
CrosSym: Cross-Level Verification of SystemC
Peripherals using Symbolic Execution

Karl Aaron Rudkowski1 Sallar Ahmadi-Pour1 Rolf Drechsler1,2
1Institute of Computer Science, University of Bremen, 28359 Bremen, Germany

2Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany
{karlaaron,sallar,drechsler}@uni-bremen.de

Abstract—Modern hardware design is challenged by the ever-
increasing complexity of designs. An important step is hardware
verification, where Virtual Prototypes (VPs) can be used for a
cross-level verification throughout the refinements. Peripherals
are relevant targets, because they characteristically implement
a wide range of integral tasks. Symbolic execution is a popular
verification method, but has been applied to SystemC peripherals
only once, and never for a cross-level verification. We propose
CrosSym, the first method to verify peripherals at both Register
Transfer Level (RTL) and Transaction Level Modelling (TLM)
abstraction with symbolic execution, explicitly supporting cross-
level. Our extensive evaluation explores (1) the performance costs
of two abstraction levels, (2) our approach’s suitability for a
full verification, using three peripherals, (3) it’s bug finding
capabilities by killing over 1500 mutants in under 15min. In the
latter, most scenarios found 97+% of the observable mutations.

Index Terms—Virtual Prototypes, Symbolic Execution, RTL,
TLM, Cross-Level

I. INTRODUCTION

In modern hardware design, VPs take a central role. A
VP is an executable software model of hardware, which is
commonly implemented in SystemC [1]. With a VP, software
design and verification can start early on, long before any real
hardware exists. Verification, against both a specification and
higher abstraction level models, is an important step to make
bug fixes cheaper and easier. One popular approach for this is
symbolic execution, which evaluates a device using symbolic
inputs, each representing sets of concrete inputs. Thus, it is not
restricted to concrete test cases, and can offer a more complete
reasoning. One important verification target are the peripher-
als. They implement a wide range of tasks, e.g. communication
protocols, or modern accelerators for neural networks [2].
Because of these characteristic differences to the processor,
they require separate attention. However, modern symbolic
execution tools cannot be applied to SystemC devices, mainly
because the kernel is implemented using system threads. To
benefit from them anyway, current state of the art replaces
the kernel with alternative implementations [3], [4]. These are
limited to high-level features, and inherently not capable of a
cross-level verification for lower levels like RTL. To address
this gap of cross-level verification methodologies, we propose
CrosSym, the first approach of this kind. We contribute:
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1) A lightweight SystemC replacement kernel, which sup-
ports the relevant features of both RTL and TLM. It is the
first SystemC kernel enabling cross-level symbolic exe-
cution. An additional benefit is it’s reduced complexity,
which enables a faster verification.

2) A workflow offering three possible verification scenarios,
namely standalone RTL or TLM verification, and a cross-
level comparison between the two.

3) An examination of (1) the performance costs of support-
ing RTL and TLM, by comparing to the state of the
art [4], and our approach’s effectiveness (2) for a full
verification, using three peripherals, (3) for bug finding,
by killing over 1500 mutants in under 15min.

Related Work: Prior work spans across a wide range of
techniques. Model checking [5]–[8] formally proves proper-
ties for a design. However, these approaches often require
intermediate representations, which limit their applicability.
Approaches originating from the software domain can mitigate
this issue. Coverage-guided fuzzing [9], [10] and concolic
testing [11]–[13] are limited to the generated concrete test
cases. In contrast, symbolic execution offers the possibility
of a complete exploration by replacing concrete values with
symbolic variables. At the RTL, C++ models, e.g. generated
by Verilator [14], are used [15]–[17]. These do not support
TLM, and thus cross-level verification. For higher abstractions
in SystemC, the state of the art are custom SystemC sched-
ulers [3], [4]. Their supported features are limited, and RTL
or cross-level verification is impossible. Only SymSysC [4]
explicitly targets peripherals. While it is thus closest to our
goal of a cross-level peripheral verification using symbolic
execution, TLM support is limited and RTL missing. To the
best of our knowledge, there are no other approaches which
achieve our goal, which makes CrosSym the first of it’s kind.

II. PRELIMINARIES

SystemC is a modelling language that encapsulates hard-
ware components in modules. Each module’s functionality
is realised with methods or threads. These processes register
themselves for execution on events such as clock edges, wait
times, or incoming inputs. Inter-module communication can
be based on signals and ports, or, at a higher abstraction level,
TLM sockets.

Symbolic Execution is a verification technique from the
software domain. There exist several software-focused engines
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Fig. 1. Overview Verification Workflow.

like KLEE [18] or Angr [19]. The idea is to represent sets of
concrete values with symbolic variables. During the execution,
instructions involving these symbolic variables are evaluated
using a Satisfiability Modulo Theory (SMT) solver. This
can result in forking the execution (branch instructions), or
generating concrete inputs that trigger errors. Thereby, the
program can be checked for generic failures (e.g. divide by
zero), and assertion violations.

III. CROSS-LEVEL VERIFICATION USING A REPLACEMENT
KERNEL

When verifying SystemC peripherals, the implementation of
the original SystemC kernel causes two main obstacles.

1) The SC_THREADS, commonly used in TLM models,
are realised using system threads. However, threading is
currently not supported by the state-of-the-art symbolic
execution tools due to the large overhead in verifying
multithreaded software.

2) The signal-port mechanism, commonly used in RTL mod-
els, uses mutexes, which are likewise not supported.

These make an alternative kernel implementation, designed
for symbolic execution, a solution worth considering. Such a
replacement kernel was proposed for example by Pieper et
al [4], who focused solely on TLM peripherals. Noteworthy
is the thread translation, which addresses the first problem.
However, the kernel was limited to TLM features, and misses
all RTL features. As a consequence, the authors do not address
the aforementioned second problem. Thus, while the idea
itself is promising and proved effective in verifying a TLM
Platform Level Interrupt Controller (PLIC), the verification of
RTL peripherals is not possible and poses unique challenges
to consider. In the following sections, CrosSym is presented,
which pursues a similar idea to support both TLM and RTL
peripherals.

Verification Workflow: In Figure 1, we give an overview of
the proposed verification workflow. The desired Design under
Verification (DUV) can be provided at both the RTL and TLM
level. The TLM description 1 is usually readily available
in SystemC, therefore, only the threads need to be translated
as described in [4]. Similarly, the RTL description 2 can
be implemented in SystemC, possibly with a transcompilation
using Verilator [14]. Such open source tools, and SystemC’s
RTL support, make this extra step worth considering. In the
test bench 3 , assertions define the desired behaviour, and
KLEE interface methods declare symbolic variables. The tests
can realise three possible verification scenarios:
(a) Standalone verification of a TLM device
(b) Standalone verification of a RTL device

TABLE I
FEATURE COMPARISON BETWEEN SYMSYSC AND OUR KERNEL.

Our Work SymSysC [4]
Time ✓ ✓

wait(time) ✓ ✓
Threads & Methods ✓ ✓

Static sensitivity ✓ ×
Events ✓ (✓)

wait(event) ✓ (✓)
Signals & Ports ✓ ×

Delta cycles ✓ ×
Clock ✓ ×

(c) Cross-level verification RTL⇔TLM
If both RTL and TLM implementations are available, the test
bench can cover all three scenarios in separate tests. The
translated device, optimised kernel 4 , and test bench are
compiled into the LLVM Intermediate Representation, using
the Clang C++ compiler 5 . Finally, the peripheral can be
verified using KLEE 6 .

Application-Specific Optimisation: The original SystemC
kernel supports many concepts for a wide range of appli-
cations. However, this complexity can negatively impact the
verification time, which is already a concern in comparison
to testing approaches such as fuzzing. For our desired goal of
verifying peripherals in isolation, the set of necessary features
is smaller. Including unused features would disadvantage the
symbolic execution, possibly to the point of rendering it inef-
fective. As a consequence, we carefully chose the supported
features to cover our target use case. An example of such a
concept is asynchronous waiting, which, amongst other things,
introduces mutexes into the signal-port mechanism. This is
not necessary, since we do not aim to verify entire systems or
interactions between multiple peripherals.

Replacement Kernel: Our kernel supports the TLM con-
cepts of SymSysC with improvements in the event notification
system. However, it’s main benefit are the RTL concepts
of static sensitivity, the clock, and signals and ports with
delta cycles. These make the verification of RTL peripherals
possible. Table I shows a comparison of the supported features
between SymSysC and our kernel. The first column lists all
the different features of SymSysC and our work. The middle
column shows the ones featured in our approach, while the
right one shows those of SymSysC [4].

IV. EVALUATION

In order to evaluate CrosSym, we concerned ourselves with
three research questions:

RQ1 How does supporting the verification at both RTL
and TLM, as opposed to only TLM, influence the
performance?

RQ2 Can our approach fully explore different peripherals?
RQ3 Can our approach offer effective bug finding?
Our experiments are based on the verification of three

peripherals available at RTL and TLM: a RISC-V PLIC, as
well as modules to compute the Greatest Common Divisor



TABLE II
PERFORMANCE COMPARISON.

SymSysC [4] This Paper % Increase

Paths Time Mem Paths Time Mem Time Memcompl. partial compl. partial
1 63 1 52000.40 199.56 63 1 73386.36 212.21 41.13 6.34
2 189 0 68140.00 331.00 189 0 72373.11 360.18 6.21 8.82
3 91 49 Timeout 198.13 32 34 Timeout 155.62 - -21.46
4 970 198 23539.59 117.08 970 198 48871.87 143.14 107.62 22.26
5 54 386 Timeout 183.31 5 386 Timeout 143.54 - -21.7

(GCD) and value mappings for a list. We used KLEE [18]
(version 2.3) with the STP [20] solver. One execution runs a
maximum of 24 h, and can use at most 4000MiB of working
memory. A single solver query can take at most 120 s. The
search strategy is Breadth First Search (BFS).

Performance Comparison: Since our replacement kernel
supports not only TLM, but also RTL peripherals, the added
complexity can worsen performance. This is important because
the verification should find results with reasonable resource
usage. In order to evaluate the impact of our additional
features, we repeat the case study from the SymSysC paper [4],
once with the SymSysC kernel, and once with ours. The case
study featured a RISC-V TLM PLIC, specifically the FE310
configuration based on the SiFive FE310 SoC [21]. It manages
global interrupts, and notifies the targets. The interrupt order
is determined by their individual priorities, as well as the per-
target priority threshold. The first three tests consider (1) a
basic case of triggering one symbolic interrupt number, (2)
additionally with a symbolic priority and threshold, (3) two
symbolic interrupts, each with a symbolic priority. The last two
cases concern read/write transactions over the TLM socket.

Table II shows the run metrics for both versions. It is split
into four parts, first defining the test case, then giving the
performance of SymSysC [4] and our approach, and finally
summarising the increased resource usage. In the middle
two parts, the same columns list the complete and partially
executed paths, and the time (in s) and average memory (in
MiB) used by KLEE. In the final part, the increase in time
and memory of our approach is given in percent. Both versions
found the same errors, which are not listed for brevity. Our
kernel comes with a penalty in both time and memory usage.
Tests #3 and #5 are special cases, as they time out regardless
of the kernel. Here, our decreased memory usage simply
comes from the slower execution. Our method did not get
as far and explored fewer paths, meaning fewer opportunities
for memory-intense queries. While this shortcoming is of
course not ideal, the detected errors remained the same.
Furthermore, the aggravated resource use supports choosing a
replacement kernel. By implementing only necessary features,
we minimised the overhead. Without them and their associated
costs, RTL peripherals cannot be verified. However, adding
others would worsen the performance without advantages to
our use case. Regarding the benefits of our kernel’s features,
the following discusses the verification of RTL peripherals.

Peripheral Device Verification: We considered all three
peripherals. The first three RTL PLIC test cases mirror tests
#1-#3 from Table II. Tests #4 & #5 mirror tests #2 & #3, but

TABLE III
PERIPHERAL VERIFICATION. E1-4=ERROR1-4. L1-2=LIMIT1-2.

Test Paths Time Solver Memory Commentcompl. partial
1

PL
IC

T1 168 0 271.29 86.11% 211.75 ✓
2 T2 0 473 487.95 91.65% 334.41 E1
3 T3 2013 4860 86401.01 97.55% 2887.92 L1
4 EQ2 29 203 Timeout 98.44% 266.58 E2
5 EQ3 29 122 Timeout 98.63% 271.50 E1
6

G
C

D

RTL 19 110 Timeout 99.78% 144.68 E3, L2
7 TLM 54 2258 Timeout 99.82% 128.05 E4, L2

8 EQ 48 446 Timeout 99.64% 178.80 E3, E4
L2

9

M
ap

RTL 18 0 30624.99 98.81% 202.26 ✓
10 TLM 1 0 0.25 5.51% 114.22 ✓
11 EQ 18 0 30856.59 98.80% 206.45 ✓

applied to the cross-level. For the new peripherals, there are
three test cases each: RTL standalone, TLM standalone, and
cross-level. The GCD module calculates the greatest common
divisor of two input values. For the tests, these two inputs
are made symbolic. The Map module maps up to eight input
values to one output value each by applying a user-defined
mapping value. Of these eight inputs, only two are made
symbolic, in addition to the mapping value. The output values
are independent from each other, and thus a faster verification
is possible. Table III shows the results for each test case.
First, statistics related to the code are given in the form of
the number of explored complete/partial paths and the total
executed instructions. Following, we list the run’s complete
duration (in s), the percentage of time spent in the SMT solver,
and the average memory usage (MiB). Finally, the result of the
test case is summarised. For the RTL PLIC, the relationship
between the priority and the threshold was inverse (E1), and it
handles priority values greater than the user-defined maximum
differently (E2). While it’s known implementation errors were
identified, both memory (L1) and time limit (Timeout after
24 h) were encountered. The other DUV with a functional
error was the GCD module. At TLM, an internal conversion
can lead to wrong results (E4), and an infinite loop is possible
(E3, or Timeout in #7). Furthermore, (solver) timeouts occur
(L2,Timeout). This originates from the significantly larger
state space, effected by a symbolic loop condition. Finally, the
Map module was the only one reliably finishing without any
timeouts. It is comparatively simple in terms of calculations
and branch conditions.

In conclusion, we evaluated three different peripherals,
found bugs and extensively explored the DUVs in a reasonable
time frame. Future research has to identify solutions for
large state spaces (see tests #6 to #8), and time-consuming
complex paths (see tests #4 and #5). To better understand our
approach’s bug-finding capabilities, the following section deals
with targeting mutations inserted into the DUVs.

Effective Mutation-Based Bug Finding: Our approach
usually found existing errors early on. This is an important
verification goal to minimise the danger of the unexplored
peripheral code. In order to evaluate how suited our approach
is for finding existing errors, we inserted mutations into the
three DUVs using an automated script. For each mutant, the



TABLE IV
MUTATION TEST RESULTS. O[0-5]=OBSERVATION[0-5].

DUV Mutants Tests Alive Killed % Comment

PL
IC

RTL 1067 T 3201 1052 2149 67.14 O1
EQ 2134 2132 2 00.09 O4

TLM 212 T 636 196 440 69.18 O1
EQ 424 303 121 28.54 O4

G
C

D RTL 87 T 87 1 86 99.28 O5
EQ 87 0 87 100 ✓

TLM 19 T 19 0 19 100 ✓
EQ 19 12 7 36.84 O2

M
ap

RTL 85 T 85 0 85 100 ✓
EQ 85 0 85 100 ✓

TLM 35 T 35 0 35 100 ✓
EQ 35 1 34 97.14 O5

test cases discussed above were executed. We chose over 1500
that we observed to change the peripherals’ behaviour. Ta-
ble IV shows the results. First, the mutated DUV as well as the
amount of observable mutants and total executed test cases are
given. These latter are divided into standalone (T) and cross-
level (EQ). For both, we divide the total amount into those
that did not find an error and those that did. Following, we
list the percentage of test cases that killed the mutant. Finally,
the result is summarised. Some test cases timed out without
detecting an error, even though the same mutant was killed by
another test. While the short runtime can be responsible (O5),
patterns can usually be observed. First, the PLIC functionality
is split into multiple tests. Consequently, not all of these cover
the mutated behaviour (O1). Additionally, the PLIC’s cross-
level tests are slower (see Table III), which is detrimental
with the very short run time of 15min. Second, the GCD
module highlights the structural differences of RTL and TLM
regarding the state tree. In TLM standalone, mutants can be
killed in 100 queries or fewer. However, in the cross-level,
with the intact RTL tree, thousands of queries might not suffice
to venture deep enough into the tree. This supports the need
for research into the search strategies. Here, neither BFS nor
KLEE’s default offer promising results.

In the mutation-based evaluation, our approach found over
1500 mutants fast (<15min). 7 out of 12 scenarios found
≥97% of their respective mutations. Lastly, we identified the
open question of an appropriate search strategy for symbolic
execution of hardware models.

V. CONCLUSIONS

In this paper we presented CrosSym, the first cross-level
verification method for peripherals using symbolic execution.
Due to the obstacles to symbolic execution that originate
from the original SystemC implementation, we propose a
replacement kernel. This kernel supports key features of both
TLM and RTL modelling, while being optimised for symbolic
execution of peripherals in isolation. In a comparison with
the state of the art, our approach maintained effectiveness
at the TLM level. Further, with our novel set of features,
we evaluated the effectiveness of verifying TLM and RTL
peripherals, in a standalone as well as in a cross-level scenario.
Additionally, our approach identified over 1500 mutations

within 15 minutes. In most scenarios, we found over 97%
of the respective device’s overall observable mutations in this
timeframe. For future work, we plan to identify more appro-
priate search heuristics for symbolically executing peripherals,
and thus increase the manageable device complexity.
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