
LLM-assisted Performance Estimation of
Embedded Software on RISC-V Processors

Weiyan Zhang1 Muhammad Hassan1,2 Rolf Drechsler1,2
1Institute of Computer Science, University of Bremen, 28359 Bremen, Germany

2Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany
{weiyan, hassan, drechsler}@uni-bremen.de

Abstract—In this paper, we present a methodology that com-
bines a Large Language Model (LLM) with a traditional Machine
Learning (ML) approach to estimate the performance of embedded
software on RISC-V processors across different microarchitec-
tures. In particular, we employ a Retrieval-Augmented Genera-
tion (RAG)-based LLM to extract performance-related informa-
tion from processor specifications and source code. Additionally,
we leverage the predictive capabilities of ML models to create
Predictive Models (PMs) for RISC-V processors. To demonstrate
the effectiveness of our hybrid approach, we present results on
the performance estimation of open-source benchmarks using the
generated PMs, with open-source RISC-V-based Register Transfer
Level (RTL) implementations as reference models. Our results
demonstrate that our proposed LLM-assisted methodology pro-
vides highly accurate predictions, with Mean Absolute Percentage
Errors (MAPEs) of only 2.50% for SweRV core and 11.90% for
RSD core, respectively. In comparison with the state-of-the-art
methodology, our approach achieves significant improvements,
reducing the MAPE by 61.54% for SweRV and 36.02% for RSD.

Index Terms—RISC-V, performance estimation, large language
model, machine learning, embedded system

I. INTRODUCTION

Embedded systems, which are becoming more complex as
silicon technology advances and their functionality grows, have
become increasingly important in automation and the Inter-
net of Things (IoT) in recent years. RISC-V [1] has gained
popularity in this field due to its open-source architecture,
which allows developers to customize designs to meet specific
requirements while keeping costs low and avoiding licensing
restrictions. Companies such as SiFive [2] have leveraged
RISC-V to develop customizable and energy-efficient proces-
sors, demonstrating its real-world applicability in IoT devices,
edge computing, and Artificial Intelligence (AI) accelerators.
Additionally, RISC-V has a comprehensive and expanding
ecosystem [3], including tools such as functional simulators and
Register Transfer Level (RTL) implementations. Those various
RISC-V implementations across different levels of abstraction
make it adaptable to a wide range of applications, allowing
for both high-level customization and low-level optimization
to meet specific performance, power, and cost requirements.

This work was supported in part by the German Federal Ministry of
Education and Research (BMBF) within projects Scale4Edge under grant no.
16ME0127, and EXCL under grant no. 01IW22002.

Performance estimation, especially in terms of cycle count,
is critical for system design as it helps ensure that systems
meet performance requirements. However, as embedded sys-
tems grow more complex, achieving accurate performance
estimation becomes more challenging. The difficulty lies not
only in managing the complexity of these systems, but also
in accounting for variations in system behavior across different
use cases. Traditional methods like RTL simulations are precise
but slow, which can delay design decisions and affect time-
to-market goals. This creates a trade-off between accuracy
and speed, making efficient performance estimation crucial for
staying competitive in fast-paced industries.

Recent advancements in AI, especially in the area of Large
Language Models (LLMs), have expanded their applications
beyond traditional natural language processing, now playing
new roles in the development of embedded systems. Models
like OpenAI’s GPT series demonstrate strong capabilities in un-
derstanding and processing both natural [4] and programming
languages [5], making them highly effective for interpreting
and translating hardware specifications and source code. LLMs
are now being used to assist in various stages of embedded
systems development, particularly in areas such as design au-
tomation, performance optimization, and verification. Retrieval-
Augmented Generation (RAG) techniques can further enhance
the capabilities of LLMs by enabling them to pull relevant ex-
ternal data, allowing for more contextually accurate responses.
By leveraging the large amount of data and documentation
available, LLMs can help engineers develop and debug embed-
ded systems more efficiently. They can automatically extract
performance-related information from technical documents and
source code, enabling the generation of accurate Predictive
Models (PMs) of hardware. This accelerates tasks like perfor-
mance estimation of embedded software on specific processors,
reducing time-to-market pressures and improving the overall
efficiency of embedded systems design workflows. However,
LLMs have limitations when handling tasks that require precise
calculations or numerical reasoning [6]. Traditional Machine
Learning (ML) techniques may help address this issue, as many
statistical models, such as those proposed in [7], [8], have
demonstrated good results in certain aspects of performance
estimation. To further overcome these limitations, traditional
ML models, such as Artificial Neural Networks (ANNs), can
be integrated to provide more accurate solutions for tasks that
involve complex calculations.

Contribution: In this paper, we propose leveraging state-979-8-3315-2801-0/25/$31.00 ©2025 IEEE

of-the-art LLM to extract performance-related information for
RISC-V processors and using ML models to train the PMs.
The methodology comprises four phases: text generation, data
preprocessing and RAG, model training, and model testing.
We used around 700 programs to train the PMs by extracting
execution metrics from two RISC-V RTL implementations,
SweRV [9] and RSD [10], as well as the functional simu-
lator Whisper [11]. For testing, 10 distinct benchmarks from
TACLeBench [12] were used to evaluate the PMs’ accuracy by
comparing predicted clock cycles to ground truth values from
RTL simulations. The results show Mean Absolute Percentage
Errors (MAPEs) of 2.50% for SweRV and 11.90% for RSD,
demonstrating the method’s high accuracy and effectiveness,
even without physical hardware.

II. RELATED WORK

Fast and accurate performance estimation is essential in
embedded systems, as it plays a key role in optimizing system
design and resource allocation. To address this need, various
methods have been developed to improve the efficiency and
accuracy of performance prediction. In this section, we review
the most relevant state-of-the-art performance estimation meth-
ods related to our work.

In general, performance estimation methods can be divided
into three main categories:simulation, analytical, and statistical.

Simulation-based methods use cycle-accurate or cycle-
approximate simulators. Cycle-accurate simulators, like RTL
simulators [13], offer detailed and precise insights into a sys-
tem’s behavior but come with significant runtime overhead [14].
On the other hand, cycle-approximate simulators, such as
gem5 [15], can achieve faster execution but compromise on
accuracy, making them less reliable for detailed performance
analysis. High-level abstract simulations, including those utiliz-
ing SystemC-Transaction Level Modeling (TLM), enable faster
simulations by abstracting lower-level details like individual
instruction timings. RISCV-VP [16] and RISCV-TLM [17] are
RISC-V simulators built on SystemC-TLM, incorporating an
ISS, memory, and a basic set of peripherals.

Analytical methods, such as those used in static profil-
ers [18], estimate performance through mathematical models
without the need to execute the code. However, they cannot cap-
ture runtime behavior. In recent research, Prof5 [19] employs a
hybrid analysis approach for RISC-V designs, combining fast
functional simulation using Spike [20] with energy and timing
models derived from RTL simulations, achieving an 8000×
speed-up with an average accuracy of 95%. RV-ProViler [21]
integrates the RISC-V GNU toolchain [22] and the Spike
simulator using four scripts to generate a histogram of instruc-
tion coverage, helping to identify the instructions required for
specific applications or functions. To demonstrate its feasibility,
various functions across different RISC-V specifications were
evaluated, achieving a maximum speed-up of 5.87× with the
P-extension and 16.52× with the V-extension.

Statistical methods use performance counters to model the
relationship between embedded software and run-time profiling.
Traditional statistical models are typically designed to work in
cases where the relationship between input and output data is

not easily defined by a simple equation or statistical method,
such as performance estimation using linear regression [23],
[24]. More advanced statistical models leverage complex ML
algorithms, such as ANN, to enable models to learn from
input data and make accurate predictions. ANN-based meth-
ods effectively adapt to non-linear behaviors like pipelines,
branch prediction, and caches, while offering fast estimation
speeds. For instance, [25] used an ANN to predict instruction
throughput based on the opcodes and operands of instructions
in a basic block, demonstrating higher accuracy compared to
state-of-the-art analytical models. [8] developed an ML-based
estimation model using dynamic instruction counts for the
RISC-V processors. However, modeling complex architectures
remains challenging due to the lack of sufficient performance-
related features provided by the processor.

In the last three years, the capabilities of LLMs, such as GPT-
3, GPT-4, and Gemini, have significantly advanced due to the
rapid increase in model sizes and the availability of extensive
training datasets. This evolution brings both challenges and
opportunities in the field of hardware design [26]. Because of
their natural language processing ability, LLMs have expanded
their applications across various stages of the design process,
including verification [27], code generation [28], and SoC secu-
rity [29]. However, the computational demands associated with
LLMs present certain challenges [6], such as those encountered
in mathematical reasoning. To address these challenges, we
first utilize an LLM to process natural language documentation
and source code, extracting performance-related information.
Subsequently, we employ an ANN to perform performance
estimation based on the extracted data. This integrated approach
enables us to leverage the LLM’s strengths in understanding
complex text while utilizing the ANN for efficient computa-
tional tasks, ultimately enhancing the accuracy and efficiency
of our performance assessments.

III. LLM-ASSISTED METHODOLOGY FOR PERFORMANCE
ESTIMATION

Our LLM-assisted methodology for performance estimation
of embedded software, illustrated in Fig. 1, integrates ANN and
consists of four phases: text generation, data preprocessing and
RAG, model training, and model testing. Each phase is detailed
in the following subsections.

A. Text Generation
In the text generation phase, an LLM is employed to assist in

identifying all potential parameters that could impact the per-
formance of the system, particularly those related to the number
of execution cycles. The process starts with a designed prompt
that provides initial examples, such as multiplier latency and
branch hit penalty, and instructs the LLM to extract additional
relevant parameters that can be extracted from RTL source code
and corresponding documentation. The resulting parameter list
is used in subsequent steps to extract values for each RTL core.

B. Data Preprocessing and RAG
This phase has two main components: data preprocessing,

which creates a vector database, and RAG, which retrieves the
required information.

Prompt1
Parameter

- Load_store_latency
- Divider_latency
...

Solver

Retrieved
Documents

ChromaDB

Parameter_src
- Load_store_latency=0
- Divider_latency=34
...
Parameter_doc

- Load_store_latency=2
- Divider_latency=34
...

Load, Split, Embed

2. Data Preprocessing + RAG

Documents
(Documentation/

Source Code)

Base
Retriever Compressor

Query

Prompt2

LLM

1. Text Generation

LLM

Programs

3. Model Training

RISC-V
Processor

Artificial
Neural

Network

Benchmark
Dynamic Instruction Counts

4. Model Testing

Cycle

Traning Dataset

Parameter
- Load_store_latency=2
- Divider_latency=34
...

Testing Dataset

Performance Reference,
Dynamic Instruction Counts

Parameter
- Load_store_latency=2
- Divider_latency=34
...

Predictive
Model

Functional
Simulator

Fig. 1. Overview of the proposed LLM-assisted methodology for performance estimation of embedded software.

In this phase, documentation and source code are processed
in parallel but handled separately. For documentation, prepro-
cessing collects relevant files, stores them in an SQL database,
and splits them into smaller chunks for efficient searching
within the LLM’s context window. Each chunk is embedded
into a vector representation and stored in a vector database, such
as ChromaDB [30], for retrieval. The RAG component queries
stored chunks to extract parameter values. When a query is
issued, such as asking for a specific parameter, the system
retrieves relevant chunks from the vector database using a
retriever. A compressor reranks the results to filter out irrelevant
content, refining the search. The refined results are then passed
to an LLM, which, guided by a prompt, generates a list of
extracted parameter values from the documentation.

The same process is applied to the source code, where it
is preprocessed, split into chunks, embedded into vectors, and
stored. Using the same query, the system retrieves, ranks, and
processes the relevant code splits to produce a list of parameter
values.

By the end of this phase, two lists are generated: one from
the documentation and the other from the source code, both
essential for the subsequent model training stages.

C. Model Training

In the model training phase, programs are executed on a
RISC-V processor and a functional simulator to obtain refer-
ence clock cycles and dynamic instruction counts, respectively.
Dynamic instruction counts refer to the number of each RISC-V
instruction required for program execution. Since real hardware
may not be available for testing, the RISC-V RTL implemen-
tation is used as a substitute for generating these metrics. A
conflict-resolution solver addresses inconsistencies in parameter
lists extracted from documentation and source code, where
the same parameter may have different values. For example,
the load store latency might be 2 in the documentation but

0 in the source code. In such cases, the solver prioritizes
the non-zero value. If both values are non-zero, the solver
prioritizes the value from the source code as more reliable,
producing a single, unified parameter list. An ANN models
the relationship between parameters and instruction counts as
inputs, and the number of clock cycles as outputs, enabling
accurate predictions of processor behavior.

D. Model Testing

To evaluate the accuracy and effectiveness of the PM, the
number of executed clock cycles required by the new software
is predicted. The new software is selected from standard
benchmark suites to ensure a diverse range of test cases.
The software is executed on a functional simulator to obtain
dynamic instruction counts, which, along with performance-
related parameters obtained using LLM, are provided to the
PM. The PM predicts the clock cycles needed for execution,
and its accuracy is assessed by comparing this prediction with
the actual execution cycles.

IV. EXPERIMENTAL EVALUATION

In this section, we present the experiments to demonstrate the
effectiveness of our proposed performance estimation method-
ology.

A. Experimental Setup

The LLM used in the first two phases is gpt-3.5-turbo-
0125 [31], accessed via OpenAI’s Application Programming
Interface(API). An SQL database was used to collect and
organize source code and documentation, enabling structured
queries and better data management. After loading the con-
tent from the SQL database, we leverage LangChain’s frame-
work [32] to connect LLMs with the data sources and services
throughout the following steps of this phase. The Character-
TextSplitter [33] was applied to split the text into smaller

chunks based only on a specified separator. In this experiment,
the default separator “\n\n” was used, and the chunk size was
limited to 1000 characters to balance processing efficiency and
context retention. These chunks were embedded into vector
representations using the all-MiniLM-L6-v2 model [34] from
sentence-transformers and stored in a Chroma database for fast,
vector-based searches. In the RAG component, a vector store-
backed retriever [35] searched the vector representations of
document chunks in the Chroma database to retrieve those most
similar to a given query. FlashrankRerank [36] was applied as
a compressor to filter out less relevant chunks and rerank the
top 10, prioritizing the most relevant information. Finally, gpt-
3.5-turbo-0125 extracted performance-related parameters from
the reranked retrieved chunks.

During the model training phase, we used a set of around
700 programs, generated by varying inputs to custom-written
sample programs as well as incorporating several standard
benchmarks from TACLeBench [12]. These programs were
compiled with the RISC-V GNU toolchain [22] for RV32I and
executed on two RISC-V RTL implementations, SweRV [9] and
RSD [10], to collect reference clock cycles, as physical hard-
ware was unavailable. Dynamic instruction counts were gath-
ered using the functional simulator Whisper [11]. The execution
metrics and performance-related parameters were combined
to form the training dataset. The ANN was implemented in
TensorFlow 2.6.0 [37], with hyperparameters such as learning
rate, number of hidden layers, neurons per layer, activation
functions, and epochs defined in a comprehensive search space.
A random search technique [38] was employed to efficiently
tune and select optimal hyperparameters by randomly sampling
values.

During the model testing phase, we selected 10 benchmarks
from TACLeBench, distinct from the training set, spanning
domains like signal processing and mathematical problem-
solving. These benchmarks, designed for embedded systems,
are freely accessible. Dynamic instruction counts were collected
by executing the software on the Whisper functional simulator.

Python 3.9 was used to implement both the LLM and
ANN components. While GPT-3.5-turbo-0125, accessed via
the OpenAI API, is not open-source, all other tools — in-
cluding the LangChain, TensorFlow, Whisper, the RISC-V
implementations, and TACLeBench — are open-source and
freely available, ensuring the workflow is replicable for the
research community.

B. LLM Implementation Details

Fig. 2 provides an overview of the interaction between the
user and the LLM during the first two phases of extracting
performance-related parameters from RTL documentation and
source code.

In phase 1, the user queries GPT-3.5-turbo-0125 for key
performance-related parameters, such as multiplier latency, di-
vider latency, and load store latency, which directly impact
processor performance. The LLM, using its pre-trained knowl-
edge, identifies these parameters from the RTL documentation
and source code.

Can you list all the parameters, one by one, related to the
executed cycles that I should obtain from the RTL source code
and documentation, such as "multiplier_latency", ...

load_store_latency, multiplier_latency, divider_latency,
fetch_stall, align_stall, decode_stall, commit_stall,
branch_hit_penalty, branch_mispredict_primary_penalty, ...

Phase 1

What is the value of {parameter} for the core {core}?
Phase 2

System:
Generate an answer to the user's question based on the values
of {parameter} found in both {response_doc} and
{response_src}.
Follow these guidelines:
1. If both values of {parameter} from {response_doc} and
{response_src} are 0, return "{parameter} = 0".
2. If one value of {parameter} from either {response_doc} or
{response_src} is 0, and the other is non-zero, return "
{parameter} = <non-zero value>".
3. If both values of {parameter} from {response_doc} and
{response_src} are non-zero but differ, return "{parameter} =
value from {response_src}".
4. If both values of {parameter} from {response_doc} and
{response_src} are the same non-zero value, return "
{parameter} = <that value>".

Human:
Generate the answer only in the format "{parameter} = <actual
value>".

load_store_latency = 2
multiplier_latency = 3
divider_latency = 0
...

Response_doc: The value of load_store_latency for the
SweRV core is 2 cycles.
Response_src: The value of load_store_latency for the
core SweRV is not explicitly mentioned ...

Fig. 2. Illustration of user-LLM interactions during phases 1 and 2 for
extracting performance-related parameters from RTL documentation and source
code.

Phase 2 extracts numerical values by dividing the task into
sub-queries, each focusing on a specific parameter. Using a
RAG approach, the LLM retrieves relevant document chunks
and extracts values step by step for improved accuracy.

The extracted values from the RTL documentation and the
source code may differ due to discrepancies or incomplete
information in one source compared to the other. Discrep-
ancies between values from documentation and source code
are resolved using a conflict-resolution strategy guided by a
ChatPromptTemplate [39], which prioritizes source code values
as more reliable. For instance, if the value of a parameter from
the documentation is 0 while the source code provides a non-
zero value, the LLM is instructed to prioritize the non-zero
value. Similarly, if both values are non-zero but differ, the
value from the source code is preferred, as it is considered a
more reliable reflection of the actual hardware behavior. These
conflict-resolution rules ensure consistency and reliability in
the extracted data. Additionally, to improve the clarity and
readability of the LLM’s responses, the user specifies a strict
output format for the LLM to follow. For clarity and consis-
tency, the LLM follows a strict output format, presenting results
as “parameter = value”, ensuring they are interpretable and
ready for analysis. By structuring the process into phases and
stepwise extractions, this methodology achieves high accuracy
and efficiency.

−15 −10 −5 0 5 10 15 20 25

x

−15

−10

−5

0

5

10

15

20

25

y

chunks
retrieved
query

Legend

Fig. 3. UMAP visualization of the retrieved document chunks for the query
“What is the value of divider latency for the core SweRV?”.

To visualize the RAG process in phase 2, we use Uniform
Manifold Approximation and Projection (UMAP) [40], which
provides a clear overview of the data by reducing the high-
dimensional embeddings into a 2D space. This reduction allows
for easier interpretation and analysis while maintaining key
properties such as the relationships and proximities between
the document chunks and the query. By preserving these spatial
relationships, UMAP enables a visual assessment of how well
the retrieved chunks align with the query, offering insights into
the effectiveness of the retrieval process.

Fig. 3 shows an example of the 2D projection of high-
dimensional embeddings, where the proximity of chunks to the
query represents their relevance to the requested information.
In this visualization, the red square represents the query “What
is the value of divider latency for the core SweRV?”. The
blue circles correspond to the 10 retrieved chunks, which are
considered most relevant to the query after being processed by
the retriever and reranked by the compressor. The green crosses
represent all the chunks from the documentation, providing a
broader context of the entire database. During the experiment,
the UMAP plot was generated in .svg format, providing an
interactive experience. In this format, the content of each point
in the UMAP plot, whether represented by dots, crosses, or
square, can be directly inspected. This interactivity allows for
a detailed examination of the retrieved chunks, enabling us to
manually assess their relevance to the query.

C. Performance of RISC-V Predictive Models

To evaluate the effectiveness of the generated PMs, we
assessed their accuracy against the corresponding RISC-V RTL
implementations, SweRV and RSD. The results, presented
in Table I, provide the number of executed instructions (#
instr-exec.), the Source Lines of Code (SLOC), and the Absolute
Percentage Error (APE) for each individual benchmark, which
measures the magnitude of the error as a percentage, along
with the Mean Absolute Percentage Error(MAPE) calculated
across all test benchmarks. This evaluation allows us to assess
how closely the PMs estimate the number of executed cycles
compared to the ground truth provided by the RTL simulations.

TABLE I
EXPERIMENTAL RESULTS OF ALL BENCHMARKS USED FOR VALIDATION

OF PMS ON RV32I

benchmark # instr-exec. SLOC SweRV PM1 RSD PM2
Cycle APE # Cycle APE

adpcm dec 2 880 766 397 3 644 041 0.21% 5 260 228 0.87%
adpcm enc 2 898 909 413 3 224 628 13.59% 5 232 514 0.24%
cubic 28 338 773 646 34 071 398 1.34% 64221227 23.68%
deg2rad 510 731 32 573 745 2.51% 872 615 1.12%
fft 3 678 522 492 5 420 220 1.15% 4 010 734 43.26%
gsm dec 9 168 156 504 14 387 983 2.50% 12 076 100 30.08%
isqrt 1 002 078 629 3 125 021 1.30% 1 220 580 0.72%
lms 5 814 943 114 7 063 929 0.79% 10 253 500 1.04%
rad2deg 420 103 32 482 789 0.51% 627 494 10.17%
st 3 684 066 127 4 445 458 1.05% 5 842 673 7.88%
MAPE 2.50% 11.90%

As seen in the results, the PMs exhibit varying levels of
accuracy across the different benchmarks, with PM1 generally
achieving lower APEs than PM2 for most benchmarks. For
instance, the MAPE for PM1 is 2.50%, while PM2 shows a
higher MAPE of 11.90%. This suggests that PM1 is better
optimized for the SweRV, while the lower accuracy of PM2’s
performance estimation for the RSD can be attributed not only
to the need for further tuning but also to the quality and com-
pleteness of the documentation, which may have hindered the
LLM’s ability to extract accurate parameters. When analyzing
the APE for each benchmark, we observe that PM1 performs
well across most benchmarks, except for adpcm enc, where
the APE rises to 13.59%. This higher error, along with PM2’s
inconsistent performance — particularly in benchmarks like
fft (43.26%) and gsm dec (30.08%) — is likely due to the
complexities in certain benchmarks, such as irregular memory
access and dynamic execution patterns, which are harder to
model accurately. The differences in PM2’s performance reflect
the architectural complexities of the RSD and the challenges
in accurately modeling these behaviors using the extracted
performance-related parameters and instruction counts.

The generation of the training dataset for model training
involved contributions from the LLM, program execution on
RTL implementations, the functional simulator, and the ANN in
the first three phases. However, these phases are only required
once to generate the PMs. The time taken by the LLM in
the first two phases was approximately 1102.46 seconds for
SweRV, and 2060.69 seconds for RSD. Program execution on
the SweRV took 67151.97 seconds, while execution on RSD
required 102917.82 seconds. The program execution time on
the Whisper functional simulator was significantly shorter, at
341.67 seconds. Training the PM using the ANN took 16.03
seconds for SweRV and 1737.27 seconds for RSD.

We compared our proposed methodology to the state-of-
the-art performance estimation approach presented in [8]. That
study evaluated four RTL implementations, achieving low er-
rors for two of them. In contrast, SweRV and RSD showed
higher errors, with MAPEs of 6.5% and 18.6%, respectively,
indicating the need for further refinement. By focusing on
SweRV and RSD, our methodology demonstrates significant
improvements, reducing the MAPE by 61.54% for SweRV
and 36.02% for RSD. These improvements provide higher
precision in estimating executed clock cycles across multiple
benchmarks. The enhancements are primarily due to the ad-
ditional steps introduced in our work, such as improved data

extraction using LLM and conflict resolution strategies, which
refine the handling of performance-related parameters from
RTL documentation and source code.

V. CONCLUSION

In this paper, we proposed an LLM-assisted methodology for
estimating the performance of embedded software on RISC-V
processors. By combining the natural language processing ca-
pabilities of an LLM with the computational power of an ANN,
we created PMs that offer both accuracy and efficiency. The
LLM extracts performance-related parameters from RTL source
code and documentation, while the ANN predicts performance
using these parameters and dynamic instruction counts obtained
from a functional simulator.

Our experiments with real-world benchmarks demonstrated
highly accurate predictions, with MAPEs of 2.50% for SweRV
and 11.90% for RSD. Compared to state-of-the-art approaches,
our method reduced the MAPE by 61.54% for SweRV and
36.02% for RSD. These results indicate the potential of in-
tegrating LLM and ANN to enhance performance estimation
workflows, particularly for hardware-software co-design in em-
bedded systems requiring precise and efficient predictions.

Despite these promising results, several challenges remain.
The LLM’s limited context window required splitting source
code into smaller chunks, which sometimes disrupted the
logical structure. Future work will focus on advanced code-
splitting techniques that preserve functionality and logical flow.
Additionally, we aim to extend this methodology to more
complex architectures and explore alternative ML models to
further improve accuracy and scalability. We also plan to
experiment with other LLMs and compare their results to assess
their impact on performance estimation. These enhancements
will refine the approach and expand its applicability to a broader
range of systems.

REFERENCES

[1] A. Waterman and K. Asanović, The RISC-V Instruction Set Manual.
Volume I: Unprivileged ISA, RISC-V Foundation, 2019.

[2] “SiFive,” https://www.sifive.com/.
[3] “RISC-V Landscape,” https://riscv.landscape2.io/?view-mode=grid.
[4] K. S. Kalyan, “A survey of gpt-3 family large language models including

chatgpt and gpt-4,” Natural Language Processing Journal, p. 100048,
2023.

[5] J. Y. Khan and G. Uddin, “Automatic code documentation generation
using gpt-3,” in Proceedings of the 37th IEEE/ACM International Con-
ference on Automated Software Engineering, 2022, pp. 1–6.

[6] J. Ahn, R. Verma, R. Lou, D. Liu, R. Zhang, and W. Yin, “Large language
models for mathematical reasoning: Progresses and challenges,” arXiv
preprint arXiv:2402.00157, 2024.

[7] M. S. Oyamada, F. Zschornack, and F. R. Wagner, “Applying neural
networks to performance estimation of embedded software,” Journal of
Systems Architecture, vol. 54, no. 1-2, pp. 224–240, 2008.

[8] W. Zhang, M. Goli, M. Hassan, and R. Drechsler, “Efficient ML-based
performance estimation approach across different microarchitectures for
RISC-V processors,” in 2023 26th Euromicro Conference on Digital
System Design (DSD). IEEE, 2023, pp. 693–699.

[9] W. Digital, “SweRV RISC-V Core,” https://github.com/chipsalliance/
Cores-VeeR-EH1/tree/1.0.

[10] S. Mashimo, A. Fujita, R. Matsuo, S. Akaki, A. Fukuda, T. Koizumi,
J. Kadomoto, H. Irie, M. Goshima, K. Inoue et al., “An open source fpga-
optimized out-of-order RISC-V soft processor,” in 2019 International
Conference on Field-Programmable Technology (ICFPT). IEEE, 2019,
pp. 63–71.

[11] CHIPS Alliance, “Whisper,” https://github.com/chipsalliance/VeeR-ISS.

[12] H. Falk, S. Altmeyer, P. Hellinckx, B. Lisper, W. Puffitsch, C. Rochange,
M. Schoeberl, R. B. Sørensen, P. Wägemann, and S. Wegener,
“Taclebench: A benchmark collection to support worst-case execution
time research,” in 16th International Workshop on Worst-Case Execution
Time Analysis, 2016.

[13] VERIPOOL, “Verilator,” https://www.veripool.org/verilator/.
[14] T. Ta, L. Cheng, and C. Batten, “Simulating multi-core RISC-V systems

in gem5,” in Workshop on Computer Architecture Research with RISC-V,
2018.

[15] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5
simulator,” ACM SIGARCH computer architecture news, vol. 39, no. 2,
pp. 1–7, 2011.

[16] V. Herdt, D. Große, P. Pieper, and R. Drechsler, “RISC-V based virtual
prototype: An extensible and configurable platform for the system-level,”
Journal of Systems Architecture, vol. 109, p. 101756, 2020.

[17] M. Montón, “A RISC-V systemc-tlm simulator,” arXiv preprint
arXiv:2010.10119, 2020.

[18] C. Marantos, K. Salapas, L. Papadopoulos, and D. Soudris, “A flexible
tool for estimating applications performance and energy consumption
through static analysis,” SN Computer Science, vol. 2, pp. 1–11, 2021.

[19] J. Silveira, L. Castro, V. Araújo, R. Zeli, D. Lazari, M. Guedes,
R. Azevedo, and L. Wanner, “Prof5: A RISC-V profiler tool,” in 2022
IEEE 34th International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD). IEEE, 2022, pp. 201–210.

[20] “Spike RISC-V ISA simulator,” https://github.com/riscv-software-src/
riscv-isa-sim.

[21] M. Ali, E. Aliagha, M. Elnashar, and D. Göhringer, “RV-ProViler:
Evaluating RISC-V ISA for application-specific requirements,” in 2024
IEEE Nordic Circuits and Systems Conference (NorCAS). IEEE, 2024,
pp. 1–7.

[22] “RISC-V GNU Compiler Toolchain,” https://github.com/riscv-collab/
riscv-gnu-toolchain.

[23] P. Altenbernd, J. Gustafsson, B. Lisper, and F. Stappert, “Early execution
time-estimation through automatically generated timing models,” Real-
Time Systems, vol. 52, pp. 731–760, 2016.

[24] W. Zhang, M. Goli, and R. Drechsler, “Early performance estimation of
embedded software on RISC-V processor using linear regression,” in 2022
25th International Symposium on Design and Diagnostics of Electronic
Circuits and Systems (DDECS). IEEE, 2022, pp. 20–25.

[25] C. Mendis, A. Renda, S. Amarasinghe, and M. Carbin, “Ithemal: Accu-
rate, portable and fast basic block throughput estimation using deep neural
networks,” in International Conference on machine learning. PMLR,
2019, pp. 4505–4515.

[26] J. Blocklove, S. Garg, R. Karri, and H. Pearce, “Chip-chat: Challenges
and opportunities in conversational hardware design,” in 2023 ACM/IEEE
5th Workshop on Machine Learning for CAD (MLCAD). IEEE, 2023,
pp. 1–6.

[27] M. Hassan, S. Ahmadi-Pour, K. Qayyum, C. K. Jha, and R. Drechsler,
“LLM-guided formal verification coupled with mutation testing,” in 2024
Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 2024, pp. 1–2.

[28] S. Thakur, B. Ahmad, H. Pearce, B. Tan, B. Dolan-Gavitt, R. Karri, and
S. Garg, “Verigen: A large language model for verilog code generation,”
ACM Transactions on Design Automation of Electronic Systems, vol. 29,
no. 3, pp. 1–31, 2024.

[29] D. Saha, S. Tarek, K. Yahyaei, S. K. Saha, J. Zhou, M. Tehranipoor, and
F. Farahmandi, “LLM for SoC security: A paradigm shift,” IEEE Access,
2024.

[30] “Chroma,” https://js.langchain.com/v0.1/docs/integrations/vectorstores/
chroma/.

[31] “GPT-3.5,” https://platform.openai.com/docs/models/gpt-3-5-turbo.
[32] “LangChain,” https://www.langchain.com/.
[33] “CharacterTextSplitter,” https://js.langchain.com/v0.1/docs/modules/

data connection/document transformers/character text splitter/.
[34] SBERT, “all-MiniLM-L6-v2,” https://sbert.net/.
[35] “Vector store-backed retriever,” https://python.langchain.com/v0.1/docs/

modules/data connection/retrievers/vectorstore/.
[36] “FlashRank reranker,” https://python.langchain.com/v0.1/docs/

integrations/retrievers/flashrank-reranker/.
[37] “TensorFlow,” https://www.tensorflow.org/.
[38] Keras, “Random search,” https://keras.io/api/keras tuner/tuners/random/.
[39] “ChatPromptTemplate,” https://python.langchain.com/api reference/core/

prompts/langchain core.prompts.chat.ChatPromptTemplate.html.
[40] L. McInnes, J. Healy, and J. Melville, “Umap: Uniform manifold ap-

proximation and projection for dimension reduction,” arXiv preprint
arXiv:1802.03426, 2018.

