

Benchmark AUTOQ [10] [ms] This Paper [#meas.]
qft2 19 21.085
GA5_ORACLE 104 31.075
GA8_ORACLE 549 32.350
GA9_ORACLE 281 29.990
GA12_ORACLE 1074 36.375
DIFF3 45 26.920
DIFF4 214 37.525
DIFF5 693 42.040
DIFF6 1197 48.550
DIFF7 2801 47.790
DIFF8 5456 57.795
MCT3 38 23.990
MCT4 109 27.700
MCT5 338 28.595
MCT6 423 31.065
MCT7 600 31.660
MCT8 758 32.390
CU_k15_a2_0 118 16.310
CU_k15_a2_1 75 28.425
CU_k21_a4_0 41 24.505
CU_k21_a4_1 73 25.950
CU_k35_a4_0 143 28.625
CU_k35_a4_1 255 28.805

[3] R. Orús, S. Mugel, and E. Lizaso, “Quantum computing for finance:
Overview and prospects,” Reviews in Physics, vol. 4, p. 100028, 2019.

[4] P. W. Shor, “Algorithms for quantum computation: discrete logarithms
and factoring,” in Proceedings 35th annual symposium on foundations of
computer science. Ieee, 1994, pp. 124–134.

[5] L. Grover, “A fast quantum mechanical algorithm for database search,”

in ACM Symp. Theory Comput., Jul 1996, pp. 212–219.
[6] N. Moll, P. Barkoutsos, L. S. Bishop, J. M. Chow, A. Cross, D. J. Egger,

S. Filipp, A. Fuhrer, J. M. Gambetta, M. Ganzhorn et al., “Quantum
optimization using variational algorithms on near-term quantum devices,”
Quantum Science and Technology, vol. 3, no. 3, p. 030503, 2018.

[7] Y. Huang and M. Martonosi, “Statistical assertions for validating patterns
and finding bugs in quantum programs,” in Proceedings of the 46th
International Symposium on Computer Architecture, ser. ISCA ’19.
New York, NY, USA: Association for Computing Machinery, 2019, p.
541–553.

[8] G. Li, L. Zhou, N. Yu, Y. Ding, M. Ying, and Y. Xie, “Projection-based
runtime assertions for testing and debugging quantum programs,” Proc.
ACM Program. Lang., vol. 4, no. OOPSLA, nov 2020.

[9] M. Nielsen and I. Chuang, Quantum computation and quantum informa-
tion. Cambridge Univ. Press, Oct 2000.

[10] Y.-F. Chen, K.-M. Chung, O. Lengál, J.-A. Lin, W.-L. Tsai, and D.-D.
Yen, “An automata-based framework for verification and bug hunting in
quantum circuits,” Proceedings of the ACM on Programming Languages,
vol. 7, no. PLDI, pp. 1218–1243, 2023.

[11] A. Zulehner and R. Wille, “Advanced simulation of quantum compu-
tations,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 38, no. 5, pp. 848–859, 2018.

[12] S. A. Metwalli and R. V. Meter, “Cirquo: A suite for testing and
debugging quantum programs,” 2023.

[13] N. Sato and R. Katsube, “Locating buggy segments in quantum program
debugging,” in Proceedings of the 2024 ACM/IEEE 44th International
Conference on Software Engineering: New Ideas and Emerging Results,
2024, pp. 26–31.

[14] R. A. Horn and C. R. Johnson, “Matrix Analysis,” 1985.
[15] E. Bernstein and U. Vazirani, “Quantum complexity theory,” SIAM

Journal on Computing, vol. 26, no. 5, pp. 1411–1473, 1997.

	Introduction
	Background
	Quantum Computing
	Related Works

	Proposed Debugging Approach
	Basic Assumptions
	Equivalence Classes
	Segmentation
	Generation of Candidate Sets
	Algorithm

	Experimental Results
	Effectiveness
	Efficiency

	Conclusion
	References

