
RIVER: Sneak Path Aware READ-based In-Memory
Computing for 1T1M Memristive Crossbars

Till Schnittka⋓, Chandan Kumar Jha⋓, Sallar Ahmadi-Pour⋓, Rolf Drechsler⋓,†
University of Bremen, Bremen, Germany⋓

DFKI GmbH, Bremen, Germany†

schnitti@uni-bremen.de, chajha@uni-bremen.de, sallar@uni-bremen.de, drechsler@uni-bremen.de

Abstract—In-memory Computing (IMC) using emerging devices
has shown immense potential. Among these devices, memristors
have emerged as one of the most popular for performing digital
IMC. While several methods exist for digital IMC using memris-
tors, most require expensive write operations in terms of energy,
latency, and endurance. Hence, READ-based IMC techniques have
been proposed to reduce the number of writes to the memristor
crossbar. However, existing techniques rely on simple gates that can
be mapped to the memristive crossbar, making them non-optimal,
and they suffer from unwanted sneak paths causing undesired
behavior. In this work, we alleviate these limitations and propose
an optimized synthesis methodology for 1T1M crossbars called
RIVER. RIVER supports more complex gates and is sneak-path
aware. When comparing RIVER with the state-of-the-art using
ISCAS’ 85 and EPFL benchmarks, we achieve 33% less gate
utilization on average while reducing the average staircase length by
37%. Moreover, these enhancements result in a 58% reduction in
the required crossbar area. After eliminating sneak paths, RIVER
still shows 38% less area usage on average as compared to the
state-of-the-art.

I. INTRODUCTION

IMC has gained immense popularity in recent years owing
to the large benefits it provides in power and performance [1].
IMC using emerging devices, in particular memristors, have
seen a lot of focus as they are capable of both analog and
digital computations [2], [3]. Memristors are two terminal de-
vices that can be configured to be in a High Resistance State
(HRS) or a Low Resistance State (LRS), depending upon the
magnitude and the direction of the applied voltage [4]. The
LRS and HRS are used as logic ‘1’ and logic ‘0’ in digital
computations, respectively. In this work, we focus on digital
computation, i.e., implementing IMC using memristors. Various
approaches for implementing IMC using memristors have been
developed over the years. Methods like IMPLY [5], MAGIC [6],
FELIX [7], Majority Logic [8], PATH [9], etc., are effective
in performing IMC using memristors. These Logic-in-Memory
(LiM) techniques require the memristors to be written while
evaluating the Boolean function. However, writing operations
for the memristors require a lot of energy, as the state of the
memristor needs to be changed. The write operation is also a
slow process, thus the latency also increases significantly [10].
Repeated writing to the memristors also reduces their lifetime,
as they have a limited endurance [11].

Recently, there has been a method proposed for perform-
ing IMC using only READ operations [12], called STREAM.
However, this methodology requires a staircase of memristors,
i.e., the memristor crossbars need to be connected in series.
The memristors are written only once at the start, when the
mapping of the Boolean function is done to the memristor
crossbar. The inputs are then applied as voltage signals to the
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Fig. 1: Layout of a a) Passive Crossbar, b) 1T1M Crossbar

crossbars to perform the Boolean operation. Since there are no
write operations to the memristors during the Boolean function
evaluation, it results in significant energy savings as well as
improved latency. While this work showed that we can perform
digital IMC using only READ operations, the work was limited
to using OR and NOR gates, which led to suboptimal designs.
Additionally, they do not consider the sneak paths that can
cause undesired behavior in the memristor crossbar and lead
to incorrect outputs [13], [14].

In this work, we alleviate the limitations of the prior work
and propose an efficient READ-based IMC methodology called
RIVER. Since STREAM is based on passive crossbars, it was
only capable of implementing OR-NOR operations. In RIVER,
we exploit the architecture of the 1T1M crossbar to support
AND-OR gates in addition to one supported by STREAM.
We show for the first time that AND-OR operations like
F = i0 ∧ (i1 ∨ i2 ∨ . . .) can also be effectively mapped to
the 1T1M crossbar staircase. Other methods that require writes
to the memristors have previously shown AND-OR operations.
However, we show this for the first time for the READ-based
IMC using flow-based computing. Other works have shown
AND implementation but they are not based on flow-based
computing [15]. Implementing AND-OR gates is crucial as it
leads to a more optimized synthesis of the Boolean function.
We also show that STREAM does not consider sneak paths
while mapping even though they exist and can cause incorrect
outputs. In the RIVER methodology, we also show a technique
of mitigating the sneak paths. Following are the contributions
of our work. First, we propose a novel methodology called
RIVER for performing READ-based IMC using 1T1M crossbar
staircases. Second, we show for the first time that AND-OR
operations can be effectively mapped to the 1T1M crossbar
in the RIVER methodology. Third, we propose an effective
synthesis and mapping algorithm for the RIVER methodology
that eliminates the sneak paths in READ-based IMC. Last, we
evaluated the RIVER methodology on the ISCAS’ 85 and EPFL



benchmarks and achieved 33% less gate utilization and 37%
reduction in the memristor crossbar staircase length.

The rest of the paper is organized as follows: In Section II,
we discuss the necessary background. In Section III, we discuss
the related works and their limitations. In Section IV, we discuss
the proposed RIVER methodology. In Section V, we discuss the
results, and conclude the paper in Section VI.

II. PRELIMINARIES

A. Memristor Crossbar Architectures

The memristor crossbars can be either passive or active, as
shown in Fig. 1 [16]. The passive crossbar is a crossbar of wires,
where each word line W = {w0, . . . , wn} and bit line B =
{b0, . . . , bm} is connected via a memristor M = {mn,m} (n =
row and m = column) [17]. For the current to flow between a
word line w0 and a bit line b0, the respective memristor m0,0

must be in the LRS. However, in some cases, undesired sneak
paths can occur that can connect the bit line to the word line.
For our example, the w0 and a bit line b0 can be connected if
the following memristors m0,1,m1,1,m1,0 are in LRS. Active
crossbars, specifically the 1T1M crossbars, contain additional
selector lines S = {s0, . . . , sn} parallel to the bit lines, and
a transistor in series with the memristor [18] [19]. In contrast
to a passive crossbar, in a 1T1M crossbar, a word line wi and
bit line bi are connected via the function sj ∧ mi,j , i.e, the
memristor needs to be in LRS and the selector corresponding to
the memristor needs to be ON.

B. Staircases

In the context of memristor crossbars, a staircase describes
a series of memristor crossbars in levels L = {l0, l1, . . . lk},
where some wires of each staircase level li≥1 are connected to
the wires of the previous staircase level li−1 [12]. This is done to
enable the synthesis of larger Boolean functions across multiple
crossbars. Depending upon the Boolean functions, the connec-
tions are decided for the crossbars to generate the staircases.
Fig. 2 shows an abstract representation of a crossbar staircase.
Each staircase level is represented by a grid containing white or
black dots, where the columns and rows of the grid represent the
word lines and bit lines of the crossbar, respectively. White dots
denote memristors in HRS, and black dots denote the memristors
in LRS. Interconnects between staircase levels are represented
by arrows originating from the bit line of the previous staircase.
A black dot at the beginning of an arrow indicates a negation,
while an arrow going into the top of a crossbar (like in the
second level in Fig. 5) shows a connection to the selector line.

C. READ-based Computing

READ-based computing is an emerging direction in the area
of IMC that uses flow-based computing. Most design styles
require write operations to be performed on the memristors
while implementing the Boolean function. This can happen as
some values in the memristor crossbars are rewritten during
the function evaluation or the inputs of the computation are
encoded as memristor states. However, write operations to the
memristor crossbar are expensive in terms of energy, latency, and
endurance. READ-based computing mitigates this by keeping
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Fig. 3: Example of Sneak Path Elimination

the state of the memristors in the crossbar the same throughout
the computations, and inputs are fed to the crossbar using only
bit lines, word lines, and selector lines. Writing to memristors
consumes a lot of energy and takes time. On the other hand,
reading from a memristor consumes almost no energy at all.
Hence, READ-based IMC drastically improves the energy con-
sumption and latency of the operations [12].

III. RELATED WORK AND LIMITATIONS

Flow-based computing has received significant attention in
recent years [12], [20]–[22]. Some of the state-of-the-art tech-
niques that are based on flow-based computing are called
COMPACT [22] and Stream [12]. COMPACT [22] encodes
the input values and logic within the states of memristors in
a passive memristor crossbar. A low resistance path between
predefined points on the crossbar then indicates the result of the
function. However, since the input of the function is encoded
in the state of the memristor, COMPACT requires writing to a
set of memristors for each operation, which consumes a large
amount of energy. Additionally, COMPACT only uses a single
large crossbar, which is impractical to implement [23].

STREAM [12] uses staircases of passive Memristor cross-
bars to implement flow-based computing based on OR-plane
logic. There are two techniques proposed in STREAM, namely
STREAM-O and STREAM-M. More specifically, STREAM-O
implements n-input OR and NOR gates by applying the inputs
of these gates to the word lines of a memristor crossbar.
Memristors are then used to connect the word lines of the gate’s
input to the bit line of the gate’s output, and the interconnections
between the crossbars are used to implement the negation. An
example of such a mapping can be seen in Fig. 2, which maps
the function a⊕ b⊕ c into four staircase levels. It can be seen
from Fig. 2, that the first crossbar maps six inputs to the rows
(a,¬a, b,¬b, c,¬c) to four outputs to the column, two of which
are negated, as indicated by the black dot on the bottom of the
crossbar. The four outputs of the first staircase map the functions
¬(b ∨ ¬c), ¬(¬b ∨ c), a and ¬a. STREAM-M [12] also uses
passive memristor crossbars, although instead of a tree-covering
algorithm, the logic tool SIS is used to map logic functions into a
hierarchy of Sum-Of-Products (SOP) terms [24]. These are then
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converted into OR-gates using De Morgan’s theorem. However,
STREAM has the following severe limitations.

A. Limitation 1: Sneak Path

The mapping algorithm in STREAM does not take into
account the undesired sneak paths [13], [25]. Hence, sneak
paths are an issue within STREAM when mapping to passive
memristor crossbars. Fig. 3 demonstrates this issue: The crossbar
mapping is intended for f = b∨c, g = a∨b, but the highlighted
sneak path allows current to flow through f even if only a is
true. The same sneak paths also exist for g, distorting the mapped
functions to f = g = a∨b∨c. We will discuss how our proposed
methodology handles sneak paths in detail in Section IV-C using
additional rows. An example to mitigate the sneak path is shown
in Fig. 3.

B. Limitation 2: Non Optimality

STREAM uses a passive crossbar and is limited to OR-Plane
logic. With 1T1M crossbars, we show that the AND-OR gate
can be effectively implemented. We show that the selector line
can be used to implement the logic function f = a∧(b0∨b1∨b2∨
. . .). This gate allows for a significantly smaller representation
of some logic functions. An example of this is the function
a⊕ b⊕ c. Fig. 2 shows a mapping of this function with OR and
NOR gates, which STREAM-O uses. Fig. 5 shows a mapping
made possible through the use of one AND-OR gate in the
second crossbar. The AND-OR operation is represented by the
arrow going into the top of the second crossbar, which uses the
layout of the 1T1M crossbar to model the function i0∧(i1∨ i2),
which, in this case, is a∧ ((¬(b∨¬c))∨ (¬(¬b∨c))) using only
a single crossbar column. This decreases both the length of the
staircase and the size of the crossbar at each staircase level.

Hence, we see that the RIVER methodology effectively han-
dles both limitations, the undesired sneak paths, and gives a
more optimum mapping as compared to STREAM.

IV. RIVER METHODOLOGY

In this work, we propose RIVER, an efficient methodology
based on READ-based computing on 1T1M that has the ca-
pability to a) eliminate undesired sneak paths and b) exploit
the 1T1M crossbar to enable support for complex gates. These
complex gates, allow for better synthesis of the Boolean function
and enable a more optimal mapping as compared to STREAM.
The overall RIVER methodology is shown in Fig. 4. The RIVER
methodology consists of three steps. 1) We use the ABC tool
to map the input to a set of logic gates. These logic gates are
chosen such that they can be efficiently mapped to a 1T1M
crossbar (Section IV-A). We then generate an acyclic-labeled
graph encoding the behavior of these gates. 2) We apply a series
of graph transformations that gives an effective mapping to a
crossbar staircase. 3) We detect the sneak paths and eliminate
them to obtain the final mapping (Section IV-C).

A. Netlist Generation with ABC

First, the input functions need to be optimized and mapped
to a set of logic gates that can be represented using a 1T1M
crossbar. We achieve this using the ABC tool.

Unlike STREAM-O which can only support OR- and NOR-
gates, we allow the mapping using additional gates. This is
enabled by the use of 1T1M crossbars. In RIVER methodology,
the gates that we have used for the mapping are as follows:

• OR (i0 ∨ i1 ∨ . . .),
• NOR (¬(i0 ∨ i1 ∨ . . .)),
• AND-OR (i0 ∧ (i1 ∨ i2 ∨ . . .)), and
• NOT-AND-OR (¬(i0 ∧ (i1 ∨ i2 ∨ . . .))),

We limited the number of inputs of the OR-gate to 5 in both
AND-OR-gates and NOT-AND-OR-gates. This was done as
we observed that the ABC tool does not utilize larger gates
when mapping. However, in the next section, we will show how
to merge smaller gates to improve the mapping. Additionally, we
also define two gates: A buffer gate, which has a single input
and forwards it to the output, and an inverter gate, which inverts
the input. To allow for easier notation later on, we will name
the buffer and inverter gate OR1 and NOR1, respectively.

To convert the input function, we repeatedly apply resyn,
resyn2, and resyn2rs followed by balance. The output
gates are written into a Verilog file. We then parse the output
gates to generate an acyclic-labeled graph. We label all the
edges from the AND-OR and NOT-AND-OR gates with a,
and all other edges with o, to represent whether they belong to
an AND or an OR operation. Additionally, nodes are labeled
with O,O,A,A for the gates OR, NOR, AND-OR, and NOT-
AND-OR, respectively. Fig. 6 shows an example of such a
graph for the input function f = (a∨b)∧(c⊕d). We will use this
as an example to explain the steps of the RIVER methodology.
Each node is described by a number ni, which is shown at the
top or bottom right side of a node in the tree. Each egde ei,j
is defined by the nodes that it connects. We also introduce the
expression fi to describe the function of the node i in the tree.
For example, node 7 in Fig. 6 describes the following function:
f7 = ¬(f1 ∨ f4)
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Fig. 7: The acyclic labelled graph during the mapping of f =
(a ∨ b) ∧ (c⊕ d) after the Merge-Up operation

B. Hierarchical Mapping

The staircases are hardwired, and only the first crossbar in
a staircase can receive the primary inputs. We want all outputs
to be on the last crossbar of the staircase, therefore the path
length for each node needs to be the same. Also, since ABC
does not map gates with more than 5 inputs, we want to merge
gates wherever possible for better mapping. Hence, we need to
modify the graph from Section IV-A to allow it to be mapped
to a crossbar staircase efficiently. For this, we apply a set of
four graph transformation steps: Merge Up, Equalize Length,
Push Down, and Crossbar Mapping. Here, it is important to
respect the input mapping of each node, since not all the mapped
operations are associative.

1) Merge Up: We want to reduce the length of the graph as
much as possible, since longer staircases require more buffer
nodes to carry results into later staircase levels. We want to
remove gates without modifying the value of the function. This
is done by evaluating operations as late as possible (by pushing
up arguments). If there are two OR-operations in sequence,
where the first is not negated, we can remove the first OR-
node and attach its inputs to the second OR-operation. For such
an operation, all paths that are affected must only be labeled
with o, since any a-labelled graph would be part of an AND-
OR-gate, which cannot receive more than one a-labelled input.
An example of this transformation can be seen in Fig. 6. Here,
we can see that there is one OR-operation in sequence, which
is described by the edges e5,9, e6,9 and e9,11. Note that all of
these are marked with o. The merge up operation now removes
n9 and e9,11, and attaches the edges from nodes 5 and 6 to node
11 directly. This changes f11 from (f9∧f10) to ((f5∨f6)∧f10),
which does not change the result, since f9 = (f5∨f6). The result
of this operation can be seen in Fig. 7.

2) Equalize Length: Next, we insert additional nodes to make
sure the path of each node to each of its roots is the same. This
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Fig. 9: The acyclic labelled graph during the mapping of f =
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can be done by going through every node from the bottom up,
counting the length of each of its incoming edges, and adding
OR1-nodes (buffer) to shorter edges. Here, the incoming edge
label to the original node must be preserved. If we look at n11

in Fig. 7, we can see that the paths n5
e5,11→ n11 and n6

e6,11→ n11,
which have a length of 2, are shorter than the path n1

e1,7→ n7
e7,10→

n10
e10,11→ n11, which has a length of 4. We apply the equalize

length operation by inserting two buffer nodes (b1 and b3 as
well as b2 and b4) to the end of both paths. The result of this
is demonstrated in Fig. 8.

3) Push Down: Even though we minimized the number of
gates in the merge up step, after we have equalized the path
length, grouping these larger gates is not always optimal. If,
for example, a gate has 3 OR-inputs, where two of these nodes
have had buffer nodes inserted to equalize the path length, we
can minimize the number of forwarded nodes by evaluating
those two inputs with an OR2 operation lower in the tree, and
then forwarding only the result. We can observe such a situation
in Fig. 8, where n11 has b3 and b4 as OR-inputs. We can apply
push down by merging b3 and b4 into a new node b6. We can
then observe the same situation for the newly created b6, b1, and
b2, which can be merged into b5. The result of this operation is
shown in Fig. 9.

Additionally, although not the case in the example, the Equal-
ize Length operation may introduce unnecessary parallel paths
when forwarding an input to multiple different operations. We
can merge such paths originating from the same node together,
as long as none of the path nodes depend on more than one
operation.

4) Crossbar Mapping: To map the resulting graph to the
crossbar, we first associate each node of the graph with a
staircase level. For this, we count the length to each node from
any of the graph’s roots. We can choose any path since they



all have equal length. This length is then associated with the
staircase level (li) where, e.g., a node with path length 1 is
associated with the staircase level l1. For example, in Fig. 10 (a),
we can see a reduced graph where nodes 1, 2, and 3 belong to
a level li−1 and nodes 4 and 5 belong to li.

To map level li, we first connect each word line wi to the
corresponding hardwired bit line bi of the previous staircase
li−1. An example of this can be seen in Fig. 10 (b). If a node is
mapped to a bit line bi in li−1 and has an edge marked with a to
a node in li, the corresponding selector line si is also connected
in addition to the word line. The bit line corresponding to that
selector line bi is assigned to the node with the incoming edge.
This is shown in Fig. 10 (c), where the a-edge from node 1 to
5 is mapped via an additional arrow, and node 5 is associated
with the corresponding bit line b0 of li. All other nodes on
that level are assigned to any of the remaining bit lines. Each
memristor is then programmed to the LRS, if an ’o’-labeled
edge exists between the node assigned to the word line and the
node assigned to the bit line, otherwise they are programmed to
HRS. An example of this can be seen in Fig. 10 (d).
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Fig. 10: Example of Staircase Mapping for li≥1. (a): Subgraph
with the nodes relevant to mapping. (b): Crossbars after word-
line assignment. (c): Crossbars after selector line assignment.
(d): Crossbars after mapping is complete.
C. Unwanted Sneak Path Elimination

In the proposed hierarchical mapping in Section IV-B, we
introduce a lot of sneak paths. As can be seen in Fig. 3,
these sneak paths occur every time two outputs, that are not
functionally equivalent, of the same crossbar share the same
input variables. To eliminate sneak paths, additional inputs are
added such that two outputs never share the same input variable.
This requires creating a new output in the previous crossbar
(if the crossbar is not the topmost crossbar of a staircase). An
example of this can be seen in Fig. 3. Here, the sneak path
marked in red is eliminated by adding a new input (marked
with the blue arrow), which removes the shared input between
f and g. To allow for this input, another output is added to the
previous crossbar, which copies its information from the original
input.

V. EXPERIMENTAL EVALUATION

To evaluate the RIVER methodology, we compare our ap-
proach with STREAM-O [12] on two sets of benchmarks. As

TABLE I: Comparison of RIVER and STREAM-O for number of
gates and run time. (N)AO is the number of (Not-)And-Or gates,
∆gates is the relative difference from RIVER to STREAM-O.

Benchmark STREAM-O [12] RIVER
Name Inputs Outputs Gates Buffer Time [s] Gates Buffer (N)AO Time [s] ∆Gates
c432 64 7 594 440 0.7 461 294 51 3.2 -22%
c499 82 32 1646 1204 2.1 1062 648 40 4.2 -35%
c880 117 26 999 646 1.3 631 261 112 3.9 -37%
c1355 82 32 1651 1209 2.1 1063 648 40 4.4 -36%
c1908 64 25 2059 1699 6.6 1046 665 81 4.5 -49%
c2670 303 139 1675 910 2.9 1252 487 201 5.2 -25%
c3540 99 22 2371 1590 12.5 1433 608 308 8.7 -40%
c5315 290 123 4359 2983 22.8 2576 1237 499 14.3 -41%
bar 270 128 3078 300 167.9 2273 24 1598 71.3 -26%
cavlc 20 11 1213 671 5.6 813 310 251 6.4 -33%
ctrl 13 25 162 73 0.4 127 27 40 3.4 -22%
i2c 252 141 2331 1309 11.1 1957 961 361 9.5 -16%
square 128 127 71363 55443 7046.4 39207 24386 3841 3198.2 -45%
int2float 22 7 445 265 0.9 312 138 72 4.0 -30%
adder 512 129 49417 48012 2890.5 32979 31454 253 1079.6 -33%
Average -33%

TABLE II: Comparison of the staircase length between RIVER
and STREAM-O. ∆ is the relative difference from RIVER to
STREAM-O.

Benchmark STREAM-O [12] RIVER ∆length
c432 15 13 -13%
c499 17 12 -29%
c880 17 11 -35%
c1355 17 12 -29%
c1908 26 15 -42%
c2670 17 11 -35%
c3540 35 20 -43%
c5315 27 16 -41%
bar 11 7 -36%
cavlc 17 11 -35%
ctrl 8 5 -38%
i2c 15 9 -40%
square 245 125 -49%
int2float 17 9 -47%
adder 256 130 -49%
Average -37%

the source code for STREAM-O is not yet publicly available,
we have implemented the algorithms as described in [12]. Our
implementation differs only slightly from the original in terms
of the gate count. However, we believe that it closely replicates
the original STREAM-O implementation.

For a comparison between RIVER and STREAM-O, we used
the ISCAS’ 85 [26] and EPFL [27] benchmark suites. In this
evaluation, we compare the results regarding the sizes and
layouts of the resulting crossbar staircases, the mapping time and
lastly, discuss the impact of our proposed sneak path mitigation
technique. All experiments were carried out on an AMD FX-
8350 with 8 cores @ 4GHz with 32GB of RAM running
Ubuntu 22.04 LTS.

A. Results

At first, Tab. I shows the number of gates and run time
between STREAM-O and RIVER. The table is separated into four
parts. The left part shows each benchmark from the ISCAS’ 85
suite (top half of the table) and the EPFL suite (bottom half
of the table). For brevity, we choose to show subsets of these
benchmark suits. Each benchmark is shown with its number of
inputs and outputs. The two middle columns show the resulting
gates, buffer nodes, and run time in seconds for STREAM-
O and RIVER, respectively. There is an additional column in
RIVER for the number of utilized (Not-)And-Or-gates. The last
column shows the relative difference between the number of
gates obtained through STREAM-O with respect to the number
of gates from RIVER. In all cases, we observe a reduction in
the number of gates, with the smallest difference of 22% for
the c432 benchmark, and the biggest difference of 49% for the



c1908 benchmark. On average, we observe a reduction in gates
of 33%.
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Fig. 11: Total crossbar area in STREAM-O and RIVER a) before
sneak path elimination and b) after sneak path elimination

Next, Tab. II shows the staircase length for each benchmark.
The first column shows the benchmark, the middle columns
show the staircase length for STREAM-O and RIVER, and the
last column shows the relative difference in staircase length
between RIVER and STREAM-O, respectively. For every bench-
mark, we observe an improvement in staircase length, with the
smallest difference being 13% for the c432 benchmark and
the biggest difference being 49% for the adder benchmark. On
average, the staircase lengths were improved by 37%.

At last, we evaluated the impact of the sneak path elimination
applied to the crossbar mappings for STREAM-O and RIVER.
For this, we utilize the previously obtained results for the
benchmark circuits and apply the same sneak path elimination
technique to both, STREAM-O and RIVER, respectively. Since
sneak path elimination changes both the width and height of
crossbars, we used the crossbar area as the sum of all the
widths multiplied by the sum of all the heights for all the
staircase levels. Fig. 11a shows the total crossbar area before
sneak path elimination. The x-axis shows each benchmark for
STREAM-O and RIVER with light gray hatched bars and dark
gray hatched bars, respectively. The last set of bars shows
the average area for both methodologies. We observe that for
each benchmark, RIVER has less area than STREAM-O. On
average, RIVER performs 58% better than STREAM-O prior
to sneak path elimination. Fig. 11b shows the total crossbar
area after sneak path elimination. When comparing the crossbar
area before and after the elimination of sneak paths, we observe
an average increase in the crossbar area for both STREAM-O
and RIVER, respectively. However, even after the sneak path
elimination, RIVER still performs 38% better than STREAM-O.

VI. CONCLUSION AND FUTURE WORK

We have proposed a methodology for doing READ-based
computation on the 1T1M crossbars called RIVER. RIVER
exploits the 1T1M crossbars to show that complex gates can
be effectively mapped, which leads to a more optimized design.
In addition to this, in the RIVER methodology, we also show that
method of eliminating the sneak paths. We were able to show
that our mapping algorithm, which exploits the way complex
gates map to 1T1M crossbars, is an improvement over the state-
of-the-art mapping algorithm STREAM-O, with an improvement
of 33% in area and 37% in delay on average. In the future, we
will explore methods to better our proposed approach further

by exploring the mapping of other complex gates and tailoring
optimal synthesis for staircase representations.

ACKNOWLEDGEMENTS

This work was supported by the German Research Foundation
(DFG) within the Project PLiM (DR 287/35-2).

REFERENCES
[1] N. Verma et al., “In-memory computing: Advances and prospects,” IEEE Solid-

State Circuits Magazine, vol. 11, no. 3, pp. 43–55, 2019.
[2] A. Sebastian et al., “Memory devices and applications for in-memory comput-

ing,” Nature nanotechnology, vol. 15, no. 7, pp. 529–544, 2020.
[3] M. Le Gallo et al., “Mixed-precision in-memory computing,” Nature Electronics,

vol. 1, no. 4, pp. 246–253, 2018.
[4] A. Bende et al., “Experimental validation of memristor-aided logic using 1t1r tao

x rram crossbar array,” in 2024 37th International Conference on VLSI Design
and 2024 23rd International Conference on Embedded Systems (VLSID). IEEE,
2024, pp. 565–570.

[5] S. Kvatinsky et al., “Memristor-based material implication (imply) logic: Design
principles and methodologies,” IEEE Transactions on Very Large Scale Integra-
tion (VLSI) Systems, vol. 22, no. 10, pp. 2054–2066, 2013.

[6] S. Kvatinsky et al., “Magic—memristor-aided logic,” IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. 61, no. 11, pp. 895–899, 2014.

[7] S. Gupta et al., “Felix: Fast and energy-efficient logic in memory,” in 2018
IEEE/ACM International Conference on Computer-Aided Design (ICCAD).
IEEE, 2018, pp. 1–7.

[8] S. Shirinzadeh et al., “Fast logic synthesis for rram-based in-memory computing
using majority-inverter graphs,” in 2016 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 2016, pp. 948–953.

[9] S. Thijssen et al., “Path: Evaluation of boolean logic using path-based in-
memory computing systems,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 2023.

[10] S. Singh et al., “Should we even optimize for execution energy? rethinking
mapping for magic design style,” IEEE Embedded Systems Letters, 2023.

[11] K. M. Kim et al., “Voltage divider effect for the improvement of variability and
endurance of taox memristor,” Scientific reports, vol. 6, no. 1, p. 20085, 2016.

[12] M. R. H. Rashed et al., “Stream: Towards read-based in-memory computing for
streaming based data processing,” in 2022 27th Asia and South Pacific Design
Automation Conference (ASP-DAC). IEEE, 2022, pp. 690–695.

[13] M. A. Zidan et al., “Memristor-based memory: The sneak paths problem and
solutions,” Microelectronics journal, vol. 44, no. 2, pp. 176–183, 2013.

[14] Y. Cassuto et al., “Information-theoretic sneak-path mitigation in memristor
crossbar arrays,” IEEE Transactions on Information Theory, vol. 62, no. 9, pp.
4801–4813, 2016.

[15] L. Xie et al., “Scouting logic: A novel memristor-based logic design for resis-
tive computing,” in 2017 IEEE Computer Society Annual Symposium on VLSI
(ISVLSI). IEEE, 2017, pp. 176–181.

[16] H. Kim et al., “4k-memristor analog-grade passive crossbar circuit,” Nature
communications, vol. 12, no. 1, p. 5198, 2021.

[17] F. M. Bayat et al., “Implementation of multilayer perceptron network with highly
uniform passive memristive crossbar circuits,” Nature communications, vol. 9,
no. 1, p. 2331, 2018.

[18] M. Hu et al., “Dot-product engine for neuromorphic computing: Programming
1t1m crossbar to accelerate matrix-vector multiplication,” in Proceedings of the
53rd annual design automation conference, 2016, pp. 1–6.

[19] E. J. Merced-Grafals et al., “Repeatable, accurate, and high speed multi-level
programming of memristor 1t1r arrays for power efficient analog computing
applications,” Nanotechnology, vol. 27, no. 36, p. 365202, 2016.

[20] D. Chakraborty et al., “Input-aware flow-based computing on memristor cross-
bars with applications to edge detection,” IEEE Journal on Emerging and
Selected Topics in Circuits and Systems, vol. 9, no. 3, pp. 580–591, 2019.

[21] Z. Alamgir et al., “Flow-based computing on nanoscale crossbars: Design and
implementation of full adders,” in 2016 IEEE International Symposium on
Circuits and Systems (ISCAS). IEEE, 2016, pp. 1870–1873.

[22] S. Thijssen et al., “Compact: Flow-based computing on nanoscale crossbars
with minimal semiperimeter and maximum dimension,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 41, no. 11, pp.
4600–4611, 2021.

[23] M. S. Truong et al., “Racer: Bit-pipelined processing using resistive memory,”
in MICRO-54: 54th Annual IEEE/ACM International Symposium on Microarchi-
tecture, 2021, pp. 100–116.

[24] E. M. S. K. J. Singh et al., “Sis: A system for sequential circuit synthesis,”
University of California, Berkeley, vol. 94720, p. 4, 1992.

[25] L. Shi et al., “Research progress on solutions to the sneak path issue in memristor
crossbar arrays,” Nanoscale Advances, vol. 2, no. 5, pp. 1811–1827, 2020.

[26] M. C. Hansen et al., “Unveiling the iscas-85 benchmarks: A case study in reverse
engineering,” IEEE Design & Test of Computers, vol. 16, no. 3, pp. 72–80, 1999.
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