
Virtual Prototype driven Design, Implementation and
Evaluation of RISC-V Instruction Set Extensions

Milan Funck1 Vladimir Herdt1,2 Rolf Drechsler1,2
1Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany

2Institute of Computer Science, University of Bremen, 28359 Bremen, Germany
Milan.Funck@dfki.de, vherdt@uni-bremen.de, drechsler@uni-bremen.de

Abstract—RISC-V is a modern open source Instruction Set
Architecture (ISA) and designed in a very extendable manner,
which allows for highly application specific solutions. However, the
identification of suitable instruction set extensions usually requires
a significant manual effort and therefore is a very challenging
process. In this paper we propose a lightweight alternative method-
ology to find suitable application-specific RISC-V extensions, using
a Virtual Prototype (VP). This is done, purely by observing the used
instructions during the execution of the targeted application on
the VP. Therefore, no further information about the application
itself are needed. In this context the advantages and the flexibility
of a VP and the straightforward extendability of the RISC-V ISA
are demonstrated.

I. INTRODUCTION

Development of application specific integrated circuits is an
expensive and tedious process, but leads to way more efficient
solutions then conventional multipurpose-processors [1]. Due to
its extendability, the RISC-V Instruction Set Architecture (ISA)
serves the gap between these two approaches. RISC-V originated
in 2010 at the University of California, Berkeley, with the intend
to introduce a new and well thought through open source ISA,
serving as a stepping-stone for further development in this area.
The first official description was released in 2011 and the RISC-V
foundation was founded in 2015 [2]. RISC-V offers a mandatory
base integer instruction set in combination with a set of optional
standard instruction set extensions. Moreover, RISC-V is designed
from the ground up to support integration of additional custom
instruction set extensions. This provides everything needed, for a
efficient application specific processor design and a manageable
development process. Except for the compliance with the RISC-V
instruction format, there are in principle no restrictions to the func-
tionality of the custom instructions and therefore the main challenge
lies in the design of the instruction set extensions itself. Finding such
an extension often requires multiple extensive analyses combined
with complex graph theory and is very application dependent [3],
[4].

In this paper we instead propose a Virtual Prototype (VP) driven
approach, which works for any application and is tailored specif-
ically for the RISC-V ISA. By observing the executed RISC-V
instructions at run time in the Instruction Set Simulator (ISS) of the
VP, potential optimizations are identified. The application itself is
treated as a black box and the goal is to find an appropriate sequence
of instructions, that could be replaced by a custom instruction
in accordance with the RISC-V ISA, resulting in an increased
efficiency of the application. By using VPs, our analysis can be

This work was supported in part by the German Federal Ministry of
Education and Research (BMBF) within the project VE-HEP under contract
no. 16KIS1342 and within the project VerSys under contract no. 01IW19001.

978-1-6654-9431-1/22/$31.00 ©2022 IEEE

performed in the early stages of the design process, hence it is
suitable for early evaluations of RISC-V instruction set extensions.
The identified instruction set extensions can also be analyzed and
tested directly afterwards at the VP level. We use the open source
RISC-V VP, available at GitHub [5], as foundation to build our
VP-driven analysis approach. The VP is implemented in the stan-
dardized SystemC language using the industrial proven Transaction
Level Modeling (TLM) style [6], [7]. Our experiments demonstrate,
that our VP-driven approach is suitable to efficiently identify and
test application specific instruction set extensions for RISC-V.

The paper is structured as follows: following a discussion on
related work (Section II) and relevant background information (Sec-
tion III), we will start with discussing the theoretical background
and the requirements for such a VP-based analysis tool (Section IV).
Then, we discuss an implementation and integration of such a VP-
driven analysis and show evaluation results based on a case study
(Section V-A). Finally, we conclude the paper with a discussion on
future work (Section VI).

II. RELATED WORK

Analysis and integration of application specific instruction set
extensions is an important research topic. [8] investigate a compiler
based approach to analyze basic blocks to identify instruction ex-
tensions. [9] developed an approach to find candidate instructions
for speeding up neural network applications. In [10] an end-to-end
flow is investigated which supports in implementing instruction set
extensions based on the GCC tool chain. To support the imple-
mentation process of custom instructions, [11] investigate compiler
techniques to provide support for new instructions effectively. Other
approaches that identify custom instruction set extensions for exam-
ple rely on a feedback-driven approach to obtain candidates [3] or
analyze hardware accelerator blocks to provide a tightly coupled
instruction set extension with less communication overhead [4].

For RISC-V specifically, we are not aware of academic work
targeting identification of general purpose application specific in-
struction set extensions. Nonetheless, there exists work on designing
use-case specific instruction set extensions for example for cryp-
tographic operations [12]. In addition, the steadily growing RISC-
V ecosystem offers tools to describe and implement instruction set
extensions. Noteworthy approaches are based on the CoreDSL [13]
and SAIL [14] descriptions. They enable to specify the functionality
of the RISC-V instruction set extension at a high-level of abstrac-
tion. Such description language are complementary to our approach
as they can help in specifying implementing the instruction set
extension after it has been identified by our approach. With regard
to RISC-V, several instruction set extensions already exists which
are standardized or in the process of being standardized. Such
new instruction set extensions are being specifically designed to
cover a large set of applications, for example the instruction set
extensions for multiply, vector or bit operations. The work [15]

reports results on enhancing the RISC-V ISA in order to improve
code density by modifying the available instructions in the standard
instruction sets themselves. Finally, there exists proprietary tools,
such as provided by Codasip, to integrate custom instruction set
extensions in order to build domain specific processors [16]. At
the hardware level, another recent research direction proposed to
leverage a combination of FPGAs with a RISC-V processor to
enable reconfigurable instruction sets at run time [17].

III. PRELIMINARIES

This section reviews relevant background information on RISC-
V (Section III-A) as well asl SystemC TLM and the RISC-V VP
(Section III-B).

A. RISC-V ISA
The latest version of the RISC-V ISA includes a base integer

instruction set for 32 and 64 bit architectures and a first draft for
a 128 bit version. In addition to this, the RISC-V ISA contains
several standard extensions, such as the floating point extension, the
multiplication extension or the compressed instruction extension.
Also, there is a number of op-codes reserved for custom instruction
set extensions [18]. Every instruction follows a certain instruction
format, with the 7 lowest bits being the main part of the instructions
opcode. There are essentially six types of instruction, depending
on the constellation of used registers and immediate values. For
every instruction that uses one or more of the source and destination
registers, their position in the instruction is always the same. The
rest of the available bits is used to either encode an immediate-
value or extend the opcode space. Except for the 7-bit opcode,
custom instructions however do not necessarily have to follow this
convention and the remaining bits can be used to encode whatever
is desired and required for application specific purposes.

B. SystemC TLM 2.0 and RISC-V VP
SystemC [6] was introduced by the Open SystemC Initiative

(OSCI) in the year 1999. It is an extension of the C++ class
library and enables the modeling of hardware behavior or rather
the modeling of time, reactivity, hierarchy and concurrency. By
using communication mechanisms and hardware data types an event
based simulation core can simulate a desired hardware model. The
RISC-V VP uses a TLM 2.0 bus to connect the individual modules
via memory mapping. This way, data can be exchanged between
the modules from the software-side simply just by performing
read- and write-operations to the respective memory-address. A
transaction-object is then used inside of the VP to simulate the
data-transmissions. Therefore, only a TLM-interface and a certain
unused address-space is needed to add a new module through the
TLM-ports. Finally, a basic timing model is incorporated into the
RISC-V VP, which can be modified in the ISS to update the RISC-V
instruction execution timings and used in conjunction with the TLM
2.0 timing capabilities to suit the individual application [19].

IV. DYNAMIC INSTRUCTION ANALYSIS

In this section we describe our proposed approach for a dynamic
analysis method to design and evaluate application-specific instruc-
tion set extensions. First, we start with an overview of the core
concept, which is aided by a short example and then followed by
more detailed descriptions for the general procedure.

The goal of this approach is to find combinations of executed
instructions that could be replaced by a simple custom instruction,
resulting in less needed processor-cycles and instruction memory
space. For example the ADDI-instruction adds a given immediate-
value to the value of a given register and stores the result in a

Fig. 1. Overview on general procedure

given destination-register. This instruction could be used to incre-
ment a loop-iterator. In this case only one register is used and
the immediate-value would probably be 1. Hence the bits used to
encode two of the three parameters are wasted. If say a jump-
instruction to the beginning of the loop would follow, these bits
could be used to encode the offset-value for the jump.

This example shows, that certain combinations of instructions
could be encoded in a single one, if they are reduced to their
situational purpose. If the exact same sequence of instructions is
used very often during the execution of a certain algorithm, it
could be worth it, to use a custom extension instead. Therefore,
mainly two questions have to be answered, in order to formulate
an application-specific optimization proposal:

• Which executed instructions could be combined into a new
instruction?

• What added value would this new instruction actually bring?

To answer these questions, we designed a VP-based dynamic in-
struction analysis approach, that operates sequentially in four main
steps. Fig. 1 shows an overview of these four steps, which will be
described in the following respective subsections.

A. Gathering Executed Instructions

The first step is to gather a sample of executed instructions
representative of the application. The target algorithm should be
run inside of a simulation, close to the real target application
environment and in a representative scenario. The results of the
analysis will depend mostly on the quantity of sub-sequences of
executed instructions in relation to the overall executed instructions.
Hence it is advised to limit the number of gathered instructions to
where these proportions stay fairly stable. Apart from the gathered
instructions it is beneficial to store some additional information
about them, that could be useful for analysis. This includes the
number of executed instructions, the number of executed cycles for
each instruction and in total, which extensions are used, how often
each of the single instructions is executed and how many different
parameters are used.

B. Identifying Possible Custom Instructions

In the second step potential candidates for an instruction set
extension are identified. Each of them is represented by at least
one sub-sequence of the representative sequence of executed in-
structions and a corresponding custom instruction, that is able to
replace it. A certain sequence of instructions can only be replaced
by a custom instruction, if the execution of the latter results in the
same outcome, as the original sequence would. From the software-
side the only limitation of a custom instruction set extension is the
number of parameters (registers and immediate-values), that can
be encoded in the given instruction length. The actual execution
of the corresponding operations has then to be implemented in
hardware. The Example in the beginning of this section shows, that
some parameters of executed instruction are not always needed,
for example when the source-register and the destination-register
are the same. Therefore the main objective is to identify every
sub-sequence of executed instructions, that operates on a set of
parameters, which could be encoded in a single instruction. The
following strategies and considerations can be used to do so and will
be explained using the exemplary assembler code seen in Fig. 2:

1) Collecting Registers and Immediate Values: If the same
register or the same immediate value is used by more then one
executed instruction of a sequence, it has to be encoded just once.
For example in Fig. 2 the first two instructions use a total of two
different registers and both use the same immediate value. Therefore
the first custom instruction displayed in Fig. 2 could replace them.

2) Constant Immediate Values: Most immediate values use a
large amount of the available encoding space. However they do not
necessarily have to be encoded and instead the used immediate value
can be considered as constant for the custom extension. For example
in Fig. 2 the second and the third instruction use a total of two
different registers and two different immediate values. By choosing
one of them as constant the second custom instruction displayed in
Fig. 2 could replace them.

3) Constant Zero-Register: The RISC-V ISA specifies the
zero-register as a constant (hardwired) 0. Therefore it does not
necessarily have to be encoded, because using it as a destination-
register has no effect and using it as a source-register can be replaced
by using the value 0 directly. For example in Fig. 2 the fourth
instruction is used to subtract the value of register x3 from the
value of register x0 and store the result in the register x4. The actual
outcome is x4 being the negation of x3 and therefore encoding x0
would not be necessary in a corresponding custom instruction.

4) Skipping Instructions: When sequentially trying to fit the
parameters of multiple executed instructions in to a single one,
there obviously comes the point, where the next one does not fit
anymore. Under certain circumstances the next executed instruction
can be skipped to still make use of the remaining encoding space.
Of course, the skipped instruction then has to be executed after
the resulting custom instruction in the modified application code
and this is only possible, as long as the resulting change in the
execution order does not change the overall outcome. Effectively
that means, that an instruction can only be skipped and executed
later, if it does not write to registers, that would have been read
from afterwards and if it does not read from registers, that now are
written to, before the delayed execution. For example in Fig. 2 the
third and the fourth instructions use a total of four different registers
and one immediate value, which would be to many parameters to fit
into a custom instructions. However, changing the execution order
by swapping the fourth and the fifth instruction would have no effect
on the outcome, meanwhile the third and the fifth instruction could
actually be replaced by a custom instruction, because they only use

1 ADDI x3, x1, 15 -> x3 = x1 + 15
2 ADDI x1, x1, 15 -> x1 = x1 + 15
3 ADDI x2, x2, 11 -> x2 = x2 + 11
4 SUB x4, x0, x3 -> x4 = x0 - x3
5 ADD x2, x1, x2 -> x2 = x1 + x2
6 ADDI x4, x4, 9 -> x4 = x4 + 9
7 ADDI x5, x5, 11 -> x5 = x5 + 11

1 cust1 r1, r2, X -> r1 = r2 + X, r2 = r2 + X
2 cust2 r1, r2, X -> r1 = r1 + X, r2 = r2 + 11

Fig. 2. Exemplary Assembler Code

a total of two different registers and one immediate value, which can
be encoded in the available RISC-V custom instruction set format.

5) Multiple Solutions: For obvious reasons there can be mul-
tiple different possible custom instructions which could replace a
certain sequence of executed instructions. For example as already
established above, the second and the third instruction in Fig. 2
could be replaced with a custom instruction, by choosing at least one
of the immediate values as constant. The same goes for the sixth and
the seventh instruction, but when choosing the second immediate
value as constant, which in both cases is eleven, the corresponding
custom extension could actually replace both sub-sequences. In fact,
the whole exemplary sequence of instructions shown in Fig. 2 could
be replaced by a single custom instruction, when all the mentioned
strategies are used. The downside would be, that the corresponding
custom instruction would only be able to replace a very specific
sequence of instructions. Hence the resulting increase of efficiency
of the resulting instruction set extension would depend on the target
application. These examples show that it is best, to consider the
corresponding custom extensions for every possible combination
of instructions and constant/encoded parameters and the decision
of which ones are suited best for the target application should be
completely left to the third step, which will be explained in the next
subsection.

C. Calculation/Estimation of Optimization Values
The third step takes all the possible custom extensions identified

before, which then have to be evaluated and compared to find the
ones best suitable to optimize the target application-scenario. For
this reason the effective value of each of them has to be calculated
or estimated. This value is a product of the number of times,
the respective sub-sequence can be replaced in the representative
sequence of executed instructions (due to overlapping, this might
not be the number of times, the sub-sequence was actually found)
and the effective benefit from replacing this instruction string with
a corresponding custom instruction during execution. This benefit
is dependent on the chosen optimization goal and on the technical
feasibility. For example when aiming for a higher execution speed,
the number of saved processor cycles during execution could be
used, but it would be necessary to calculate the number of execution
cycles each of the identified custom instructions would save, when
replacing/parallelizing the corresponding sequence of instructions,
thus being highly dependent on the actual hardware implementation.
To simplify this step it is helpful to make some assumptions about
the shortest path of multiple instructions and estimate this value.
When implemented, the evaluation and the presentation of results
has to be highly parameterized and extendable, to allow for detailed
adjustments according to a specific optimization goal.

D. Choice and Test of Instruction Set Extensions
In this last step an optimization proposal is formulated. One or

more custom instructions are chosen from the established results,

Fig. 3. VP-Architecture for the Case-Study

implemented and tested. If this choice is done manually, it is advised
to limit and sort the established results on base of certain parameters,
because the list of possible custom instructions could potentially
be very long. As soon as a choice was made, a simulation based
implementation of the instruction set extension is the obvious start-
ing point. The application code and/or the used compiler have to be
modified to use the new custom instructions instead of the respective
sequence of instructions. Adaptable simulation approaches like the
RISC-V VP would allow for simulating and testing interactions with
the application environment rather precisely, thereby evaluating the
analysis results and the optimization proposal.

V. EVALUATION

We have implemented our proposed approach using the open
source RISC-V VP as a foundation. In this section we present
evaluation results using a reverb algorithm as a case study. In
the following we analyze the exemplary target application and the
influence of the different analysis parameters as well as the pro-
cess of adding instruction set extensions on VP-level is examined.
Furthermore the analysis results of the reverb algorithm are then
compared to those of a number of benchmark-algorithms, giving a
first impression of what to expect from this method (Section V-D).
The VP’s main components for the case-study are displayed in
Fig. 3 and will be explained in the following sections. Afterwards
the analysis results will be summarized and discussed (Section V-E).

A. Case Study - Reverb Algorithm
As the application in the center of the case study serves a reverb

algorithm. It takes a stream of audio samples as an input and applies
a number of different delays to it, before outputting a desired mix
of the original and the processed audio stream. The result is a
dense layer of echoes creating an impression of space to the audio
signal and a device like this is commonly used in audio production
environments. The actual implementation is based on the Schroeder-
Reverberator [20] and the algorithm is written in C/C++, using the
standard cross-compiler contained in the RISC-V toolchain [21].
Because of the fact, that the resulting algorithm almost entirely
consists of two different types of delays, that are applied over and
over again, a high potential for optimization is to be expected. The
goal is, to run this algorithm on a 32-bit RISC-V processor and
design a simple cost efficient instruction set extension containing
up to two custom instructions, to increase the execution efficiency.
In a real-world scenario the samples would be provided at a certain
sample rate by an AD-/DA-converter generating them from the
incoming analog audio signals. Furthermore it would convert the
processed samples back to the analog domain and pass them on
to the output of the overall device. Therefore a module is added
to the VP as (see Fig. 3), simulating this exact process. To do
so, a given exemplary wave-file is read in, extracting the samples
and sequentially providing them through memory mapping (TLM).

A bare-metal version of the reverb algorithm is run on the core,
accessing and manipulating these samples.

B. Implementation of the Analysis-Tool
For this case-study, the analysis-tool is integrated into a 32-

bit version of the RISC-V VP. Every instruction that is decoded
by the ISS is also copied into a list inside of the analysis-class.
Once the simulation of the target application is finished, said list
is sequentially run through and starting from each instruction,
the analysis-tool tries to fit as many consecutive instructions into
the given instruction space. This is done by using the strategies
mentioned in section IV-B. For every possible variation of con-
stant and encoded parameters, that would suffice to encode a sub-
sequence of instructions, a new custom instruction is created. Each
unique custom instruction as well as the respective number of
equivalent instances found (minus the ones that would overlap) is
then added to a second list and the individual optimization values
are calculated, according to the chosen analysis parameters. For
Example, in order to calculate the number of cycles, that a custom
instruction would need to execute a sequence of instructions all at
once, certain assumptions about the shortest path were made for
this case-study. Especially reading/writing from/to memory was ex-
cluded from possible parallel execution. The analysis-class contains
a number of parameters, the first of which being the maximum
number of instructions to be gathered. This can be used to reduce
the complexity and execution time of the analysis for longer and/or
repetitive applications. The next block of parameters influences
the identification of the possible custom instructions. This includes
the maximum number of instructions a custom instruction would
replace, the maximum number of constant immediate values, that
can be used and the maximum number of instructions that can
be skipped, if possible. Finally a number of parameters can be
used to determine how the resulting list of found instruction strings
should be evaluated and how detailed the results together with the
recommended instruction set extensions should be displayed.

C. Simulation and Verification of the Suggested Instruction Set
Extensions

The instruction set extensions suggested by the analysis tool
are tested as described in section IV-D. This requires them to
be included into the simulation process. Names and opcodes
have to be registered in the RISC-V VP, so the ISS is able to
decode and execute them. To simplify the addition of different
custom extensions, the actual execution is handled by an external
class, which uses a certain interface and implements the desired
functionality and its timing. For any custom instruction to be
actually used, whether in a simulation or otherwise, the instructions
also have to be registered in the RISC-V compiler. Specifically the
opcodes and the corresponding bit-masks, defining the structure
of the instructions as well as the instruction definitions specifying
the number/kind of encoded registers and immediate values have
to be added. Once the respective files contain these information,
the custom instructions can be used via inline-assembly or in the
assembler code directly. The application C++ file is compiled to
assembler code and modified by manually replacing the instruction
sequence in question with the new custom instructions. This new
assembler file is then compiled and executed on the RISC-V VP
with the corresponding instruction set extension enabled. For the
case-study the analysis revealed, that the following two custom
instructions together would bring the highest increase in efficiency:

| I-Immediate | r1 | empty (3 Bit) | r2 | 0001011 |

Fig. 4. Average percentage of instructions saved with one instruction over all
measured algorithms

Fig. 5. Average percentage of cycles saved with one instruction over all
measured algorithms

Replaced Instructions:
ADDI r1, r1 Immediate
SLLI r2 , r2 , 2 (constant)
ADD r2 , r1, r2

| I-Immediate | r1 | empty (8 Bit) | 0101011 |

Replaced Instructions:
LUI r1, 73728 (constant)
LW r1, r1, Immediate

Still it is worth mentioning, that the modification of the assembler
code might not always be as trivial as replacing a certain sequence
of instructions. In case of the primes benchmark algorithm for
example, the custom instruction suggested by the analysis-tool
is supposed to replace a sequence of instructions starting with a
conditional jump. In other words the particular sequence observed
during execution only happens, whenever the jump condition is
fulfilled. This leaves the question, how the resulting custom instruc-
tion should be implemented and how its hardware equivalent would
actually behave.

D. Analysis Results
The influence of the different analysis parameters is examined

by performing the analysis on the different algorithms with varying
configurations and comparing the outcome. The analysis of the
reverb algorithm shows, that the number of constant immediate
values available has a significantly higher influence on the quality

Fig. 6. Average number of possible custom instructions identified over all
measured algorithms

Fig. 7. Fibonacci-Algorithm: percentage of cycles saved with one custom
instruction

of the suggested optimizations, than the addition of a constant zero
register or the skipping of instructions. The same holds for the other
benchmark algorithms. For instance Fig. 6 displays the average
number of different possible custom instructions identified for the
algorithms, in relation to the analysis parameters. The exponential
correlation to the number of constants is clearly visible and the time
needed to finish an analysis run rises in a similar fashion.

Fig. 4 and Fig. 5 show the average instructions and cycles that
could be saved for the algorithms, when using the corresponding
best two custom instruction derived from the analysis results. With
a maximum of four to five constant immediate values, the opti-
mization potential does not increase any further. Only an extended
analysis of the Fibonacci-algorithm with up to 15 constant immedi-
ate values reveals, that at some point almost a fourth of the entire
algorithm could be encoded in one single custom instruction. In
Fig. 7 it can be observed, that this still does not lead to any real
improvements in terms of saved processor cycles.

E. Discussion
The case study shows, that above all the use of constant im-

mediate values enables a compression of multiple instructions into
one. A maximum number of at least five constant immediate val-
ues should be considered, to reach the best potential optimization
values. Beyond that the increase of constants does not lead to any
actual improvements, even though replacing instruction sequences
of extreme length might be possible. In case of the Fibonacci
benchmark algorithm almost the entire executed instruction se-
quence could be fitted into a custom instruction. Obviously the

TABLE I
IDENTIFIED OPTIMIZATION POTENTIAL

Algorithm saved instructions saved cycles savable cycles
Reverb 25,39 % 16,01 % 30,82 %

Fibonacci 32,98 % 8,86 % 20,42 %
Qsort 17,82 % 4,21 % 15,18 %

sha512 18,58 % 5,92 % 26,18 %
Primes 49,36 % 11,57 % 34,06 %

Mergesort 8,95 % 3,13 % 19,5 %

feasibility and the use of such an instructions is to be questioned.
All of this can be explained with the simple fact, that encoding
the immediate values takes up the most of the instruction space
and taking them out of the equation leaves more space for the
registers. In a majority of cases the compiler performs a number
of operations on a group of registers, that is small enough to be
encoded in a single instruction and therefore it can replace the whole
corresponding instruction sequence. Treating the zero-register as
constant can occasionally contribute to this effect. The approach
of skipping instructions on the other hand, might reach certain
optimization values without as many constants, but overall does
not create better results. There is no need to skip an instruction,
as soon as there is enough encoding space to include it into the
string. The fact that all these observations are based on the used
compiler and the algorithms chosen, has to be taken into account.
Also the algorithm dependent optimization potential in conjunction
with the chosen timing model and optimization premises is no direct
indicator for the quality of the optimization approach itself. For
that reason, the results of the analysis-tool should be compared
to the maximum potential optimization possible. Table I shows
the percentage of saved instructions and saved cycles, when using
the best combination of two custom instructions suggested by the
analysis tool for the respective algorithm. Additionally the last
column contains the maximum percentage of executed cycles that
could be parallelized, following the optimization premises used for
the analysis. To summarize, the analysis-tool implementing the pro-
posed approach delivers promising results. For the reverb algorithm
from the case study, a sequence of instructions was identified, whose
replacement with a custom instruction could save up to 15,27% of
the executed instructions and up to 9,63% of the processor cycles
needed. In combination with a second one, 25,39% of the executed
instructions and 16,01% of the processor cycles needed, which is
fairly impressive.

VI. CONCLUSION AND FUTURE WORK

The extendability of the RISC-V ISA proves to be very useful.
The base instruction set is similar to common architectures and
with the addition of a custom extension, a RISC-V processor
can meet most individual demands. The possibilities of extension
are almost endless, especially on the software-side. With only a
few modifications, the already established RISC-V compilers can
compile the new instructions via inline-assembly or by modifying
the assembler code directly. In the end, the feasibility of the hard-
ware implementation is the only limiting factor. Using a RISC-V
VP, as shown in this paper, is crucial to finding, simulating and
verifying such an extension. Because of its adaptable structure it
can be tailored to suit any specific situation. The use of a dynamic
instruction analysis-tool like the one proposed in this paper shows
very promising results. Of course, the potential for optimization is
very application depended, though the reverb-algorithm used for the
case study turns out to be a worthy candidate. The analysis-tool
was able to identify a possible increase in efficiency around 16%,

using only two simple custom instructions, that should not be to
complicated to implement in hardware. The overall idea of replacing
strings of instructions, observed during executing is simple and
effective. Especially the use of constant immediate values facilitates
fitting multiple instructions into one.

Regarding the handling of jump operations and the general
estimation of the implementation effort on both the hard- and
software side, there is still room for improvement. Combining the
dynamic instruction analysis with a static analysis of the application
code and an automated generation of the modified assembler code
could be helpful additions. Another strategy to consider is to save
on encoding some of the registers, similar to the use of constant
immediate values. Alternatively it could be allowed for one or more
custom instruction to have internal registers if necessary. Apart from
these improvements, an approach like this could be used to analyze
a wide range of different applications and combine the results, in
order to find further potent extensions. The application itself is
treated like a black box and almost no background knowledge about
it is required. Like the simulation itself, the analysis-tool can be
adjusted to fit the goals and restrictions of a desired optimization.

REFERENCES

[1] C. Galuzzi and K. Bertels, “The instruction-set extension problem: A survey,”
ACM Trans. Reconfigurable Technol. Syst., vol. 4, no. 2, may 2011. [Online].
Available: https://doi.org/10.1145/1968502.1968509

[2] (2020) RISC-V website. [Online]. Available: https://riscv.org
[3] U. Kastens, D. K. Le, A. Slowik, and M. Thies, “Feedback driven instruction-

set extension,” SIGPLAN Not., vol. 39, no. 7, p. 126–135, jun 2004. [Online].
Available: https://doi.org/10.1145/998300.997182

[4] N. Clark, W. Tang, and S. Mahlke, “Automatically generating custom instruc-
tion set extensions,” 2002.

[5] “RISC-V virtual prototype,” https://github.com/agra-uni-bremen/riscv-vp.
[6] IEEE Standard SystemC Language Reference Manual, 2011.
[7] T. De Schutter, Better Software. Faster!: Best Practices in Virtual Prototyping.

Synopsys Press, March 2014.
[8] D. Shapiro, M. Montcalm, and M. Bolic, “Parallel instruction set extension

identification,” in 2010 IEEE 26-th Convention of Electrical and Electronics
Engineers in Israel, 12 2010, pp. 000 535 – 000 539.

[9] D. Shapiro, J. Parri, J.-M. Desmarais, V. Groza, and M. Bolic, “Asips for
artificial neural networks,” SACI 2011 - 6th IEEE International Symposium on
Applied Computational Intelligence and Informatics, Proceedings, 05 2011.

[10] O. Almer, R. Bennett, I. Böhm, A. Murray, X. Qu, M. Zuluaga, B. Franke, and
N. Topham, “An end-to-end design flow for automated instruction set extension
and complex instruction selection based on gcc,” 1st International Workshop on
GCC Research Opportunities, Paphos, Cyprus, 04 2012.

[11] A. Murray and B. Franke, “Compiling for automatically generated instruction
set extensions,” in Proceedings of the Tenth International Symposium on
Code Generation and Optimization, ser. CGO ’12. New York, NY, USA:
Association for Computing Machinery, 2012, p. 13–22. [Online]. Available:
https://doi.org/10.1145/2259016.2259019

[12] B. Marshall, G. R. Newell, D. Page, M.-J. O. Saarinen, and C. Wolf,
“The design of scalar aes instruction set extensions for RISC-V,” IACR
Transactions on Cryptographic Hardware and Embedded Systems, vol. 2021,
no. 1, p. 109–136, Dec. 2020. [Online]. Available: https://tches.iacr.org/index.
php/TCHES/article/view/8729

[13] “Coredsl-instruction-set-description of RISC-V,” https://github.com/Minres/
RISCV ISA CoreDSL.

[14] “Riscv sail model,” https://github.com/riscv/sail-riscv.
[15] P. Petrov, “Enhancing the RISC-V instruction set architecture,” 2019.
[16] Z. Přikryl, “Creating domain-specific processors using custom RISC-V ISA

instructions,” 2020.
[17] N. Dao, A. Attwood, B. Healy, and D. Koch, “Flexbex: A RISC-V with

a reconfigurable instruction extension,” in 2020 International Conference on
Field-Programmable Technology (ICFPT), 2020, pp. 190–195.

[18] (2021) RISC-V isa manual git-repository. [Online]. Available: https://github.
com/riscv/riscv-isa-manual

[19] V. Herdt, D. Große, P. Pieper, and R. Drechsler, “RISC-V based virtual proto-
type: An extensible and configurable platform for the system-level,” Journal of
Systems Architecture, vol. 109, p. 101756, 02 2020.

[20] M. R. Schroeder, “Natural sounding artificial reverberation,” Journal Of The
Audio Engineering Society, 1962.

[21] (2020) RISC-V toolchain - git repository. [Online]. Available: https:
//github.com/riscv/riscv-gnu-toolchain

