
Special Session Paper: Formal Verification
Techniques and Reliability Methods for
RRAM-based Computing-in-Memory
Chandan Kumar Jha∗, Sumit Kumar Jha‡, Ulf Schlichtmann§, Rolf Drechsler∗†

∗ Institute of Computer Science, University of Bremen, Germany
† Cyber-Physical Systems, DFKI GmbH, Germany

‡ University of Florida, Gainesville, FL 32611, USA
§Chair of Electronic Design Automation, TU Munich, Germany

{chajha, drechsler}@uni-bremen.de, sumit.jha@ufl.edu, ulf.schlichtmann@tum.de

Abstract—Computing-in-memory (CIM) has gained immense
traction owing to the benefits it provides in power, performance,
and area. CIM can be done on a large variety of memory
elements like SRAM, DRAM, RRAM, etc. In this work, we
focus on the techniques using RRAM for the computations. First,
we explain the stateful and non-stateful techniques to perform
Logic-in-Memory (LiM) operations using RRAM crossbars. We
discuss the methods that are used to guarantee the correctness of
the mapping/micro-operations obtained from mapping tools like
SIMPLE-MAGIC. Second, we discuss the flow-based computing
techniques that alleviate the write operations when performing
the LiM operations and use the sneak-path currents to perform
the computations. We discuss the formal verification strategies
developed to guarantee the correctness of the logic operations
using flow-based computing. Lastly, we discuss the techniques
that have been developed to enable reliable computations using
RRAM devices even in the presence of variations, such as error
suppression and error reduction techniques. Finally, we explain
a technique employing basis vectors to reduce the necessity to
reprogram RRAM-based crossbars.

Index Terms—RRAMs, computing-in-memory, logic-in-
memory, multiply-and-accumulate, flow-based computing

I. INTRODUCTION

Non-von Neumann techniques are being actively explored
in computing to mitigate the challenges of the memory
bottleneck. Most of these architectures have been enabled
as a result of the immense progress in the emerging
devices [1]. Computing-in-memory (CIM) has gained traction
using SRAMs, DRAMs, and various emerging devices [2], [3].
RRAMs are one of such devices that have been extensively
investigated. RRAMs are used to perform computations in the
digital domain as well as the analog domain [4]–[7].

In the digital domain, the computations can be mapped
to the memristor crossbar by first realizing functionally
complete Boolean functions and then mapping the required
design to these functions. An example of a functionally
complete Boolean function using the MAGIC design style is
shown in Fig. 1. Typically, the functions can be implemented
as stateful logic like MAGIC [8], or non-stateful logic
like Majority [3], [9]. Both computing styles have their
advantages and disadvantages and are being simultaneously

Fig. 1. NOR gate implementation using MAGIC Design Style

investigated and have also been experimentally validated [10],
[11]. There are several works that have looked into the
generation of the mapping for a given design to the RRAM
crossbar operations [4], [5]. However, in recent years, formal
verification of these mappings has only been explored [12]–
[14]. This is crucial when developing automated design flows
for CIM. Recent works have also identified bugs in some of
the mappings obtained using these tools [12].

Complementary to the aforementioned CIM techniques,
flow-based computing (see Section III) constitutes an
alternative in-memory Boolean logic paradigm that transforms
the inherent “sneak-path problem” into its computational
engine. In this paradigm, each memristor in the crossbar is
programmed to encode a literal or its negation, and when
a bias voltage is applied to the input wordline, only those
conductive paths whose conjunction of literals evaluates to
true yield a measurable current at the output; all other paths
remain at leakage levels [7], [15]–[17]. While this approach
offers significant parallelism and energy efficiency, it also
introduces challenges, such as unintended conductive loops,
which necessitate formal verification methods. In addition to
implementing designs on the memristor crossbar using logic
operations, an alternative is to perform analog multiply-and-
accumulate (MAC) operations.

Deep neural networks (DNNs) are widely being used
successfully in many fields, e.g., image recognition and
language processing. They also represent the foundation for
generative AI. DNNs typically achieve their accuracy by
using a large number of layers [18]. As a result, a neural

network will contain tens of millions of weights and need to
perform hundreds of millions of MAC operations. Analog in-
memory computing platforms, such as crossbar arrays based
on emerging technologies, such as RRAM, have been proposed
in order to efficiently execute such MAC operations. MAC
operations are implemented in such platforms based on Ohm’s
law and Kirchhoff’s current law, using analog devices. This
results in high computation and energy efficiency.

However, these analog-based computing platforms suffer
from manufacturing process variations [19], [20]. Also, owing
to the huge size of today’s neural networks, typically, an entire
such network cannot be implemented onto an RRAM crossbar.
As a result, frequent reprogramming is required, slowing down
the computation efficiency of such a platform.

The rest of the paper is organized as follows. In Section II,
we discuss the formal verification techniques that are used for
the verification of LiM using stateful and non-stateful design
styles. Section III discusses formal verification techniques for
flow-based computing. In Section IV, we discuss the reliable
computation for analog MAC operations using RRAMs and
the techniques to reduce the necessity of reprogramming the
crossbars. Our conclusions are discussed in Section V.

II. FORMAL VERIFICATION METHODS FOR STATEFUL AND
NON-STATEFUL RRAM-BASED COMPUTING-IN-MEMORY

Logic-in-Memory (LiM) has been shown to offer significant
benefits in terms of power, performance, and area compared
to conventional computing. Hence, attempts have been made
to automate the design flow for Logic-in-Memory (LiM) [21].
While LiM can be achieved using SRAMs, DRAMs, RRAMs,
and other technologies, this work focuses on the design flows
developed using RRAMs [2], [3], [22]. Mapping arbitrary
designs to LiM has been extensively explored, and several
automated design flows have been developed to achieve this
goal. Mapping the designs onto the memristor crossbar can be
achieved in several different design styles, depending upon the
implementation of basic gates, i.e., MAGIC, IMPLY, FELIX,
MAJ, etc [8], [9], [23], [24]. The basic principle is based on
first implementing simple gates that are functionally complete,
and then any design is mapped to these sets of gates. There are
optimizations done to achieve the best mapping, i.e., in terms
of the number of required RRAMs, number of gates, number
of cycles required to do the computation, energy consumption,
etc [4], [9], [24]. Since there are a wide variety of factors
that need to be optimized, several automated methods for the
mapping of the designs on the memristor crossbars have been
explored [4], [5], [9], [25]. There also has been focus on the
generation of Spice netlists from microoperations [26], which
could then eventually be taped out to a chip.

While there have been several works that are focused on
the generation of the mapping, fewer efforts have been made
to guarantee its correctness. The correctness can traditionally
be guaranteed by manual checking, which is tedious for large
designs, or by functional simulations, which do not scale with
design size and are slow. This gap is being addressed in recent
years, where researchers are guaranteeing the correctness of

Fig. 2. VeriSIMPLER Framework adopted from [12].

the mapping using formal verification techniques. Formal
verification techniques can guarantee 100 percent correctness
and are ubiquitous in conventional design flows. Since the
research related to LiM is moving in the same direction, it
becomes crucial that verification flows are developed that are
tailored to LiM architectures.

We first discuss the prior works that have explored the
formal verification techniques to guarantee the correctness
of the mapping obtained. Formal verification of the
mapping/micro-operations (MAP) is done with respect to a
golden reference (GR) model by constructing a miter circuit
and then asking the Boolean Satisfiability (SAT) to check
for equivalence. If the MAP and GR are the same, there is
no satisfying assignment that makes the output of the miter
to be 1. Similarly, if the MAP is not equivalent to GR, a
counterexample is found for which the MAP differs from
GR [27], [28]. We then dive deeper into one of the recent
works that has developed a formal verification methodology
for the mapping obtained using the SIMPLER tool for the
MAGIC design style. It has two input memristors and one
output memristor. The output memristor is initialized to Logic
‘1’ before the operation is performed.

In [29], the issue related to no guarantees on the correctness
of the mapping generated by the SIMPLER MAGIC tool was
highlighted as the tool does not provide any formal proof. The
authors showed the limitation in the time required to perform
the Spice-based simulations for correctness, and proposed
using a behavioral model to accelerate the simulation to
guarantee the correctness using VHDL simulations. However,
this method is also based on simulations, which scale
exponentially with the number of inputs in the design. Hence,
they are impractical for larger designs.

In [5], a mapping framework for the Very Long Instruction
Word (VLIW) based on the ReVAMP architecture was
proposed. In addition to generating optimized mapping, the
design also uses the ABC tool to formally verify the mapping
generated using the tool. In this case, the mapping obtained is
guaranteed to be correct as the formal verification process is
integrated within the tool itself.

In [13], the authors proposed a formal verification
methodology for the mapping obtained using the Majority
(MAJ) logic. The authors proposed a file format for the
1T1R crossbar structure used to perform the logic operations.
The authors translate this file into an intermediate data
representation called the ReRAM Sequence Graph (ReSG).

The authors then generate the clauses from the original
Majority Inverter Graph (MIG) and compare them against
the clauses generated from the ReSG. This is done using the
Python Z3 solver. Hence, the mapping can be formally verified
and the guarantee for the correctness can be obtained.

In [14], a synthesis method was developed for the RRAM to
generate the mapping. The verification methodology involved
taking the mapping and generating various decision diagrams
like Binary Decision Diagrams (BDDs), Multiplicative Binary
Moment Diagrams (*BMDs), and Kronecker Multiplicative
BMDs (K*BMDs) for verification. The adder designs with
interleaved variable ordering gave significant improvement as
compared to the Python Z3-based methods.

In [12], the author proposes veriSIMPLER, a state-of-the-art
verification methodology for the mapping obtained from the
SIMPLER MAGIC tool. The overall framework is shown in
Fig. 2. This work does the formal verification of the mapping
obtained from the SIMPLER mapping tool with the original
Verilog design. It created a library of the basic gates available
in the Verilog code to generate their corresponding clauses.
There is a parser that generates the clause from the entire
Verilog design. This clause serves as the golden reference.
The clauses are then generated from the mapping obtained
for the SIMPLER MAGIC tool. The tool maps the design to
NOR and NOT gates, and the output needs to be initialized
to a low resistance state before performing any operation. The
clauses that are generated also take care of whether the output
memristors have been initialized to a low resistance state.
These clauses are then compared against the ones obtained
from the Verilog design to perform the formal verification.

The authors identified a bug in the mapping that occurred
whenever the mapping was done on the designs having their
outputs directly connected to the input. This was identified as
the technique was based on formal verification, and all the
corner cases were analysed. The authors then also proposed
a simple patch to correct the mapping and then performed
formal verification on the corrected mapping. This was the first
work that highlighted the issue with the mapping and further
necessitated the point that formal verification is essential and
needs to be incorporated in the design flow of LiM using
RRAMs. In a recent work, the authors have proposed a formal
verification methodology called veriSIM [30], to guarantee
the correctness of the spice netlists generated for LiM using
the MemSPICE tool [26]. It achieves this by generating the
clauses from the spice netlists and verifies it against the clauses
generated from the golden reference Verilog design.

There has also been research interest in the direction of
performing formal error analysis for the analog computations
using the memristor crossbars. The memristor crossbars can
be used for the matrix vector multiplication (MVL), by
exploiting the analog computations. Since there are non-
idealities in the RRAMs, it can lead to larger deterioration
in the output. In [31], a formal verification methodology for
finding the maximum possible error in resistive-switching-
based multilevel MVMs was developed.

III. FORMAL VERIFICATION METHODS FOR FLOW-BASED
IN-MEMORY COMPUTING

Resistive RAM (RRAM) crossbars implement flow-based
in-memory Boolean logic [7] by programming each memristor
at the intersection of a horizontal (wordline) and a vertical
(bitline) nanowire to encode a literal or its negation, exploiting
naturally occurring sneak-path currents as the computational
primitive. When a bias voltage is applied to a designated
input wordline, current propagates through all conductive
paths composed of ON-state (low-resistance) memristors,
each path corresponding to a minterm of the target Boolean
function. If and only if the function evaluates to true
under the current input assignment, a non-negligible current
appears at a designated output wordline or bitline; otherwise,
only leakage-level currents flow. Figure 3 shows a typical
sneak path in a 4×3 crossbar. Flow-based computing [15]–
[17] counterintuitively exploits the “sneak path problem” to
perform computation using nanoscale RRAM crossbars.

Fig. 3. Example sneak-path in a 4×3 RRAM crossbar. The red trace begins
at Vs, passes through memristors ¬b[1] → a[0] → b[0] → ¬a[1], and finally
drives the output resistor Rs computing the minterm a[0] b[0] ¬a[1] ¬b[1].

However, if not designed correctly, the same network of
sneak paths that implements intended minterms can also
produce unintended conductive loops, introducing sneak-
path leakage that corrupts outputs. In addition, real RRAM
devices exhibit analog variability in their ON-state (RON)
and OFF-state (ROFF) resistances, narrowing sensing margins
and potentially causing false logic interpretation absent a
formal worst-case analysis. Thus, formal verification methods
ranging from graph-based Boolean abstractions to bounded
model checking are essential to ensure correctness, manage
sneak-path constraints, and bound variability-induced errors
in flow-based RRAM computing. Below, we survey three
existing complementary approaches [32]–[34] that address the
undirected, cyclic conductance graph induced by bidirectional
ON-state memristors.

A. Graph-Based Path Extraction with Dynamic Shrinking

Flow-based RRAM crossbars create conductance graphs
in which bidirectional ON-state memristors form cycles.
Unlike classical combination circuits, which can be modeled
as directed acyclic graphs, these cycles prevent the direct

application of standard SAT-based equivalence checking
to flow-based computing. A graph-based path extraction
framework overcomes this by casting verification as a graph-
reachability problem [32]. Given a crossbar design D intended
to implement Boolean formula φ, one constructs an undirected
bipartite graph GD = (V,E), where each vertex in V
represents a wordline (row) or bitline (column), and each edge
in E corresponds to an ON-state memristor labeled by the
literal it encodes (e.g., x or ¬x). Any simple path from the
designated input node Rin (driven wordline) to the designated
output node Cout (sensed bitline) corresponds to a minterm:
the conjunction of literals labeling the edges along that path.
Consequently, the function implemented by the crossbar φD

is the disjunction of all these simple path implicants.
The direct enumeration of all the simple paths in GD

would lead to a combinatorial explosion. To mitigate this,
two dynamic graph-shrinking rules are applied during path
exploration. First, whenever a partial path has traversed literal
x, any edge labeled ¬x is removed, since any path containing
both x and ¬x is unsatisfiable. Second, if a partial path
includes literal x, all remaining edges labeled x may be
contracted into a single representative node as revisiting the
same literal adds no new implicants. These two rules, the
contradiction rule and the idempotence rule, significantly
prune the search space by eliminating impossibilities and
redundancies.

Once dynamic shrinking is exhausted, all remaining simple
paths in the reduced graph G′

D are enumerated to extract
a factored sum-of-products formula φD. In the subsequent
phase, φD is compared against the specification φ by
constructing a SAT-based equivalence miter. If the solver
returns UNSAT, φD ≡ φ and functional equivalence is
certified; otherwise, a counterexample input demonstrates non-
equivalence.

Experimental results [32] on 25 RevLib benchmarks
validate the efficacy of dynamic shrinking. These findings
confirm that graph-based path extraction, coupled with SAT-
based miter checking on the extracted formula, can efficiently
verify flow-based crossbars of moderate size. However, several
opportunities remain open for future research. The use
of paths coupled with rule-based simplifications could be
replaced by more symbolic approaches that avoid such explicit
enumeration. Methods that use richer data structures such as
trees instead of paths may be able to scale better to large
problems.

B. Time-Unrolled Bounded Model Checking

Rather than enumerate paths, one may time-unroll the
undirected conductance graph into a directed acyclic model,
enabling conventional SAT-based equivalence checking [33].
Starting from the compressed undirected bipartite graph
GD = (V,E) obtained after removing OFF-state memristors
and contracting constant ON edges, our approach introduces
Boolean state variables for each wordline Rt

i and bitline Ct
j

at each discrete time step t = 0, 1, . . . , T , where T = |V |. At
t = 0, the designated input row variable R0

in is asserted true,

signifying the application of the bias voltage. For t ≥ 1, the
state transitions are defined as

Rt
i =

∨
(i,j)∈E

(
mij ∧ C t−1

j

)
, i = 1, . . . ,M, 1 ≤ t ≤ T,

Ct
j =

∨
(i,j)∈E

(
mij ∧R t−1

i

)
, j = 1, . . . , N, 1 ≤ t ≤ T,

with Rt
in = 1 for all 0 ≤ t ≤ T . Here, mij is a Boolean

constant indicating whether memristor (i, j) is ON under the
current input assignment. The crossbar’s implemented function
then satisfies φD =

∨T
t=0 R

t
out, where Rout is the designated

output row. Translating these transition relations and the output
condition into CNF via Tseitin transformation yields a SAT
instance F (φD); combined with the specification φ as a miter(
F (φD)⊕ F (φ)

)
, UNSAT implies φD ≡ φ.

A key challenge is that the SAT formula grows as O(T |E|)
clauses, which is prohibitive for large crossbars. To address
this, a divide-and-conquer strategy fixes high-frequency input
literals to concrete values, partitioning the original problem
into smaller subproblems. After initial graph compression
removing OFF memristors and contracting ON edges, input
variables are sorted by occurrence frequency. The top k
variables are recursively fixed to true or false, removing and
contracting corresponding edges at each step. Once either the
reduced graph falls below a threshold or a recursion depth
limit is reached, the bounded model checking encoding is
applied to the remaining subgraph and solved by SAT. Since
each leaf subproblem is much smaller, parallel SAT solving
dramatically reduces total runtime, outweighing the overhead
of graph compression and decomposition.

On a suite of 19 MCNC benchmarks, the base time-
unrolled formulation verified all instances within one hour,
outperforming graph-based path extraction and prior neural-
network heuristics [33]. Future efforts may focus on
partitioning the bounded model checking problem using
variables obtained by symbolic analysis such as model
counting instead of frequency counts involving input literals.

C. Iterative Directed-Edge SAT Refinement

A third strategy [34] employs an iterative SAT refinement in
which each ON-edge in the undirected conductance graph is
assigned a direction under a given input, converting the graph
into a directed acyclic graph. One introduces Boolean node
variables Ri for each wordline i and Cj for each bitline j,
indicating whether that wire conducts current. For each ON-
state memristor at intersection (i, j) labeled by literal ℓij , two
“edge-orientation” variables Di→j and Dj→i denote whether
current flows from wordline i to bitline j or vice versa. Exactly
one of these variables must be true whenever ℓij evaluates
to true. To enforce logical consistency, node and orientation
variables satisfy

Ri =⇒
∨

{ j:mij=1}

D j→i, Cj =⇒
∨

{ i:mij=1}

D i→j ,

where mij is true if and only if ℓij holds under the current
input assignment. Assigning exactly one orientation to each

ON-edge prevents any 2-node cycle (Ri ↔ Cj); however,
longer directed cycles (length ≥ 3) may persist.

To detect such spurious cycles, one constructs a directed
graph Gdir whose vertices are {Ri} ∪ {Cj}, including edge
(u → v) whenever the SAT model sets the corresponding
orientation variable to true. A standard directed-cycle detection
algorithm is applied to Gdir. If no cycle is found, the
assignment yields a valid conductive path from input to output
that diverges from the specification, and non-equivalence is
declared with a counterexample. If a directed cycle is detected,
a single “cycle-blocking” clause is added to the SAT instance
to forbid exactly that cycle. Specifically, if the cycle traverses
{Di1→i2 , Di2→i3 , . . . , Dik→i1}, one introduces

¬Di1→i2 ∨ ¬Di2→i3 ∨ · · · ∨ ¬Dik→i1 .

The SAT solver is then re-invoked, and this cycle-blocking
process repeats until the formula becomes UNSAT certifying
equivalence, or yields a cycle-free satisfying assignment
demonstrating non-equivalence.

Since only cycles actually produced by the SAT model are
eliminated, the number of added clauses remains modest in
practice. Moreover, this SAT formulation uses only O(M +
N + K) variables, where M and N are the numbers of
wordlines and bitlines, and K is the number of ON-state
memristors whose literals evaluate to true. This contrasts with
time-unrolled formulations, which introduce a multiplicative
factor of T = |V | in variables. Empirical evaluation [34]
on benchmark circuits shows that iterative directed-edge SAT
refinement converges rapidly and typically require only a
handful of cycle-blocking clauses per input assignment.

This approach often outperforms time-unrolled bounded
model checking by an order of magnitude on medium to large
crossbars, while maintaining a compact encoding that captures
all potential conductive paths under ideal binary switching.
Future research directions may include a tighter integration of
the counterexample-guided inductive synthesis approach [35].

IV. DEALING WITH NON-IDEALITIES IN RRAMS

RRAM crossbar arrays can perform multiply-and-
accumulate (MAC) operations efficiently using Ohm’s and
Kirchhoff’s laws. In RRAM cells, the conductances are
programmed to specific values to represent computational
weights of neural networks. However, such an analog system is
inherently susceptible to process variations and environmental
noise [36], [37]. Consequently, weights in neural networks
implemented on the RRAM crossbar arrays can deviate from
the expected values, leading to severe accuracy degradation.

The traditional approach to alleviate this problem is to
reprogram the crossbar arrays, typically multiple times, to
counteract the variations and keep the weight values accurate.
In contrast to traditional approaches, we propose an alternative
approach: error suppression and error compensation can be
implemented in neural networks to deal with variations [38],
[39].

In addition, due to limited resources, on-chip RRAM
crossbars usually do not offer sufficient capacity to store the

weights of a complete neural network at one time. Thus,
to run a complete neural network, an RRAM crossbar is
reprogrammed and reused many times to represent different
weights. As a result, these frequent reprogramming operations
can significantly decrease the computational efficiency of
RRAM-based in-memory-computing and eventually make this
new computing paradigm unusable.

To address this challenge, we propose BasisN, a technique
that uses base decomposition, representing computational
kernels as combinations of global basis vectors shared across
all layers to reduce and even avoid reprogramming in RRAM
crossbars [40].

A. Error suppression and error compensation in RRAM-based
in-memory-computing

To avoid the amplification of errors across successive layers,
Lipschitz constant regularization is introduced to suppress
errors propagating throughout the network. A function f :
X → Y is Lipschitz constrained if

∥f(x1)− f(x2)∥p ≤ k∥x1 − x2∥p, ∀x1, x2 ∈ X (1)

where the p-norm ∥ · ∥p denotes the p-norm distance between
two vectors, and the Lipschitz constant L(f) = k describes
how f scales with respect to input changes. This property can
be used to suppress errors in one layer. Assume the nominal
input to a given layer is denoted as x1, the input affected
by variations in the previous layers is denoted as x2, and the
function of the layer that maps its input to the output is denoted
as fi(·). Then, the deviation in the output of the layer from the
nominal value can be bounded by k. By constraining k ≤ 1,
any change in the input will not be amplified.

Assume that the variation of a weight has a log-normal
distribution as

w = wnominal ∗ eθ, where θ ∼ N (0, σ2) (2)

where wnominal is the nominal value of a trained weight, and θ
is a Gaussian random variable with σ as its standard deviation.
For each layer in the neural network, its function fi can be
decomposed into an affine transformation followed by a ReLU
activation function. The ReLU function does not amplify input
deviations, and its Lipschitz constant is always equal to 1.
Therefore, to suppress error amplification in this layer, we
require

∥(w ◦ eθ) · x1 + b− [(w ◦ eθ) · x2 + b]∥p ≤ k∥x1−x2∥p (3)

where w is the weight matrix, b is the bias vector, and ◦
denotes the element-wise multiplication. We then use µeθ +
3 · σeθ to bound the random variable eθ, and the weights can
be constrained as

∥w∥p ≤ λ, λ =
k

e
σ2

2 + 3 ·
√
(eσ2 − 1)eσ2

(4)

We use the L2 norm to bound w, and define the loss function
as

L = LCE + β ·
∑

wi∈W

∥∥w⊤
i wi − λ2I

∥∥
2

(5)

Fig. 4. Error compensation modules for a convolutional layer (adopted from
[38]).

where LCE is the original cross-entropy loss, wi is the
weight matrix of the ith layer, W is the set of all layer
weight matrices, and β is a regularization hyperparameter. By
applying the regularization term, the Lipschitz constraint is
applied across all layers, and errors in all layers in the neural
network can be suppressed.

Furthermore, lightweight error compensation is introduced
to early layers of the neural network to enhance the accuracy.
The compensation modules are illustrated in Figure 4 [38]. A
generator first creates compensation data from layer inputs
and outputs. The generator is a small convolutional neural
network with m filters of size 1 × 1 × (l + n), where l and
n are the numbers of input feature maps and output feature
maps in the original layer (conv1), respectively. Afterwards,
the compensation data is used by a compensator to reduce the
errors propagated through this layer. The compensator is also
a convolutional layer that takes the compensation data and
the output feature maps of the original layer as input. This
compensator contains n filters of size 1 × 1 × (n + m). To
reduce the computational overhead, both the generator and
the compensator use 1 × 1 convolution kernels. The error
compensation is executed on digital circuits.

The locations and the number of filters of the compensation
modules are determined using reinforcement learning (RL)
with a policy neural network. To balance accuracy and
computational cost, the reward function for training the
policy neural network considers both inference accuracy
improvement and the additional computational overhead
introduced by the generator and compensator. In the
experiments, the computational overhead was constrained to
only 1%, 2%, or 3% of the total number of original network
weights.

According to the experimental results in [38] using
VGG16 [41] and LeNet-5 [42] to process CIFAR-100,
CIFAR-10, and MNIST, the proposed method can recover
inference accuracy from as low as 1.69% under variations
and noise to over 95% of the original accuracy. Moreover,
the proposed method is very general and can be combined
with existing techniques to enhance computing accuracy of
RRAM-based in-memory-computing platforms [43]–[47], as
well as other analog computing solutions such as optical neural
networks [48]–[53].

Fig. 5. Representation of the weights of a convolutional layer using BasisN.
a) kernel reshaping. b) kernel representation as a linear combination of basis
vectors. c) kernel implementation using basis vectors pre-programmed in a
crossbar (adopted from [40]).

B. Programming reduction in RRAM in-memory-computing by
base decomposition

To implement neural networks with various sizes onto the
on-chip RRAM crossbar arrays, layers of a neural network are
usually reshaped into 2D matrices and segmented into small
submatrices as in Figure 5(a).

As any vector in a vector space can be represented as a
linear combination of basis vectors spanning that space, we
assume the weight matrices in a neural network can also
be represented by combinations of a set of basis vectors.
Figure 5(b) illustrates a d × d submatrix represented by
weighted combinations of basis vectors as

ki,j =

d∑
l=1

Ci,j,l · bl (6)

where i denotes the kernel index, j denotes the partition index,
and d denotes the crossbar dimension. {b1, . . . , bd} is the set of
basis vectors stored in the crossbars and shared by all layers
of the neural network mapped onto the crossbars and Ci,j,l

is the coefficient of the kernel partition ki,j for the lth basis
vector.

The basis vectors are programmed onto the RRAM crossbar
arrays once and the different weight matrices are realized
by implementing different control coefficients of the basis
vectors. To allow efficient hardware implementation of the
neural network, the coefficients Ci,j,l are restricted to specific

values or quantized values. Figure 5(c) shows an example
using 1-bit control coefficients. The coefficients are realized
by transmission gates at the bottom of the crossbar columns.
By controlling the current flow with the transmission gates, the
control bits {0, 1} are realized. To improve the expressiveness
of the weight matrices, multi-bit coefficients are necessary
and are implemented through time multiplexing. At each time
step, the computation for a single bit significance of the
control coefficients is performed. The partial results from the
time steps are shifted according to their bit significance and
accumulated in the output registers in the digital domain.

Afterwards, the neural network is trained to match the
combination of basis vectors. In the training, the basis
vectors are initialized as random orthogonal matrices, and
the coefficients are initialized to random values under the
quantization constraints. To optimize the basis vectors and
coefficients simultaneously, an alternating training manner
is adopted. Specifically, the training alternates between
optimizing the control coefficients while keeping the global
basis vectors fixed, and fine-tunes the global basis vectors
while keeping the control coefficients fixed.

The framework was evaluated on ResNet34 [54] and
DenseNet121 [55] across CIFAR-100 and ImageNet datasets
using 256×256 RRAM crossbars, and the control coefficients
were set to 4 bits. With similar inference accuracy, cycles per
inference and energy-delay product were reduced to below 1%
compared with applying row-wise [56] and block-wise [57]
reprogramming on crossbars, while the training and hardware
costs are negligible.

V. CONCLUSION

In this paper, we summarize the recent efforts that are being
investigated to guarantee the correctness of computations using
RRAMs. We first discuss the formal verification techniques
that are being investigated for LiM design styles that require
write operations while performing the computations. Boolean
satisfiability-based methods are being used for the verification
of the mapping and the micro-operations for LiM using design
styles like MAJ and MAGIC. We then discuss the flow-based
computing [7] technique that uses the sneak paths in the
memristor crossbar to perform computations, also called flow-
based computing. Since the sneak paths are used to implement
the Boolean function, formal verification is used to ensure that
the Boolean functions are correctly implemented using the
desired sneak paths. Unlike LiM techniques using MAGIC,
SAT-based techniques cannot be used directly. Hence, three
separate strategies for formal verification are shown. Lastly,
we discuss the methodology that ensures reliable computations
of MAC operations in memristor crossbars. It focuses on
ensuring reliable computations, i.e., error suppression and
error compensation techniques. In addition, the BasisN
framework reduces the number of reprogramming cycles.

ACKNOWLEDGEMENTS

This work was supported by the German Research
Foundation (DFG) within the Projects PLiM (DR 287/35-2),

Project 457473137, and Reinhart Koselleck Project PolyVer
under Grant DR 287/36-1, and National Science Foundation
award 2408925.

REFERENCES

[1] A. Chen, J. Hutchby, V. Zhirnov, and G. Bourianoff, Emerging
nanoelectronic devices. John Wiley & Sons, 2014.

[2] O. Mutlu, A. Olgun, G. F. Oliveira, and I. E. Yuksel, “Memory-centric
computing: Recent advances in processing-in-dram,” in 2024 IEEE
International Electron Devices Meeting (IEDM). IEEE, 2024, pp. 1–4.

[3] S. Shirinzadeh, M. Soeken, P.-E. Gaillardon, and R. Drechsler, “Logic
synthesis for rram-based in-memory computing,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 37,
no. 7, pp. 1422–1435, 2017.

[4] R. Ben-Hur, R. Ronen, A. Haj-Ali, D. Bhattacharjee, A. Eliahu, N. Peled,
and S. Kvatinsky, “Simpler magic: Synthesis and mapping of in-
memory logic executed in a single row to improve throughput,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 39, no. 10, pp. 2434–2447, 2019.

[5] D. Bhattacharjee, A. Chattopadhyay, S. Dutta, R. Ronen, and
S. Kvatinsky, “Contra: area-constrained technology mapping framework
for memristive memory processing unit,” in Proceedings of the 39th
International Conference on Computer-Aided Design, 2020, pp. 1–9.

[6] T. Schnittka, C. K. Jha, S. Ahmadi-Pour, and R. Drechsler, “River:
Sneak path aware read-based in-memory computing for 1t1m memristive
crossbars,” in 2025 IEEE 28th International Symposium on Design and
Diagnostics of Electronic Circuits and Systems (DDECS). IEEE, 2025,
pp. 31–36.

[7] S. K. Jha, D. E. Rodriguez, J. E. Van Nostrand, and A. Velasquez,
“Computation of boolean formulas using sneak paths in crossbar
computing,” Apr. 19 2016, US Patent 9,319,047.

[8] S. Kvatinsky, D. Belousov, S. Liman, G. Satat, N. Wald, E. G. Friedman,
A. Kolodny, and U. C. Weiser, “Magic—memristor-aided logic,” IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 61, no. 11,
pp. 895–899, 2014.

[9] S. Shirinzadeh, M. Soeken, P.-E. Gaillardon, and R. Drechsler, “Fast
logic synthesis for rram-based in-memory computing using majority-
inverter graphs,” in 2016 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 2016, pp. 948–953.

[10] A. Bende, S. Singh, C. K. Jha, T. Kempen, F. Cüppers, C. Bengel,
A. Zambanini, D. Nielinger, S. Patkar, R. Drechsler et al., “Experimental
validation of memristor-aided logic using 1T1R TaO x rram crossbar
array,” in 2024 37th International Conference on VLSI Design and 2024
23rd International Conference on Embedded Systems (VLSID). IEEE,
2024, pp. 565–570.

[11] L. Brackmann, T. Ziegler, D. J. Wouters, and S. Menzel, “Experimental
verification and evaluation of non-stateful logic gates in resistive ram,”
IEEE Transactions on Circuits and Systems I: Regular Papers, 2024.

[12] C. K. Jha, K. Qayyum, K. Ç. Coşkun, S. Singh, M. Hassan, R. Leupers,
F. Merchant, and R. Drechsler, “verisimpler: An automated formal
verification methodology for simpler magic design style based in-
memory computing,” IEEE Transactions on Circuits and Systems I:
Regular Papers, 2024.

[13] K. Bhunia, A. Deb, K. Datta, M. Hassan, S. Shirinzadeh, and
R. Drechsler, “Resg: A data structure for verification of majority-
based in-memory computing on reram crossbars,” ACM Transactions
on Embedded Computing Systems, vol. 23, no. 6, pp. 1–24, 2024.

[14] K. Qayyum, A. Kole, K. Datta, M. Hassan, and R. Drechsler, “Exploring
the potential of decision diagrams for efficient in-memory design
verification,” in Proceedings of the Great Lakes Symposium on VLSI
2024, 2024, pp. 502–506.

[15] D. Chakraborty and S. K. Jha, “Automated synthesis of compact
crossbars for sneak-path based in-memory computing,” in Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2017.
IEEE, 2017, pp. 770–775.

[16] Z. Alamgir, K. Beckmann, N. Cady, A. Velasquez, and S. K. Jha, “Flow-
based computing on nanoscale crossbars: Design and implementation of
full adders,” in 2016 IEEE International Symposium on Circuits and
Systems (ISCAS). IEEE, 2016, pp. 1870–1873.

[17] A. U. Hassen, D. Chakraborty, and S. K. Jha, “Free binary
decision diagram-based synthesis of compact crossbars for in-memory
computing,” IEEE Transactions on Circuits and Systems II: Express
Briefs, vol. 65, no. 5, pp. 622–626, 2018.

[18] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
pp. 436–444, 2015.

[19] D. Niu, Y. Chen, C. Xu, and Y. Xie, “Impact of process variations
on emerging memristor,” in ACM/IEEE Design Automation Conference
(DAC), 2010, pp. 877–882.

[20] G. Pedretti, E. Ambrosi, and D. Ielmini, “Conductance variations and
their impact on the precision of in-memory computing with resistive
switching memory (rram),” in 2021 IEEE International Reliability
Physics Symposium (IRPS). IEEE, 2021, pp. 1–8.

[21] C. Marchand, I. O’Connor, M. Cantan, E. T. Breyer, S. Slesazeck, and
T. Mikolajick, “Fefet based logic-in-memory: an overview,” in 2021 16th
International Conference on Design & Technology of Integrated Systems
in Nanoscale Era (DTIS). IEEE, 2021, pp. 1–6.

[22] C.-J. Jhang, C.-X. Xue, J.-M. Hung, F.-C. Chang, and M.-F. Chang,
“Challenges and trends of sram-based computing-in-memory for ai edge
devices,” IEEE Transactions on Circuits and Systems I: Regular Papers,
vol. 68, no. 5, pp. 1773–1786, 2021.

[23] S. Kvatinsky, A. Kolodny, U. C. Weiser, and E. G. Friedman,
“Memristor-based imply logic design procedure,” in 2011 IEEE 29th
International Conference on Computer Design (ICCD). IEEE, 2011,
pp. 142–147.

[24] S. Gupta, M. Imani, and T. Rosing, “Felix: Fast and energy-efficient
logic in memory,” in 2018 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). IEEE, 2018, pp. 1–7.

[25] X. Qian, C. Lv, Z. He, and W. Qian, “A recursive partition-
based in-memory simd computation scheduler for memory footprint
minimization,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 2024.

[26] S. Singh, C. K. Jha, A. Bende, V. Rana, S. Patkar, R. Drechsler, and
F. Merchant, “Memspice: Automated simulation and energy estimation
framework for magic-based logic-in-memory,” in 2024 29th Asia and
South Pacific Design Automation Conference (ASP-DAC). IEEE, 2024,
pp. 282–287.

[27] A. Gupta, M. K. Ganai, and C. Wang, “Sat-based verification methods
and applications in hardware verification,” in International School on
Formal Methods for the Design of Computer, Communication and
Software Systems. Springer, 2006, pp. 108–143.

[28] E. I. Goldberg, M. R. Prasad, and R. K. Brayton, “Using sat
for combinational equivalence checking,” in Proceedings Design,
Automation and Test in Europe. Conference and Exhibition 2001. IEEE,
2001, pp. 114–121.

[29] M. A. Zaman, R. Joshi, and S. Katkoori, “High level modeling of
memristive crossbar arrays,” in 2020 IEEE Computer Society Annual
Symposium on VLSI (ISVLSI). IEEE, 2020, pp. 524–529.

[30] C. K. Jha, S. Singh, K. Qayyum, A. Bende, M. Hassan, V. Rana,
F. Merchant, and R. Drechsler, “verisim: Formal verification of
spice netlists for magic-based logic-in-memory,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 2025.

[31] K. C. Coskun, C. K. Jha, M. Hassan, and R. Drechsler, “Formal
verification of error bounds for resistive-switching-based multilevel
matrix-vector multipliers,” in 2025 26th International Symposium on
Quality Electronic Design (ISQED), 2025, pp. 1–8.

[32] S. Thijssen, S. Kumar Jha, and R. Ewetz, “Equivalence checking for
flow-based computing,” in 2022 IEEE 40th International Conference on
Computer Design (ICCD), 2022, pp. 656–663.

[33] S. Thijssen, S. Singireddy, M. R. H. Rashed, S. K. Jha, and R. Ewetz,
“Verification of flow-based computing systems using bounded model
checking,” in 2023 IEEE/ACM International Conference on Computer
Aided Design (ICCAD). IEEE, 2023, pp. 1–9.

[34] S. Thijssen, M. R. H. Rashed, M. R. Ahmed, S. Singireddy, S. K.
Jha, and R. Ewetz, “Equivalence checking for flow-based computing
using iterative sat solving,” in Proceedings of the 43rd IEEE/ACM
International Conference on Computer-Aided Design, ser. ICCAD ’24.
New York, NY, USA: Association for Computing Machinery, 2025.
[Online]. Available: https://doi.org/10.1145/3676536.3676721

[35] S. K. Jha, Towards automated system synthesis using sciduction.
University of California, Berkeley, 2011.

[36] D. Niu, Y. Chen, C. Xu, and Y. Xie, “Impact of process
variations on emerging memristor,” in ACM/IEEE Design Automation
Conference(DAC), 2010.

[37] B. Liu, H. Li, Y. Chen, X. Li, Q. Wu et al., “Vortex: Variation-
aware training for memristor x-bar,” in ACM/IEEE Design Automation
Conference(DAC), 2015.

[38] A. Eldebiky, G. L. Zhang, G. Boecherer, B. Li, and U. Schlichtmann,
“CorrectNet: Robustness enhancement of analog in-memory computing
for neural networks by error suppression and compensation,” in Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2023.

[39] ——, “CorrectNet+: Dealing with hw non-idealities in in-memory-
computing platforms by error suppression and compensation,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 43, no. 2, pp. 573–585, 2023.

[40] A. Eldebiky, G. L. Zhang, X. Yin, C. Zhuo, I.-C. Lin et al., “Basisn:
Reprogramming-free rram-based in-memory-computing by basis
combination for deep neural networks,” in IEEE/ACM International
Conference on Computer-Aided Design(ICCAD), 2024.

[41] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” ArXiv, 2014.

[42] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard et al.,
“Backpropagation applied to handwritten zip code recognition,” Neural
computation, vol. 1, no. 4, pp. 541–551, 1989.

[43] L. Chen, J. Li, Y. Chen, Q. Deng, J. Shen et al., “Accelerator-
friendly neural-network training: Learning variations and defects in
rram crossbar,” in Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2017.

[44] S. Zhang, G. L. Zhang, B. Li, H. H. Li, and U. Schlichtmann,
“Aging-aware lifetime enhancement for memristor-based neuromorphic
computing,” in Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2019, pp. 1751–1756.

[45] G. Charan, J. Hazra, K. Beckmann, X. Du, G. Krishnan et al., “Accurate
inference with inaccurate rram devices: Statistical data, model transfer,
and on-line adaptation,” in ACM/IEEE Design Automation Conference
(DAC), 2020.

[46] S. Zhang, G. L. Zhang, B. Li, H. H. Li, and U. Schlichtmann, “Lifetime
enhancement for rram-based computing-in-memory engine considering
aging and thermal effects,” in IEEE International Conference on
Artificial Intelligence Circuits and Systems (AICAS), 2020, pp. 11–15.

[47] Y. Zhu, G. L. Zhang, T. Wang, B. Li, Y. Shi et al., “Statistical training for
neuromorphic computing using memristor-based crossbars considering
process variations and noise,” in Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2020, pp. 1590–1593.

[48] Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones et al., “Deep
learning with coherent nanophotonic circuits,” Nature photonics, vol. 11,
no. 7, pp. 441–446, 2017.

[49] Y. Zhu, G. L. Zhang, B. Li, X. Yin, C. Zhuo et al., “Countering variations
and thermal effects for accurate optical neural networks,” in IEEE/ACM
International Conference on Computer Aided Design (ICCAD), 2020,
pp. 1–7.

[50] J. Gu, Z. Zhao, C. Feng, M. Liu, R. T. Chen et al., “Towards area-
efficient optical neural networks: an fft-based architecture,” in Asia and
South Pacific Design Automation Conference (ASP-DAC), 2020.

[51] J. Gu, Z. Zhao, C. Feng, H. Zhu, R. T. Chen et al., “Roq: A noise-
aware quantization scheme towards robust optical neural networks with
low-bit controls,” in Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2020.

[52] A. Eldebiky, B. Li, and G. L. Zhang, “Nearuni: Near-unitary training
for efficient optical neural networks,” in IEEE/ACM International
Conference on Computer Aided Design (ICCAD), 2023.

[53] S. Fei, A. Eldebiky, G. L. Zhang, B. Li, and U. Schlichtmann, “An
efficient general-purpose optical accelerator for neural networks,” in Asia
and South Pacific Design Automation Conference (ASP-DAC), 2025.

[54] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

[55] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger,
“Densely connected convolutional networks,” in IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2017.

[56] E. J. Merced-Grafals, N. Dávila, N. Ge, R. S. Williams, and
J. P. Strachan, “Repeatable, accurate, and high speed multi-level
programming of memristor 1t1r arrays for power efficient analog
computing applications,” Nanotechnology, vol. 27, no. 36, p. 365202,
2016.

[57] W.-L. Chen, F.-Y. Gu, C. Lin, G. L. Zhang, B. Li et al., “A novel
and efficient block-based programming for reram-based neuromorphic
computing,” in IEEE/ACM International Conference on Computer Aided
Design (ICCAD), 2023.

